
Technische Universit -at Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Towards Parallel Repair Using Decompositions

Yue Ma Rafael Peñaloza

LTCS-Report 14–05

Postal Address:
Lehrstuhl f �ur Automatentheorie
Institut f �ur Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
N �othnitzer Str. 46

Dresden

Towards Parallel Repair Using Decompositions∗

Yue Ma
Rafael Peñaloza

Theoretical Computer Science, TU Dresden, Germany
Center for Advancing Electronics Dresden, Germany

{mayue,penaloza}@tcs.inf.tu-dresden.de

Abstract

Ontology repair remains one of the main bottlenecks for the develop-
ment of ontologies for practical use. Many automated methods have been
developed for suggesting potential repairs, but ultimately human interven-
tion is required for selecting the adequate one, and the human expert might
be overwhelmed by the amount of information delivered to her. We propose
a decomposition of ontologies into smaller components that can be repaired
in parallel. We show the utility of our approach for ontology repair, provide
algorithms for computing this decomposition through standard reasoning,
and study the complexity of several associated problems.

1 Introduction

One of the main challenges in real-world Description Logic (DL) based applica-
tions is to maintain the ontologies consistent with the intended domain modeling,
a task often involving interactions with domain experts. It is thus desirable to
allow experts to work distributively and in parallel for verifying and correct-
gin unexpected logical consequences. This task is of a particular importance in
scenarios where information is precious, large, and complex, and where manual
verification of a repair plan is a necessary but labour-consuming task.

Current research on ontology repair (see e.g. [5, 6, 8, 10, 15, 17, 20]) focuses on
pinpointing the axiomatic causes, called MinAs of an unintended consequence
and using them to compute a repair plan. For example, consider the ontology

O = {A v Bi, Bi v C | 1 ≤ i ≤ n+ 1} ∪ {Bi+1 v Bi | 1 ≤ i ≤ n}.
∗This work is supported by the DFG Research Unit FOR 1513, project B1 and within the

Cluster of Excellence ‘cfAED’.

1

· · · · · ·

Figure 1: Two minimal hitting sets (squared dots) of the illustrative ontology O

· · ·

Figure 2: A decomposition of O (thickened circles)

Clearly, O implies A v C, and there are diverse reasons for this entailment:
{A v Bi, Bi v C} and {Bi v C,Bi+1 v Bi, A v Bi+1} for each i, 1 ≤ i ≤ n.
This situation is depicted in Figure 1, where each axiom of O is represented with
a node, and the different MinAs for A v C are surrounded by an ellipse.

To repair the ontology, minimal hitting sets [18], represented with squared nodes
in each subfigure from Figure 1, are the commonly used. The reason for this
choice is that a minimal hitting set of all MinAs corresponds to a minimal set of
elements that need to be removed to avoid this consequence. That is, it provides
a minimal repair plan, which can be computed automatically.

When multiple experts are available for authenticating a repair plan, it would be
desirable to divide this task in a manner that allows experts to work in parallel.
One way is to distribute one MinA to each expert. However, due to the overlaps
between the MinAs, this may lead to unnecessary extra re-validations from differ-
ent experts. Alternatively, we could distribute the minimal hitting sets; it is then
unclear which hitting set should be sent from the many available. Consider the
case where several hitting sets are precomputed and each one of them is sent to
an expert. Besides the problem of possible overlaps among hitting sets in general,
the large size of these sets (e.g. n+ 1 in the example ontology O), means a high
work load for each expert. Moreover, if a given hitting set is partitioned and
distributed among different experts, there is a need of a communication mecha-
nism for all experts to be informed of any decision made by the others, to avoid
successive clashes and unnecessary effort.

Based on these observations, we propose a novel methodology for decomposing
ontologies that allows experts to validate and apply a repair plan in parallel.
Generally speaking, we are interested in a decomposition that guarantees that:

• no communication is required among experts and no axiom is submitted to
more than one expert; and

• the union of the repairs returned is free of the unintended consequence.

For the example ontology O, a possible such decomposition is shown in Figure 2,
where each thickened ellipse is a component delivered to an expert for repair.
This decomposition allows n experts to work distributively, analysing two axioms
each. Stated in a general ontology language, our methodology is applicable to

2

all logic-based applications that have a necessity to have experts assisting the
repair process. Moreover, to keep the modeling convention of a domain, we as-
sume that subontologies should be delivered in their original format. All these
features distinguish the present work from the existing research efforts on ontol-
ogy decompositions, such as ontology modularization [7], ontology masking [8],
decompositions based on minimal unsatisfiable sets (MUSs) [9], and root and
derived axioms for unsatisfiable concepts [12], among many others.

2 Preliminaries

To remain as general as possible, we do not fix any specific knowledge represen-
tation formalism, but assume that we have an ontology language that describes
two classes of well-formed formulas called axioms and consequences, respectively.
An ontology O is a finite set of axioms, and a subset of O is called a subontology
of O. For a fixed ontology language L, a monotone consequence relation |= is
a binary relation between ontologies O and consequences α of L such that, if
O |= α and O ⊆ O′, then O′ |= α. If O |= α, we say that O entails α. For the
rest of this paper, we denote as C the complexity of deciding entailments in L.

Two examples of ontological languages are HL and EL, among other DLs [2]. In
HL axioms and consequences are Horn clauses p0 ← p1 ∧ . . . ∧ pn, n ≥ 0, where
each pi is a propositional variable 0 ≤ i ≤ n. In this case, the standard logical
entailment relation ` is a monotone consequence relation. In EL, concepts are
built from disjoint sets NC and NR using the rule C ::= A | > | C u C | ∃r.C,
where A ∈ NC and r ∈ NR. Axioms and consequences in this logic are GCIs
C v D, where C,D are concepts, and subsumption is a monotone consequence
relation. In HL and EL, the consequence relation can be decided in polynomial
time [1, 3, 4].

If an unwanted consequence α follows from an ontology, we are interested in
repairing it, by finding an appropriate weaker ontology that does not entail α
anymore. Formally, a repair for O w.r.t. α is an ontology R such that (i) R 6|= α,
(ii) R is weaker than O; that is, for every consequence β, if R |= β, then O |= β,
and (iii) R is a minimal change of O. We simply say a repair for O when the
consequence is clear from context. If α is an erroneous consequence, then a repair
describes a minimal change of O that removes it. The notion of minimal change
depends on the ontological knowledge and the desired application. For example,
one can define repairs to be maximal subontologies that avoid the consequence
(see e.g. [13]) or allow for a more fine-grained decomposition of the axioms [8]. We
remain as general as possible, and allow any notion to be considered. As there is
typically more than one repair for any given consequence, usually a human expert
is needed to identify the best one. To aid in the repair process, it is often helpful

3

to identify the axiomatic causes of the consequence, called MinAs.1

Definition 1 (MinA). Let O be an ontology and α a consequence with O |= α. A
subontologyM⊆ O is a MinA for O w.r.t. α ifM |= α and for everyM′ (M,
M′ 6|= α.

An axiom is said to be consequence-free w.r.t. α if it is not in any MinA for
O w.r.t. α. When the consequence is clear from context, we simply call it free
axiom. Our goal is to divide the ontology into different components that can be
repaired in parallel. Since free axioms are never responsible for the occurrence
of the erroneous consequence α, for the rest of the paper we assume that the
ontology O does not contain any consequence free axiom w.r.t. α.

3 General Ontology Decompositions

We now formalize the notion of parallel ontology repair via decompositions. We
start with the ideal case where an ontology can be fully decomposed into different
components and repaired in parallel. However, the existence of this case can not
be guaranteed. Hence, we subsequently propose a series of ontology decomposi-
tions that do not necessarily partition the whole ontology, but still allow repairs
to be performed independently on each component.

Definition 2 (Perfect Partition). Given an ontology O and a consequence α, a
perfect partition of O w.r.t. α is a partition {K1, . . . , Kn} of O such that, if Ri

is a repair of Ki for i, 1 ≤ i ≤ n, then
⋃n
i=1Ri is a repair of O w.r.t. α. In this

case, the perfect partition has size n.

A perfect partition provides a way to break down an ontology into multiple dis-
joint subontologies that can to be resolved independently, and the union of their
repairs will lead to a repair of the whole ontology.2 This characterizes the intuition
of repairing an ontoloy in parallel.

Example 3. Let O = {A v Bi, Bi v C | 1≤i≤n}∪ {A v Di, Di v C | 1≤i≤m}.
The sets Ki = {A v Bi, Bi v C} and Li = {A v Di, Di v C}, produce a perfect
partition of O w.r.t. A v C. Repairing each Ki and Li w.r.t. A v C leads to a
repair of O w.r.t. the same consequence.

In this example, the set of mutually disjoint MinAs produces a perfect partition
of O. However, this is not true in general, as illustrated by the following example.

1MinAs receive several names. They are e.g. called MUS in propositional logic, and
MUPS [19] or justifications [8, 11] in DLs.

2A subontology is the repair of itself if it does not contain a MinA.

4

Example 4. Consider the ontology

O = {A v B1, B1 v C,A v B1 uB2, B2 v C}.

M1 = {A v B1, B1 v C} and M2 = {A v B1 u B2, B2 v C} are two disjoint
MinAs for A v C, and {M1,M2} is a partition of O. However, they do not form
a perfect partition: {B1 v C} and {A v B1 u B2} are repairs of M1 and M2,
respectively, but their union {B1 v C,A v B1 uB2} is not a repair of O.

The ontology O from this example does not have any perfect partition of size
≥ 2. Clearly, a perfect partition of size 1 always exists: the whole ontology itself
is such one. Since only decompositions of size larger than 1 are meaningful for
parallel repair, in the rest of the paper, by a perfect partition we mean its size is
equal or greater than 2 unless explicitly stated otherwise. The following theorem
provides a simple sufficient condition for an ontology to have a perfect partition.

Theorem 5. Let M1, . . . ,Mn be all the MinAs of O w.r.t. a consequence α. If
these MinAs are all pairwise disjoint, then O has a perfect partition of size n.

Proof. It holds by constructing a perfect partition as follows. Suppose the set
of MinAs of O w.r.t a consequence α is {M1, ...,Mn}, then a partition P =
{M1, ...,Mn∪(O\

⋃n
i=1Mi)} ofO is a perfect partition ofO. Indeed, for any repair

Ri of each Mi, O′ =
⋃n
i=1Ri∪(O\

⋃n
i=1Mi) is a repair of O. Otherwise, if there is

a MinA M ⊆ O′, there must be at least two components of P that intersect with
M . This means there is a MinA intersects with these two components, which
contradicts the hypothsis that MinAs are mutually disjoint.

In general the condition of partitioning the ontology is too strong. In some cases,
a decomposition of larger size can be obtained if some axioms are not included
in any of the components. We formalize this idea next.

Definition 6 (Perfect Partial-Partition). A set of mutually disjoint subontologies
{K1, . . . , Kn} is a perfect partial partition ofO w.r.t. a consequence α if it satisfies
the following condition: given repairs Ri of Ki for each i, 1 ≤ i ≤ n,

⋃n
i=1Ri is a

repair for
⋃n
i=1Ki w.r.t. α.

To characterize these partial partitions, we introduce the notion of decomposition.
This is inspired by the work [9] and the insight that the different subontologies
submitted to experts should be inner-connected, but outer-isolated.

Definition 7 (Decomposition). Let O be an ontology entailing a consequence
α. A decomposition of O w.r.t. α is a set D := {K1,...,Kn} of mutually disjoint
subsets of O such that: (i) for every i, 1 ≤ i ≤ n, Ki |= α, and (ii) for every MinA
M for

⋃n
i=1Ki w.r.t. α, there is an i, 1 ≤ i ≤ n with M⊆ Ki.

The decomposition D has size n, or is an n-decomposition; each Ki is a com-
ponent of D; and Dn(O, α) denotes the set of n-decompositions of O w.r.t. the
consequence α.

5

Intuitively, the condition (i) characterizes the inner-connection such that each
expert is assigned with a subontology containing some causes of the consequence.
And the condition (ii) guarantees the outer-isolation as illustrated by the following
example.

Example 8. Consider again the ontologyO and the MinAsM1 andM2 from Ex-
ample 4. {M1,M2} is not a decomposition because there {A v B1uB2, B1 v C}
is also a MinA contained inM1∪M2, violating the condition (ii) of Definition 7.
Suppose that M1 and M2 were distributed to two experts, which return the re-
pairs B1 v C ∈ M1 and A v B1 u B2 ∈ M2, respectively. Then, these repairs
together would still entail the unwanted consequence.

Theorem 9. If D is an n-decomposition, then D is a perfect partial-partition of
size n.

Proof sketch. Suppose that
⋃n
i=1Ri |= α. Then there must be a set I ⊆ {i | 1 ≤

i ≤ n} with |I| > 1 such that
⋃
i∈IRi |= α. By the definition of repair and the

monotonicity of ontology languages,
⋃
i∈I Ki |= α. So

⋃
i∈I Ki contains a MinA

of α which does not belong to any Ki (|I| > 1), contradicting the definition of
decomposition.

Theorem 9 tells that the inconsistencies in each component of a decomposition
can be resolved distributively and the merged repair becomes consistent.

Notice that the union of the components needs not to be the whole ontology, so
a decomposition defined Defintion 7 is not necessarily a perfect partition. Let
U = O\

⋃n
i=1Ki. If U 6= ∅, we cannot guarantee that

⋃n
i=1Ri∪U does not entail

the consequence. Consider again the example from the introduction with n = 2.
For the decomposition {K1, K2} with Ki = {A v Bi, Bi v C} for i = 1, 2, the
axiom B2 v B1 ∈ U . The subontologies R1 = {B1 v C} and R2 = {A v B2}
are repairs for K1 and K2, respectively. However,

⋃n
i=1Ri ∪ U |= A v C. To

solve this issue, one can either drop the unconfirmed axiom B2 v B1 because
the other axioms that can form a MinA with it have been verified by experts;
or, repeat the same process by constructing a new decomposition to resolve the
remaining inconsistencies. To parallelize the effort of repairing the ontology, we
are interested in decompositions of maximal size. The corresponding decision
problem is the following.

Problem: max-decom
Input: an ontology O, a consequence α, an integer m
Output: is there an m-decomposition of O w.r.t. α?

As we show next, this problem can be solved using a special kind of decomposition
made of MinAs only.

6

Definition 10 (MinA Decomposition). A decomposition D = {K1,...,Kn} of O
w.r.t. α is a MinA decomposition if for every i, 1 ≤ i ≤ n, Ki is a MinA for O
w.r.t. α.

Lemma 11. O has an m-decomposition if and only if O has a MinA decompo-
sition of size m.

Proof. The if direction is obvious; for the other direction, if {K1, . . . , Km} is a
decomposition and K ′

i ⊆ Ki, then {K ′
1, . . . , K

′
m} is also a decomposition. LetMi

be a MinA for Ki w.r.t. α. Then {Mi | 1 ≤ i ≤ m} is a MinA decomposition of
size m.

Based on this lemma, we can decide max-decom by guessing m disjoint sub-
sets K1, . . . , Km of O in polynomial time, and verifying that they form a MinA
decomposition; that is, solving the following problem.

Problem: is-(mina)-decom
Input: ontology O, consequence α, D = {K1, . . . , Km}
Output: is D a (MinA) decomposition of O w.r.t. α?

To decide this problem, we can guess a MinAM that violates the second condition
of Definition 7. To verify thatM is indeed a MinA, polynomially many entailment
tests are required. Thus we get the following bound.

Lemma 12. is-decom is in coNPC.

This lemma provides only an upper bound for the problem; in particular, it also
shows that is-mina-decom is in coNPC. In general, these upper bounds do
not need to be tight. For example, in HL it is possible to decide in polynomial
time whether the set D = {M1, . . . ,Mm} is exactly the set of all MinAs for an
ontology O [16]. It is easy to see that the set D is a MinA decomposition iff
D is the set of all MinAs for

⋃m
i=1Mi. Thus, is-mina-decom for HL can be

solved in polynomial time. However, it is still an open question whether the same
holds for is-decom, or for the more expressive logic EL, or for other logics with
polynomial time entailment problems.

Algorithm 1 uses all these ideas to decide max-decom. The procedure not-
mina receives as input an ontology O and a consequence α, and answers “yes”
if O is not a MinA w.r.t. α. This is the case if either O 6|= α (line 18), or there
is a strict subset of O that still entails α (line 17). The other two procedures
perform a non-deterministic guess; max-decom guesses the components, while
is-decom guesses a MinA that violates the second condition of Definition 7.

Theorem 13. max-decom is in (ΣP
2)C.

7

Algorithm 1 Deciding max-decom

1: procedure max-decom(O, α, m)
2: for 1 ≤ i ≤ m do
3: guess Ki ⊆ O
4: if not-mina(Ki, α) then return no

5: if Ki ∩Kj = ∅ for all i, 1 ≤ i < j ≤ m then
6: return is-decom({K1, . . . , Km}, α)
7: else return no
8: end procedure
9: procedure is-decom(D, α)

10: guessM⊆
⋃
K∈DK

11: if M * K for all K ∈ D then
12: return not-mina(M, α)
13: else return yes

14: end procedure
15: procedure not-mina(O, α)
16: for all t ∈ O do
17: if O \ {t} |= α then return yes

18: return O 6|= α
19: end procedure

In particular, this theorem shows that max-decom is in ΣP
2 for both HL and EL.

As before, the bound needs not be tight; indeed, using the arguments described
above, it is easy to see that this problem is in NP for HL.

We are mainly interested in decompositions of maximal size since they allow for
a more efficient parallelization of the repairing procedure: each component can
be repaired independently, and the properties of the decomposition guarantee
that the union of these repairs does not entail the consequence. However, we are
interested in finding a repair for the whole input ontology O, not just for those
axioms appearing in the decomposition. As described before, ideally we would
find a perfect partition of size n, for a given natural number n. Accordingly, we
want to decide whether such a decomposition exists.

Problem: perfect-part
Input: an ontology O, a consequence α, an integer m
Output: is there a perfect partition of O w.r.t. α of size m?

Algorithm 2 describes a method for deciding perfect-part. In a nutshell, it
guesses a partition D of O of size m, and then verifies, through a call to the
procedure is-decom from Algorithm 1, that D is a decomposition. This yields
the same complexity upper bound as for max-decom.

Theorem 14. perfect-part is in (ΣP
2)C.

8

Algorithm 2 Deciding perfect-part

1: procedure full-decom(O, α, m)
2: for 1 ≤ i ≤ m do
3: guess Ki ⊆ O
4: if {K1, . . . , Km} is a partition of O then
5: return is-decom({K1, . . . , Km}, α)
6: else return no
7: end procedure

Figure 3: Two 5-decompositions: left a MinA decomposition; right a justified
decomposition with minimal remain.

We can in general visualize the set of MinAs for a consequence α as a hypergraph
GO,α. Every axiom in O is represented through a node, and every MinA is a
hyperedge in this hypergraph. Consider the sub-hypergraph HO,α of GO,α that
contains only nodes belonging to some hyperedge; i.e., where all free axioms have
been removed. It is easy to see that there is a perfect partition of size m iff
there are at least m maximally connected subgraphs of HO,α. This is usually
not a desired behavior for parallelization, since the number of components will
be usually small. For example, the ontology depicted in Figure 3 allows for a
decomposition of size 5, but its only perfect partition has size 1. On the other
hand, if D is an n-decomposition of O w.r.t. α, then D is a perfect partition of⋃
K∈DK w.r.t. α of size n.

To maximize the number of components, and hence the degree of parallelization,
we are willing to ignore some axioms, as described by the notion of decomposition.
However, we should try to submit to the experts as much information from the
original ontology as possible, to ensure an effective repair process. This will be
the focus of the next section.

4 Maximally Informative Decompositions

While MinA decompositions are useful for deciding the existence of a decomposi-
tion of a given size, they, by construction, ignore a large amount of axioms from
the ontology. Consider again the example in Figure 3. The maximal size of a
decomposition of this ontology is 5, as shown on the left-hand-side graph through

9

Algorithm 3 Finding a minimal remain decomposition

1: procedure find-min-rem-dec(O, α, m)
2: D ← find-decom(O, α, m)
3: R ←

⋃
K∈DK

4: for all t ∈ O \ R do
5: if perfect-part(R∪ {t}, α, m) then
6: R ← R∪ {t}
7: return find-perfect-part(R, α, m)
8: end procedure

a MinA decomposition. In total, the components contain only 10 out of the 16
axioms from the ontology. Moreover, there is a whole MinA for the consequence
that is left out of the decomposition; even if all the components are corrected,
the obtained ontology would still entail the error. On the right-hand-side, we can
observe a decomposition of the same size 5, whose components extend those of
the MinA decomposition, and uses 14 out of the 16 axioms.

When we send a subontology for repair, it should be as informative as possible,
to ensure that no simple errors are ignored. Clearly, the less axioms that are
removed to build the decomposition, the more information that is gathered and
used during the parallel repair. Thus, we are interested in finding, among all
decompositions of maximal size, those that include the most axioms possible.

Definition 15 (Minimal Remain Decomposition). Let n be a natural number and
O |= α. The remain of a decomposition D is O \ (

⋃
K∈DK). A decomposition

D ∈ Dn(O, α) is a minimal remain decomposition if there is no D′ ∈ Dn(O, α)
with

⋃
K∈DK (

⋃
K∈D′ K.

In other words, a decomposition D has minimal remain if it is not possible to
decompose a proper superset of

⋃
K∈DK in the same number of components.

Consider again the example in Figure 3. The decomposition on the right-hand-
side has a remain with two axioms. It is a minimal remain decomposition, since
adding any of these two axioms would destroy the properties of decompositions.

To find a minimal remain decomposition, we can recursively try to add axioms
from the remainder of a previously known n-decomposition, until none can be
added, as described in Algorithm 3. More precisely, let D be an n-decomposition,
for instance, a MinA decomposition of size n that was constructed through Al-
gorithm 1, and let R =

⋃
K∈DK; i.e., R is the complement of the remain of

D. For each axiom t in the remain of D, we decide whether R ∪ {t} has a full
n-decomposition. If so, then t is added to R. At the end of this iteration, R has
a maximal subontology that allows for a perfect partition of size n. Any perfect
partition of this subontology is hence guaranteed to have minimal remain.

The internal subprocedure in lines 3 to 6 of Algorithm 3 can be easily adapted

10

Figure 4: A Pareto decomposition without minimal remain

to verify that the decomposition D has minimal remain.

Problem: is-min-rem-decom
Input: ontology O, consequence α, D = {K1, . . . , Km}
Output: is D a minimal remain decomposition of O w.r.t. α?

In the variant algorithm, one only has to check that R ∪ {t} has no perfect
partition, for every t ∈ O \ R. If that is the case, then D has minimal remain.

Theorem 16. is-min-rem-decom is in (ΠP
2)C.

Notice that the decomposition obtained through Algorithm 3 may have no resem-
blance with the first decomposition found at line 2. Indeed, the only requirement
is that there is a perfect partition of all the axioms used, which could differ greatly
from the original one. In some cases, e.g. when the first decomposition was con-
structed from some specific MinAs that should remain connected, it is desirable
to only add axioms to the existing components.

Definition 17 (Pareto Decomposition). Given n ∈ N, O |= α, and decomposi-
tions D,D′ ∈ Dn(O, α), D is contained in D′, denoted by D ⊆ D′ if, for every
K ∈ D there is a K ′ ∈ D′ such that K ⊆ K ′. D is a Pareto decomposition if
there is no D′ 6= D with D ⊆ D′.

Clearly, every minimal remain decomposition is also Pareto. The converse, how-
ever, does not hold. Consider the situation depicted in Figure 4, where the ellipses
represent the different MinAs for a given consequence. This ontology can be de-
composed into a perfect partition of size two, simply by considering its connected
subgraphs. It is easy to see that the 2-decomposition D, where one component is
formed by the diamond-shaped axioms, and the other by the triangle-shaped ax-
ioms is a Pareto decomposition. However, the dot-shaped axiom is in the remain
of D. This implies that D is not a minimal-remain decomposition.

To find a Pareto decomposition, we can use the same ideas of Algorithm 3. We
first find a decomposition, and then try to add each of the remaining axioms
to one of the components, as long as this addition still yields a decomposition.
It can also be restricted to decide whether an input decomposition is already
Pareto or not. Notice, however, that in line 5 the algorithm for deciding Pareto
decomposition does not need to verify whether a set of axioms accepts a full
decomposition, but rather whether a set of subontologies forms a decomposition,
which, as seen before, is a simpler problem. Thus, we have the following.

11

Table 1: Instantiation of complexity results for decomposition to different DLs.
Language Consequence |= is-dec max-dec perf-part is-min-rem-d is-pareto-d is-just-d

general general C coNPC (ΣP
2)C (ΣP

2)C (ΠP
2)C NPC (ΣP

2)C

HL entailment P P NP NP coNP P NP
EL subsumption P coNP ΣP

2 ΣP
2 ΠP

2 NP ΣP
2

ALC consistency ExpTime ExpTime ExpTime ExpTime ExpTime ExpTime ExpTime

Problem: is-pareto-decom
Input: ontology O, consequence α, D = {K1, . . . , Km}
Output: is D a Pareto decomposition of O w.r.t. α?

Theorem 18. is-pareto-decom is in NPC.

We have considered decompositions that maximize the information stored in the
components in two different ways: either by minimizing the elements that remain
out of the decomposition, or by maximizing the components in a Pareto optimal
manner. Notice, however, that some of the axioms included in a component might
be irrelevant for the repair of that specific component. For that reason, we might
also be interested in justified decompositions.

Definition 19 (Justified Decomposition). Let O |= α. A decomposition D is
called justified if for every K ∈ D and every t ∈ K there exists a MinA M of O
w.r.t. α such that t ∈M ⊆ K.

Clearly, we can combine this notion with the previous ones and obtain, e.g., Pareto
justified decompositions. All the algorithms presented so far can be easily adapted
to handle justified decompositions. One only needs to perform an additional check
to verify that there is a full MinA for every axiom contained in a component. This
test adds a new non-deterministic test, and hence the upper bounds increase to
the next level of the polynomial hierarchy. Moreover, this jump in the hierarchy
cannot be avoided since deciding whether an axiom is justified in a component is
already NP-hard for very simple sublogics of HL [16].

5 Conclusions

We have introduced several notions of ontology decomposition targeted towards
an efficient repair mechanism. Our motivating idea is that human experts, which
are usually in demand for a correct repair of an ontology, can be easily over-
whelmed by the amount of axioms provided to them. We thus suggest to divide
the ontology into disjoint components that can be repaired in parallel, possibly
by several different experts. Our definition of decomposition guarantees that the
combination of the individual repairs for the components does not yield any new
errors, hence providing an efficient parallelization of the repair process.

12

We have mainly focused on studying the different decision problems associated
with decomposing ontologies, and their complexity. Our approach is general,
considering an arbitrary monotonic consequence relation over some ontology lan-
guage. Hence, our complexity analysis can only provide upper bounds; whether
these bounds are tight or not is a matter of the specific language used. However,
our results can be instantiated to well-known ontology languages. In Table 1 we
summarize the complexity of these problems for DLs. The cells show the known
upper bound for deciding the problems at each column; cells with a darker back-
ground represent tight bounds.

We plan to study the precise complexity of these problems for specific languages,
in particular for light-weight DLs. We will also further consider the applicability
of our decompositions for practical ontology repair. To this goal, we will imple-
ment optimized versions of our algorithms and study the viability of developing a
repair plan, in which components are sent to experts in a manner that minimizes
the expected total effort and time required to remove the error.

References

[1] Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proceedings
of the Nineteenth International Joint Conference on Artificial Intelligence
IJCAI-05. Morgan-Kaufmann Publishers, Edinburgh, UK (2005)

[2] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider,
P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2nd edn. (2007)

[3] Brandt, S.: Polynomial time reasoning in a description logic with existential
restrictions, GCI axioms, and—what else? In: de Mantáras, R.L., L. Saitta
(eds.) Proceedings of the 16th European Conference on Artificial Intelligence
(ECAI-2004). pp. 298–302. IOS Press (2004)

[4] Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfia-
bility of propositional horn formulae. J. Log. Program. 1(3), 267–284 (1984)

[5] Erdogan, H., Bodenreider, O., Erdem, E.: Finding semantic inconsistencies
in umls using answer set programming. In: Fox, M., Poole, D. (eds.) Proc.
of the 24th Nat. Conf. on Artificial Intelligence (AAAI’10) (2010)

[6] Gebser, M., Schaub, T., Thiele, S., Veber, P.: Detecting inconsistencies in
large biological networks with answer set programming. TPLP 11(2-3), 323–
360 (2011)

[7] Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount:
Extracting modules from ontologies. In: Proceedings of the 16th Interna-

13

tional Conference on World Wide Web. pp. 717–726. WWW ’07, ACM, New
York, NY, USA (2007), http://doi.acm.org/10.1145/1242572.1242669

[8] Horridge, M., Parsia, B., Sattler, U.: Justification masking in ontologies. In:
Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Proc. of the 12th Int. Conf. on
the Principles of Knowledge Representation and Reasoning (KR-12). AAAI
Press (2012)

[9] Jabbour, S., Ma, Y., Raddaoui, B.: Inconsistency measurement thanks to
mus decomposition. In: International conference on Autonomous Agents and
Multi-Agent Systems (AAMAS’14) (2014), to appear

[10] Jiménez-Ruiz, E., Grau, B.C., Zhou, Y., Horrocks, I.: Large-scale interac-
tive ontology matching: Algorithms and implementation. In: Raedt, L.D.,
Bessière, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P.J.F.
(eds.) Proc. of the 20th European Conf. on Artificial Intelligence (ECAI-12).
Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 444–449.
IOS Press (2012)

[11] Kalyanpur, A.: Debugging and Repair of OWL Ontologies. Ph.D. thesis,
The Graduate School of the University of Maryland (2006)

[12] Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.A.: Debugging unsatisfiable
classes in owl ontologies. J. Web Sem. 3(4), 268–293 (2005)

[13] Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-
tolerant semantics for description logics. In: Hitzler, P., Lukasiewicz, T.
(eds.) Proc. of the 4th Int. Conf. on Web Reasoning and Rule Systems
(RR’10). Lecture Notes in Computer Science, vol. 6333, pp. 103–117.
Springer (2010)

[14] Ma, Y., Peñaloza, R.: Towards parallel ontology repair using decomposi-
tions. LTCS-Report 14-05, Chair for Automata Theory, Institute for The-
oretical Computer Science, Technische Universität Dresden, Dresden, Ger-
many (2014), see http://lat.inf.tu-dresden.de/research/reports.html.

[15] Meilicke, C.: Alignment incoherence in ontology matching. Ph.D. thesis,
University of Mannheim, Chair of Artificial Intelligence (2011)

[16] Peñaloza, R., Sertkaya, B.: On the complexity of axiom pinpointing in the el
family of description logics. In: Lin, F., Sattler, U., Truszczynski, M. (eds.)
Proc. of the 12th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR-10). AAAI Press (2010)

[17] Peñaloza, R.: Axiom Pinpointing in Description Logics and Beyond. Ph.D.
thesis, Institute for Theoretical Computer Science, Faculty of Computer Sci-
ence, TU Dresden, Germany (2009)

14

[18] Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1),
57–95 (Apr 1987), http://dx.doi.org/10.1016/0004-3702(87)90062-2

[19] Schlobach, S., Cornet, R.: Non-standard reasoning services for the debug-
ging of description logic terminologies. In: Proceedings of the 18th Inter-
national Joint Conference on Artificial Intelligence. pp. 355–360. Morgan
Kaufmann Publishers Inc. (2003), http://dl.acm.org/citation.cfm?id=
1630659.1630712

[20] Suntisrivaraporn, B.: Polynomial-Time Reasoning Support for Design and
Maintenance of Large-Scale Biomedical Ontologies. Ph.D. thesis, Institute
for Theoretical Computer Science, Faculty of Computer Science, TU Dres-
den, Germany (2009)

15

