

Maximilian Marx

Attributed Logics for Reasoning over Knowledge Graphs

Dresden, 2025-07-08

Knowledge Representation & Reasoning

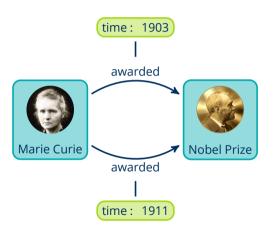
Goals

- ▶ Encode data about the real world
- ▶ Infer new data

Long History:

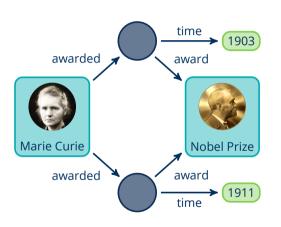
- ▶ 1970s: Frames
- ▶ 1980s–1990s: KL-ONE, Cyc, Description Logics
- ▶ 2000s: Semantic Web
- ▶ RDF as a graph format
- ► SPARQL as a graph query language
- ► OWL as an ontology language

Knowledge Graphs



None of these use RDF for their internal representation. Why?

RDF is not enough



► How to express annotations in RDF?

RDF is not enough

- ► How to express annotations in RDF?
- ► Add auxiliary nodes: **Reification**

OWL is not enough

begin: 1895

end: 1906

cause: death of spouse

spouse Spouse Pierre Curie

begin: 1895

end: 1906

cause: death

➤ Spouse is a symmetric relationship

OWL is not enough

end: 1906

cause: death of spouse

Marie Curie

begin: 1895

end: 1906

cause: death

Spouse is a symmetric relationship

- ► OWL can declare properties as symmetric
- But annotations are not identical

Goal: Reasoning with Annotations

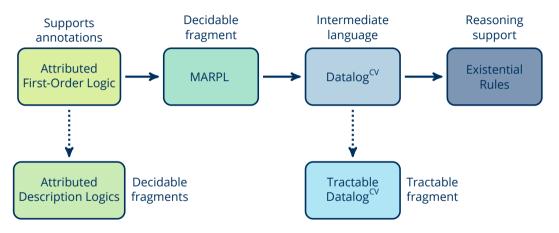
Fact entailment

- ► Given: annotated Knowledge Graph and background knowledge
- \blacktriangleright Does fact α follow?

Goal: Reasoning with Annotations

Fact entailment

- ► Given: annotated Knowledge Graph and background knowledge
- ▶ Does fact α follow?


Requirements

- ► Modelling features for selecting & constructing annotations
- ► Decidable fact entailment
- ► Software implementation

Roadmap

Attributed First-Order Logic

Marx et al., International Joint Conferences on Artificial Intelligence 2017

Extension of First-Order Logic (FOL):

► Extend predicates with annotations: p(x,y) becomes p(x,y)@S

- ▶ Annotations are finite sets of pairs: $\{a:v\}$
- ► Variables and quantification over annotations

Example: Married Nobel Laureates

► Find spouses that share a Nobel Prize

$$\forall U, V. \ \forall x, y. \ (\text{spouse}(x, y)@U \land \text{awarded}(x, Nobel)@V \land (\text{with } : y) \in V \rightarrow \text{nobelSpouse}(x, y)@\emptyset)$$

Example: Married Nobel Laureates

► Find spouses that share a Nobel Prize

```
\forall U, V. \ \forall x, y. \ (\text{spouse}(x, y)@U \land \text{awarded}(x, Nobel)@V \land (\text{with } : y) \in V \rightarrow \text{nobelSpouse}(x, y)@\emptyset)
```

- ► Attributed FOL allows reasoning with annotations!
- ▶ The symmetric spouse example is also expressible

Undecidability

Theorem

Attributed First-Order Logic is as expressive as weak Second-Order Logic.

Undecidability

Theorem

Attributed First-Order Logic is as expressive as weak Second-Order Logic.

► **Good**: We have added expressive power

▶ **Bad**: Attributed FOL is not even semi-decidable

Undecidability

Theorem

Attributed First-Order Logic is as expressive as weak Second-Order Logic.

► **Good**: We have added expressive power

▶ **Bad**: Attributed FOL is not even semi-decidable

We need a decidable fragment!

MARPL

Marx et al., International Joint Conferences on Artificial Intelligence 2017

Rule fragment of FOL: **Datalog**

$$spouse(x, y) \rightarrow spouse(y, x)$$

Rule fragment of attributed FOL: MARPL

$$spouse(x,y)@U \rightarrow spouse(y,x)@U$$

- ► **Specifiers** for matching annotations
- ► Function definitions for constructing annotations

Example: Married Nobel Laureates

▶ Find spouses that share a Nobel Prize

 $spouse(x, y)@[] \land awarded(x, Nobel)@[with : y] \rightarrow nobelSpouse(x, y)@[]$

Example: Married Nobel Laureates

► Find spouses that share a Nobel Prize

```
spouse(x,y)@[] \land awarded(x,Nobel)@[with:y] \rightarrow nobelSpouse(x,y)@[]
```

► MARPL allows reasoning with annotations!

Example: Inverses for Spouse

► Spouse in marriage ended due to death on day d has inverse with new annotation Inverse(U, d)

```
spouse(x,y)@U \land [cause : death](U) \land died(x,d)@[]

\rightarrow spouse(y,x)@Inverse(U,d)
```

```
Function definition for Inverse(U, d)
```

► Cause is death of spouse

 \implies insert(cause : death of spouse)

▶ end is d

- \implies insert(end : d)
- ► Inherit begin, if present $\lfloor begin : b \rfloor (U) \implies insert(begin : b)$

Complexities

Fact entailment

- ► Given: annotated Knowledge Graph and background knowledge
- ▶ Does fact α follow?

How hard is fact entailment?

Complexities

Fact entailment

- ► Given: annotated Knowledge Graph and background knowledge
- ▶ Does fact α follow?

How hard is fact entailment?

- ► Data complexity considers background knowledge fixed
- ► Combined complexity considers background knowledge part of the input
- ▶ Typical graphs much larger than background knowledge

Complexities of MARPL

Theorem

Combined complexity of MARPL fact entailment is ExpTime-complete.

Complexities of MARPL

Theorem

Combined complexity of MARPL fact entailment is ExpTime-complete.

Theorem

Data complexity of MARPL fact entailment is

- ► ExpTime-complete in general
- ▶ PTime-complete if annotation size is bounded

Complexities of MARPL

Theorem

Combined complexity of MARPL fact entailment is ExpTime-complete.

Theorem

Data complexity of MARPL fact entailment is

- ► ExpTime-complete in general
- ▶ PTime-complete if annotation size is bounded

Wikidata: 520 out of 1.6 Billion statements have annotation size 10 or larger

SQID: A Wikidata Browser

Marie Curie (Q7186)

Maria Salomea Skłodowska | Maria Skłodowska-Curie | Marie Curie-Sklodowska | Maria Skłodowska

Polish and French physicist and chemist (1867–1934)

	Own statements	From related entities	
sibling	Bronisława Dłuska (Polish physician, first dir	rector of the Radium-Institut in Warsaw (1865-1939))	
	Józef Skłodowski (Polish physician)		
	Helena Skłodowska-Szaley (Polish educate	or, school inspector and educational activist)	
spouse	Pierre Curie (French physicist (1859-1906)) start time : 1895-07-26 end time : 1906-04-19 place of marriage : Scoux (commune in Hauto-de-Se end cause : death of subject's spouse (end cause of		
relative 6+3 statements >	Helena Dłuska (Polish sportsperson (1892-192 kinship to subject : sororal niece (kenale child of a s		
	Kazimierz Dłuski (Polish physician and politi kinship to subject : sister's husband (moband of sie	sician)	1
	Jacques Curie (French physicist (1855–1941)) kinship to subject : husband's brother (prother of t	husband)	
father	Władysław Skłodowski (Polish scientist and	I educator)	
child	Irène Joliot-Curie (French scientist (1897-1956	6))	
	Ève Curie (writer, journalist and pianist, young	er daughter of Marie and Pierre Curie)	
mother	Bronisława Skłodowska (mother of Marie C	'urie')	

Links				
Wikidata page				
Wikipedia article				
Reasonator				
Identifiers	~			

Identifiers		~
rvatska nciklopedija ID	12996	>
rockhaus	curiemarya	>

MARPL Reasoning in SQID

Marx & Krötzsch, Demo at International Semantic Web Conference 2017

- ▶ nonrecursive MARPL reasoning via SPARQL
- ▶ male parent of parent is a grandfather

-> (?child.relative=?grandfather)@{kinship=grandfather}

Inferred Statements		~
relative	Stanley Armour Dunham (maternal grandfather of Barack Obama) type of kinship: grandfather (male grandparent)	>

Nemo

v0.7.2-dev Nemo on Github Web Interface on Github Docs

- Reasoner for Datalog & Existential Rules
- ► Datalog + value invention: Existential Rules
- ► Supports SPARQL & RDF

Nemo

- ► Reasoner for Datalog & Existential Rules
- ► Datalog + value invention: Existential Rules
- ► Supports SPARQL & RDF

Can we use Nemo for MARPL reasoning?

Nemo & The Chase

The Chase

- ► Find applicable rule: premise holds, but conclusion does not
- ► Apply rule: add conclusion
- ▶ Repeat until nothing changes

Computes a model that can be used for deciding fact entailment

► Always terminates for Datalog

Nemo & The Chase

The Chase

- ▶ Find applicable rule: premise holds, but conclusion does not
- ► Apply rule: add conclusion
- ► Repeat until nothing changes

Computes a model that can be used for deciding fact entailment

- ► Always terminates for Datalog
- ► May not terminate for Existential Rules: "every person has a parent"
- ► A variant works for MARPL (always terminates)

Nemo & The Chase

The Chase

- ► Find applicable rule: premise holds, but conclusion does not
- ► Apply rule: add conclusion
- ▶ Repeat until nothing changes

Computes a model that can be used for deciding fact entailment

- ► Always terminates for Datalog
- ► May not terminate for Existential Rules: "every person has a parent"
- ► A variant works for MARPL (always terminates)

Plan: translate MARPL into Existential Rules

Datalog with Complex Values

Marx & Krötzsch, International Conference on Database Theory 2022

Datalog + Sets + Tuples: Datalog cv

▶ Use sets of pairs for annotations: $p(x,y)@\{a:v\}$ becomes $p(x,y,\{\langle a,v\rangle\})$

$$spouse \left(\begin{array}{c} \langle begin, 1895 \rangle, \\ \langle end, 1906 \rangle, \\ \langle cause, death \ of \ spouse \rangle \end{array} \right)$$

► The Chase also works for Datalog^{CV} (and always terminates)

Datalog with Complex Values

Marx & Krötzsch, International Conference on Database Theory 2022

Datalog + Sets + Tuples: Datalog cv

▶ Use sets of pairs for annotations: $p(x,y)@\{a:v\}$ becomes $p(x,y,\{\langle a,v\rangle\})$

$$spouse \left(Marie, Pierre, \left\{ \begin{array}{c} \langle begin, 1895 \rangle, \\ \langle end, 1906 \rangle, \\ \langle cause, death \ of \ spouse \rangle \end{array} \right\} \right)$$

► The Chase also works for Datalog^{CV} (and always terminates)

 $Datalog^{CV}$ + stratified negation: $Datalog_{neg}^{CV}$

► Stratification ensures that the Chase works in presence of negation

MARPL to Datalog^{CV}

Theorem

MARPL admits a translation into Datalog $_{neg}^{CV}$ that

- ► Preserves consequences
- ► Can be computed in PTime
- ► Preserves complexities of fact entailment

A function-free fragment of MARPL translates into Datalog^{CV}

Data Complexity of Datalog CV neg

Datalog^{CV}_{neg} can express all ELEMENTARY queries Two parameters are crucial for fine-grained complexity bounds:

- maximal nesting depth of sets: set height
- ► maximal arity of tuples: **tuple width**

Theorem

Data complexity of fact entailment for $Datalog_{neg}^{CV}$ with set height k is kExpTime-complete.

Data Complexity of Datalog CV neg

Datalog^{CV}_{neg} can express all ELEMENTARY queries Two parameters are crucial for fine-grained complexity bounds:

- ► maximal nesting depth of sets: set height
- ► maximal arity of tuples: **tuple width**

Theorem

Data complexity of fact entailment for $Datalog_{neg}^{CV}$ with set height k is kExpTime-complete.

- ► Optimal for Datalog (set height 0)
- ► Optimal for MARPL (set height 1)

Combined Complexity of Datalog CV neg

Theorem

Combined complexity of fact entailment for Datalog $_{neg}^{CV}$ with set height k is

- ► (k + 1)ExpTime-complete if tuple width is bounded
- ▶ (k + 2)ExpTime-complete in general

Combined Complexity of Datalog CV neg

Theorem

Combined complexity of fact entailment for Datalog $_{neg}^{CV}$ with set height k is

- ► (k + 1)ExpTime-complete if tuple width is bounded
- ▶ (k + 2)ExpTime-complete in general
- ► Optimal for Datalog (set height 0, bounded tuple width)
- ► Not optimal for MARPL (set height 1, bounded tuple width)

Combined Complexity of Datalog CV neg

Theorem

Combined complexity of fact entailment for Datalog $_{neg}^{CV}$ with set height k is

- ► (k + 1)ExpTime-complete if tuple width is bounded
- ▶ (k + 2)ExpTime-complete in general
- ► Optimal for Datalog (set height 0, bounded tuple width)
- ► Not optimal for MARPL (set height 1, bounded tuple width)
- ► We can still show the ExpTime upper bound since tuples range only over domain elements

From Datalog^{CV} to Existential Rules

Theorem

Datalog^{CV} admits a translation into Existential Rules that

- ► Preserves consequences
- ► Can be computed in PTime
- ► Preserves complexities of fact entailment
- ▶ Produces rules for which the Chase always terminates

From Datalog^{CV} to Existential Rules

Theorem

Datalog^{CV} admits a translation into Existential Rules that

- ► Preserves consequences
- ► Can be computed in PTime
- ► Preserves complexities of fact entailment
- ▶ Produces rules for which the Chase always terminates
- ► Similar translation from Datalog^{CV}_{neg} into Existential Rules with stratified negation
- ▶ We can translate MARPL into Existential Rules!

Tractable Datalog^{cv}

Sets derived over any database have at most *k* elements: *k*-bounded cardinality

Theorem

Data complexity of fact entailment for bounded cardinality Datalog^{CV} is PTime-complete.

Tractable Datalog^{CV}

Sets derived over any database have at most *k* elements: *k*-bounded cardinality

Theorem

Data complexity of fact entailment for bounded cardinality Datalog^{CV} is PTime-complete.

- ► **Good**: bounded cardinality Datalog^{CV} is a tractable fragment!
- ▶ **Bad**: bounded cardinality is undecidable

Tractable Datalog^{CV}

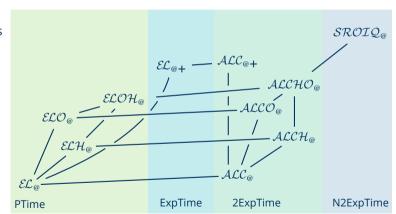
Sets derived over any database have at most *k* elements: *k*-bounded cardinality

Theorem

Data complexity of fact entailment for bounded cardinality Datalog^{CV} is PTime-complete.

- ► **Good**: bounded cardinality Datalog^{CV} is a tractable fragment!
- ▶ **Bad**: bounded cardinality is undecidable
- ► Sufficient conditions for bounded cardinality:
 - ► Set acyclicity checks for recursively constructed sets
 - ► Cardinality contraints estimates cardinality with inequalities

Krötzsch, Marx et al., International Semantic Web Conference 2017; International Joint Conferences on Artificial Intelligence 2018


 \mathcal{R} : complex roles

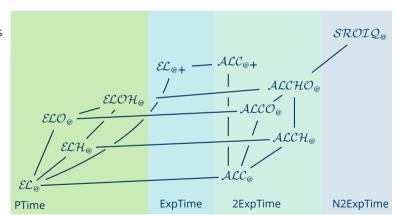
Q: number restrictions

+: One-or-more Annotations

O: Nominals

H: Role Hierarchies

Krötzsch, Marx et al., International Semantic Web Conference 2017; International Joint Conferences on Artificial Intelligence 2018


 \mathcal{R} : complex roles

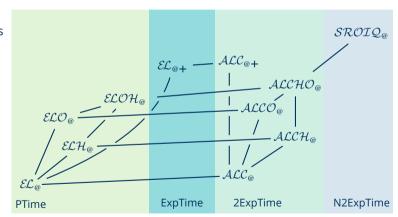
Q: number restrictions

+: One-or-more Annotations

O: Nominals

 \mathcal{H} : Role Hierarchies

Krötzsch, Marx et al., International Semantic Web Conference 2017; International Joint Conferences on Artificial Intelligence 2018


 \mathcal{R} : complex roles

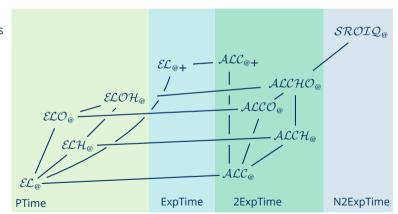
Q: number restrictions

+: One-or-more Annotations

O: Nominals

H: Role Hierarchies

Krötzsch, Marx et al., International Semantic Web Conference 2017; International Joint Conferences on Artificial Intelligence 2018


 \mathcal{R} : complex roles

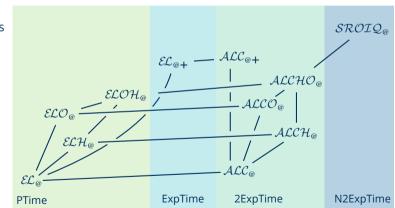
Q: number restrictions

+: One-or-more Annotations

O: Nominals

 \mathcal{H} : Role Hierarchies

Krötzsch, Marx et al., International Semantic Web Conference 2017; International Joint Conferences on Artificial Intelligence 2018


 \mathcal{R} : complex roles

Q: number restrictions

+: One-or-more Annotations

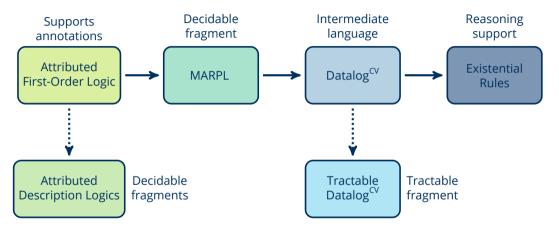
O: Nominals

 \mathcal{H} : Role Hierarchies

Outlook

Negation & Aggregation

- ► When can we avoid negation when translating MARPL to Datalog^{CV}?
- ► Which kinds of aggregation can we add to MARPL while keeping the translation?


Extending Nemo

- ► Support Complex Values in Nemo
- ► Generalise Function Definitions to modules: isolated sets of rules that construct single values

Reflection

