Restricted Chase Termination: You Want More than Fairness

DAVID CARRAL, LIRMM, Inria, University of Montpellier, CNRS, France
LUKAS GERLACH, Knowledge-Based Systems Group, TU Dresden, Germany
LUCAS LARROQUIE, Inria, DI ENS, ENS, CNRS, PSL University, France
MICHAEL THOMAZO, Inria, DI ENS, ENS, CNRS, PSL University, France

The chase is a fundamental algorithm with ubiquitous uses in database theory. Given a database and a set of
existential rules (aka tuple-generating dependencies), it iteratively extends the database to ensure that the rules
are satisfied in a most general way. This process may not terminate, and a major problem is to decide whether
it does. This problem has been studied for a large number of chase variants, which differ by the conditions
under which a rule is applied to extend the database. Surprisingly, the complexity of the universal termination
of the restricted (aka standard) chase is not fully understood. We close this gap by placing universal restricted
chase termination in the analytical hierarchy. This higher hardness is due to the fairness condition, and we
propose an alternative condition to reduce the hardness of universal termination.

CCS Concepts: « Theory of computation — Constraint and logic programming; Logic and databases.
Additional Key Words and Phrases: Existential Rules, Tuple Generating Dependencies, Restricted Chase

ACM Reference Format:

David Carral, Lukas Gerlach, Lucas Larroque, and Michaél Thomazo. 2025. Restricted Chase Termination:
You Want More than Fairness. Proc. ACM Manag. Data 3, 2 (PODS), Article 109 (May 2025), 29 pages. https:
//doi.org/10.1145/3725246

1 Introduction

The chase is a fundamental algorithm in database theory that is applied to address a wide range
of problems. For instance, it is used to check containment of queries under constraints, in data
exchange settings, or to solve ontology-based query answering; see the introductions of [11, 13] for
more information. Technically speaking, the chase is a bottom-up materialisation procedure that
attempts to compute a universal model (a model that can be embedded into all other models via
homomorphism) for a knowledge base (KB), consisting of an (existential) rule set! and a database.

Example 1. Consider the KB K = (Z, D) where D is the database {Bicycle(b)} and ¥ contains:

Vx.Bicycle(x) — dy.HasPart(x,y) A Wheel(y) Vx,y.HasPart(x,y) — IsPartOf(y,x)
Vx.Wheel(x) — Jy.IsPartOf(x,y) ABicycle(y) Vx,y.IsPartOf(x,y) — HasPart(y,x)

Then, {Bicycle(b),HasPart(b,t), IsPartOf(t, b), Wheel(t)} is a universal model of ‘K.

10ther researchers refer to these first-order formulas as “tuple generating dependencies” or simply as “TGDs”.

Authors’ Contact Information: David Carral, LIRMM, Inria, University of Montpellier, CNRS, Montpellier, France, david.
carral@inria.fr; Lukas Gerlach, Knowledge-Based Systems Group, TU Dresden, Dresden, Germany, lukas.gerlach@tu-
dresden.de; Lucas Larroque, Inria, DI ENS, ENS, CNRS, PSL University, Paris, France, lucas.larroque@inria.fr; Michaél
Thomazo, Inria, DI ENS, ENS, CNRS, PSL University, Paris, France, michael.thomazo@inria.fr.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2836-6573/2025/5-ART109

https://doi.org/lOJ145/3725246

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

HTTPS://ORCID.ORG/0000-0001-7287-4709
HTTPS://ORCID.ORG/0000-0003-4566-0224
HTTPS://ORCID.ORG/0009-0007-2351-2681
HTTPS://ORCID.ORG/0000-0002-1437-6389
https://doi.org/10.1145/3725246
https://doi.org/10.1145/3725246
https://orcid.org/0000-0001-7287-4709
https://orcid.org/0000-0003-4566-0224
https://orcid.org/0009-0007-2351-2681
https://orcid.org/0000-0002-1437-6389
https://orcid.org/0000-0002-1437-6389
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725246

109:2 David Carral, Lukas Gerlach, Lucas Larroque, and Michaél Thomazo

W:2 W:2 W:4 W:2 W:5 W:9

HP:27 HP:27§IP:3 HP:47 HP:27§IP:3 HP:577_\ IP:7 HP:9 -°
XIPB KIP:G HP:7¥IP:5 KIPA HP:6¥IP:8 HP:IO\
B:1 B:1 B:3 B:1 B:3 B:7

Fig. 1. Three Different Restricted Chase Sequences for the KB K from Example 1

Although there are many variants of the chase, they all implement a similar strategy. Namely,
they start with the database and then, in a step-by-step manner, extend this structure with new
atoms to satisfy the rules in the input rule set in a most general way. Since none of these variants
are guaranteed to terminate (some KBs do not even admit finite universal models), it is only natural
to wonder about their respective halting problems [1, 5, 6, 10, 13, 18]. Despite intensive efforts,
some results have remained open (until now!). Specifically, prior research has established tight
bounds for all classes of chase terminating KBs and rule sets, except for the following:

e The class CTK{* of all KBs that only admit finite restricted chase sequences.
e The class CTR[* containing a rule set 3 if (%, D) € CTK{* for every database D.

Our main contribution is to show that both classes are IT}-complete, a surprising result given that
these are significantly harder than the corresponding classes for other chase variants [13].

The restricted chase differs from other variants in that it introduces new terms to satisfy existential
quantifiers in rules only if these are not already satisfied by existing terms. Because of this, the
order of rule applications impacts the termination of a chase sequence. For instance, the KB %K
from Example 1 admits finite and infinite restricted chase sequences; some of these are represented
in Fig. 1, where atoms are numbered to denote the sequence step at which they were introduced.

CTK{* has been claimed to be recursively enumerable (RE) in [13], probably with the following
procedure in mind: given an input KB, compute all of its restricted chase sequences in parallel, and
halt and accept if all of them are finite. Alas, this strategy does not work as there are terminating
input KBs that admit infinitely many finite sequences that are of ever-increasing length.

Example 2. Consider the KBK; = (X, D) where D is the database {Real(a),E(a, c),E(c, b),Real(c),
E(b,b),Brake(b)} and X is the rule set that contains all of the following:

Vx,y,z.Real(x) A E(x,y) A Real(y) A Brake(z) — Jv.E(y,v) A E(v,z) A Real(v)
Vx.Brake(x) — Real(x)

For any k > 1, there is a restricted chase sequence of K, that yields the (finite) universal model
DU{E(c, t1)} U{E(t;, tiy1) | i < k} U{E(;,b),Real(t;) | i < k} U{Real(b)} of K;. Such a sequence
is obtained by applying the first rule k consecutive times and then applying the second one once to
derive Real(b). After this application, the first rule is satisfied and the restricted chase halts.

The KB K in the previous example is in CTK[* because of fairness. This is a built-in condition
in the definition of all chase variants that guarantees that the chase yields a model of the KB by
requiring that, if a rule is applicable at some point during the computation of a sequence, then this
rule must be eventually satisfied. Hence, the second rule in K, must sooner or later be applied in
all restricted chase sequences and thus, all such sequences are finite.

The KB in Example 2 uses a technique called the emergency brake, initially proposed by Krétzsch
et al. in [16]. The idea is to connect every term in the chase to a special term (the constant b in this
example) that is not “Real” and acts as a “Brake”. Eventually, this term becomes “Real” because
of fairness, all existential restrictions are satisfied, and the restricted chase halts. The emergency
brake allows to grow the chase for an arbitrary number of steps whilst guaranteeing its termination.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

Restricted Chase Termination: You Want More than Fairness 109:3

By activating infinite sequences of emergency brakes, we emulate the eternal recurrence often
displayed by I1}-complete problems and thus define the reductions that lead to our main results.
After presenting the necessary preliminaries in Section 2, we discuss related work in Section 3.
Then, we show that CTK(f“ and CTR(f“ are H%-complete in Sections 4 and 5, respectively. In
Section 6, we propose an alternative to fairness for the restricted chase that simplifies its universal
termination problem. We conclude with a brief discussion about future work in Section 7.

2 Preliminaries

First-Order Logic. Consider pairwise disjoint, countably infinite sets of predicates Preds, variables
Vars, constants Cons, and nulls Nulls. Every predicate has an arity through ar : Preds — N U {0}.
Elements in Vars U Cons U Nulls are called terms. An atom is an expression of the form P(f) where
T a list of terms and P is a |f|-ary predicate. A fact is a variable-free atom. An (existential) rule R is a
closed first-order formula of the form VX, §.B[X,y] — 3z.H[y, Z] where X, 9, and Z are pairwise
disjoint lists of variables; B and H are null-free conjunctions of atoms featuring exactly the variables
in X, § and g, Z, respectively; and H is non-empty. We write body(R) and head(R) to denote B and
H, respectively; and refer to the list §j of variables as the frontier of R. We omit universal quantifiers
for brevity. A database is a finite fact set without nulls. A knowledge base (KB) is a pair (%, D)
consisting of a finite rule set ¥ and a database D.

The Chase. A substitution o is a partial mapping from variables to constants or nulls. For an
(arbitrary) expression ¢, let o(¢) be the expression that results from ¢ by replacing all occurrences
of every variable v in ¢ by o(v) if the latter is defined. A trigger is a pair (R, o) consisting of a rule R
and a substitution ¢ that is defined exactly on the universally quantified variables in R. The support
of a trigger (R, o) is support({R, o)) = o(body(R)). A trigger (R, o) is loaded for a fact set F if this
fact set includes its support; and obsolete for F if there exists a substitution ¢’ that extends o to
the existential variables in R such that ¢’(head(R)) C F. The output of a trigger (R, o) that is not
obsolete for F is output(((R, o)) = ¢’ (head(R)), where ¢’ is some substitution that extends ¢ by
mapping every existential variable in R to a fresh null. A X-trigger is a trigger with a rule in .

Definition 3. A (restricted) chase derivation for a KB (%, D) is a possibly infinite sequence Fy, Fi, . . .
of fact sets such that (1) Fy = D and, (2) for each i > 0, there is some E-trigger (R, o) that is loaded
and not obsolete for F; such that Fi,1 = F; U output({R, 0)). Such a chase derivation is a (restricted)
chase sequence if, (3) for every E-trigger A and every i > 0 such that A is loaded for F;, there is some
Jj = i such that A is obsolete for F;.

Condition (3) is known as fairness. Note that, if no appropriate trigger according to condition
(2) exists for some i > 0, then the sequence necessarily ends at F;. The result of a chase sequence
¥ is the union of all fact sets in 7. It is well-known that the result F of any chase sequence for
a KB K = (%, D) is a universal model for K. That is, every model of K can be homomorphically
embedded into F, which is also a model of this theory. Note that, if we consider infinite sequences,
the result of the chase may not be a model of K if we disregard fairness.

A chase sequence terminates if it is finite. A KB existentially terminates if it admits a terminating
chase sequence; it universally terminates if all of its chase sequences terminate. A rule set X
existentially terminates if every KB with ¥ existentially terminates; it universally terminates if every
KB with ¥ universally terminates. The classes of knowledge bases that existentially and universally
terminate are denoted by CTKZ* and CTK{™, respectively. The classes of rule sets that existentially
and universally terminate are denoted by CTRE* and CTR{[™, respectively. We also consider similar
classes for the oblivious and core chase variants, which we denoted in the obvious manner. For
instance, CTR"Hbl is the set of all rule sets that existentially terminate for the oblivious chase.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

109:4 David Carral, Lukas Gerlach, Lucas Larroque, and Michaél Thomazo

Turing Machines. As per our definition, all machines reuse the same initial state. Moreover,
machines do not write blanks and cannot access accepting or rejecting states; these are not relevant
in our context because we only consider halting problems.

Definition 4. A (non-deterministic Turing) machine is a tuple (Q, T, §) where Q is a set of states
that contains the initial state qo, T is a tape alphabet withT 2 {0,1} andB ¢ T, and § is a transition
function for Q. That is, § is a function that maps from Q X T U {B} to P(Q X T X {«, —}).

Definition 5. A configuration for a machine (Q,T,) is a tuple (n, t, p,q) where n is a natural
number; t : {1,...,n} — T U {B} is a function such that t(n) = B, and t(i + 1) = B if t(i) = B for
some 1 < i < n;p is a number in {1,...,n}; and q is a state in Q. The starting conﬁguration on some
word wy, ..., w, € {0,1}* is the tuple (n + 1,t, 1, qo) where t is the function that maps 1 to wy, 2 to
Wy, ..., n towy, andn+1 toB.

For a configuration (n, t, p,q), we use t to encode the contents of the tape at each position;
moreover, we use p and g to encode the position of the head and the state of the machine, respectively.
Note that elements of the tape alphabet I' may not occur after a blank symbol in such a configuration.

Definition 6. Consider a machine M = {(Q,T',8) and a configuration p = (n,t,p,q) withq € Q.
Then, let Nexty(p) be the smallest set that, for every (r,a, &) € 5(t(p),q) with< = — orp > 2,
contains the configuration (n+ 1,t’, p’, r) where:

o Lett'(p) =a,lett'(n+1) =B, and let t’ (i) = t(i) forevery1 <i < n withi # p.

o [f =« thenp’ = p—1; otherwise, p’ = p + 1.

As described above, any given machine defines a function that maps configurations to sets of
configurations. An exhaustive traversal through a path in this possibly infinite tree of configurations
that begins with a starting configuration yields a run:

Definition 7. Arun of a machine M on a configuration p; is a possibly infinite sequence S = py, p2, . . .
of configurations such that piyy is in Nexty(p;) for every 1 < i < |S|, and Nexty(pis)) = 0 if S is
finite. A partial run of M on p; is a sequence of configurations that can be extended into a run of M on
p1. A (partial) run of M on a word w is a (partial) run on the starting configuration of w.

Computability Theory. The arithmetical hierarchy consists of classes of formal languages %! with
i > 1 where 3 is the class of all semi-decidable languages and X!, is obtained from X! with a
Turing jump [19]. The co-classes are denoted by I1°. Equivalently, these classes can be viewed
as the sets of natural numbers definable by first-order logic formulas with bounded quantifier
alternation. That is, Z? is the class of sets of natural numbers definable with a formula of the
form 3%, V%, ... Q;X;.P[x, X1, ..., X;] where ¢ is a quantifier-free formula and Q; is 3 if i is odd or V¥
otherwise. For H?, the alternation starts with V. We also the first level of the analytical hierarchy;
that is, =] and I1} [19]. The analytical hierarchy can analogously be defined using second-order
formulae with bounded second-order quantifier alternation. In the following, we introduce complete
problems for these classes that we later use in our reductions. Consider a machine M and a state g

e The machine M is non-recurring through g, on some word w if every run of M on w features
qr finitely many times.

e It is universally non-recurring through q, if it is non-recurring through g, on all words.

o It is robust non-recurring through q, if every run of M on any configuration features g, finitely
many times.

We obtain IT}-completeness of the first problem by adjusting a proof from the literature [15] and
for the latter two using simple reductions that we define in Appendix A.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

Restricted Chase Termination: You Want More than Fairness 109:5

KB Rule Set
Sometimes ‘ Always Sometimes ‘ Always
Oblivious RE-complete [6] RE-complete [10, 18]
Restricted RE-complete [6] ‘ IT;-complete IT5-complete [13] ‘ I1}-complete
Core RE-complete [6] Hg—complete [13]

Table 1. Undecidability status of the main decision problems related to chase termination; the results
presented without citations refer to the main contributions of this article

3 Related Work

Novel Notation. The notation introduced in Section 2 to refer to classes of terminating KBs
and rule sets differs from previous literature [13]; for instance, we write CTRVE“ instead of CT{ “t.
Moreover, given some database D, we do not consider a class such as CT’“‘ [13], which contalns a
rule set ¥ if (¥, D) universally terminates for the restricted chase. For our purposes, it is clearer to
consider a single class of terminating KBs (such as CTK{*) instead of one class of terminating rule
sets for every possible database because of the following result.

Proposition 8. For a database D’, a quantifier Q € {V, 3}, and a chase variant var € {obl, rest, core};
there is a many-one reduction from CTK”‘” to CT"‘" and vice-versa.

Proor. There is a many-one reduction CT"“’Q to CTKZ)‘" since, for a rule set 3, we have that
PINS CT"“’ if and only if (3,D’) € CTK"‘" To show that there is a many-one reduction in the
other dlrectlon we describe a computable functlon that maps a KB K = (2, D) into the rule set >’
such that K € CTKy" if and only if 3 € CTp,. Namely, let 3’ be the rule set that results from
applying the following modifications to ¥: (i) replace all occurrences of every predicate P with a
fresh predicate P’, (ii) add the conjunction Ap)ep P’(¢) to the body of every rule, and (iii) add
the rule — Ap(z)ep P’ (€). The reduction is correct because one can easily establish a one-to-one
correspondence between the sequences of K and those of (X', D’) once we ignore the single trigger
with — Apzep P’(€) at the beginning of every sequence of the latter KB. Note that the sets of facts
produced at subsequent steps of these corresponding sequences are identical modulo replacement
of all occurrences of every predicate P by P’. O

Chase Termination in the General Case. All decision problems related to chase termination are
undecidable. However, these are complete for different classes within the arithmetical and analytical
hierarchies, as summarised in Table 1. In the following paragraphs, we discuss some simple proofs
as well as the relevant references to understand all of the results in this table.

One can readily show via induction that, if a fact occurs in some oblivious chase sequence of some
KB, then it also occurs in all oblivious chase sequences of this KB. Hence, all such chase sequences
of a KB yield the same result, and thus we conclude that CTK"b I = CTK"bl and CTR"bl CTR"bl

Deutsch et al. proved that, if a KB admits a finite universal model, then all of its core chase
sequences yield precisely this model and thus all of these sequences are finite; see Theorem 7 in [6].
Regardless of the variant, all terminating chase sequences yield a (not necessarily minimal) finite
universal model; hence, if a KB does not admit a finite universal model, then it does not admit any
finite chase sequence. Therefore, we have that either all core chase sequences of a KB are finite or
all of them are infinite. Because of this, we conclude that CTK$"™ = CTK{" and CTRZ"™ = CTR{™"™.

To understand why CTK”bl (resp. CTKZ est or CTKZ™) is recurswely enumerable (RE), con51der
the following procedure: given some 1nput KB, compute all of its oblivious (resp. restricted or core)

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

109:6 David Carral, Lukas Gerlach, Lucas Larroque, and Michaél Thomazo

chase sequences in parallel and accept as soon as you find a finite one. Deutsch et al. proved that
CTKE* is RE-hard. More precisely, they defined a reduction that takes a machine M as input and
produces a KB K as output such that M halts on the empty word if and only K is in CTKE™; see
Theorem 1 in [6]. This reduction works because all restricted chase sequences of K yield the same
result, which encodes the computation of M on the empty word with a grid-like structure (as we
ourselves do in later sections). One can use the same reduction to show that CTK%I’I is also RE-hard.

Deutsch et al. also proved that CTKS™ is RE-hard. More precisely, they showed that checking if
a KB admits a universal model is undecidable; see Theorem 6 in [6]. Moreover, they proved that
the core chase is a procedure that halts and yields a finite universal model for an input KB if this
theory admits one; see Theorem 7 of the same paper. Therefore, the core chase can be applied as a
semi-decision procedure for checking if a KB admits a finite universal model.

In Section 4, we argue that CTK\rf” is H%—complete. This contradicts Theorem 5.1 in [13], which
states that CTK{* is RE-complete. Specifically, it is claimed that this theorem follows from results
in [6], but the authors of that paper only demonstrate that CTK[* is undecidable without proving
that it is in RE. Before our completeness result, the tightest lower bound was proven by Carral
et al., who proved that this class is Hg-hard; see Proposition 42 in [5].

Marnette proved that CTR"Hbl is in RE. More precisely, he showed that a rule set X is in CTR"Bbl
if and only if the KB (X, DY) is in CTK%“ where DY = {P(x,...,%) | P € Preds(X)} is the critical
instance and * is a special fresh constant; see Theorem 2 in [18]. This result follows because one
can show that, for any database D, the (only) result of the oblivious chase of (3, D}) includes the
(only) result of the oblivious chase of (%, D) if we replace all syntactic occurrences of constants in
the latter with *. Since CTK%”Z is in RE, we conclude that CTR%“ is also in this class.

Gogacz and Marcinkowski proved that CTR‘:Zlbl is RE-hard. More precisely, they presented a
reduction that takes a 3-counter machine M as input and produces a rule set ¥ such that M halts
on ¢ if and only if (%, Dg) is in CTK?!, see Lemma 6 in [10].2 Hence, M halts on the ¢ and only if &
is in CTR%H by Theorem 2 in [18]. Furthermore, Bednarczyk et al. showed that this hardness result
holds even when we consider single-head binary rule sets; see Theorem 1.1 in [1].

To understand why CTR%* is in II), consider the following semi-decision procedure that can
access an oracle that decides the RE-complete class CTKS*: given some input rule set ¥; iterate
through every database D, use the oracle to decide if (%, D) is in CTK;E“, and accept if this is not
the case. Consider an analogous procedure to understand why CTRE™ is in IT).

Grahne and Onet proved that CTRge“ is Hg-hard. To show this, they defined two reductions that
take a word rewriting system R and a word w as input, and produce a rule set X and a database D,
respectively. Then, they proved that R terminates on w if and only if the KB (Sg, Dy,) is in CTKE™;
this claim holds because (g, D;,) only admits a single restricted chase result, which encodes all
branches of computation of R on w in an implicit tree-like structure. Therefore, R is uniformly
terminating if X is in CTRZ™. To ensure that X, is in CTRS* if R is uniformly terminating, Grahne
and Onet make use of “flooding”, a technique used in earlier work dealing with datalog boundedness
[7]. For a comprehensive presentation of this technique and its applications, see Section 2 of [11].
Using the very same reduction, Grahne and Onet also proved that CTRE is I19-hard.

In Section 5, we show that CTR{;™ is IT;-complete. This contradicts Theorem 5.16 in [13], where
it is stated that this class is IT9-complete. The error in the upper-bound of this theorem arose from
the assumption that CTK{* is in RE, which, as previously discussed, is not the case. Regarding
the lower bound, they consider an extended version of this class of rule sets where they allow the
inclusion of a single “denial constraint”; that is, an implication with an empty head that halts the

2We do not think that it is possible to intuitively explain this reduction in a couple of lines. Go read this paper, it’s worth it!

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

Restricted Chase Termination: You Want More than Fairness 109:7

chase if the body is satisfied during the computation of a chase sequence. They prove that the
always restricted halting problem for rule sets is I19-hard if one such constraint is allowed. Our
results imply that we do not need to consider such an extension to obtain a higher lower bound.

Chase Termination of Syntactic Fragments. Undeterred by the undecidability results discussed
above, researchers have proven we can decide chase termination if we consider syntactic fragments
of existential rules for which query entailment is decidable [2, 3, 12, 17]. Another way of checking
termination in practice is to develop acyclicity and cyclicity notions; that is, sufficient conditions
for termination and non-termination of the chase. Indeed, experiments show that we can determine
chase termination for a large proportion of real-world rule sets with these checks [4, 8, 9, 14].

4 Knowledge base termination
Theorem 9. The class CTK{* is IT{-complete.

The theorem immediately follows from the upcoming Lemma 12 and Lemma 13.
For the membership part, we define a non-deterministic Turing machine that loops on g, if and
only if there is a non-terminating chase sequence for a given rule set.

Definition 10. Consider a rule set 3. For a fact set F, let active(F) be the set of all triggers with a
rule in ¥ that are loaded and not obsolete for F. Let Ms, be a non-deterministic Turing machine with
start state qo and a designated state q, that executes the following procedure.

1) Check if the input tape contains a valid encoding of a database. If not, halt.

2) Initialize two countersi = j = 0 and a set of facts Fy containing exactly the encoded database.

3) If active(F;) is empty, halt.

4) Non-deterministically pick a trigger (R, o) from active(F;) and let Fiy; = F; U ¢’ (head(R))
where ¢’ extends o by mapping existential variables in R to fresh nulls (not occurring in F;).

(5) If all triggers in active(F;) are obsolete for F;, then increment j and visit q, once.

(6) Increment i and go to 3.

(
(
(
(

Lemma 11. For every database D and rule set %, there is a run of Ms, on the encoding of D that visits
qr infinitely often if and only if there is a non-terminating chase sequence for (%, D).

Proor. Assume that there is a run of My on the encoding of D that visits g, infinitely many
times. Then, the sequence Fy, Fi, ... constructed by My is an infinite restricted chase derivation for
(Z, D) by construction. Since g, is visited infinitely many times, j grows towards infinity. Therefore,
every trigger that is loaded for some F; with j > 0 is obsolete for some i > j; which is exactly
fairness. Hence, the infinite derivation is a proper chase sequence.

Assume that there is an infinite chase sequence Fy, Fy, ... for (3, D). By definition, for each
i > 0, there is a trigger A € active(F;) that yields F;.;. Hence, there is a run of My that non-
deterministically picks these triggers. Because of fairness, for every trigger A in active(F;) with
J = 0,thereisi > j such that A is obsolete for F;. Hence, the run of My visits g, infinitely often. O

Lemma 12. Deciding membership in CTK{* is in IT].

Proor. We show a reduction to non-recurrence through g, on the empty word. For a given rule
set 2, let M? be a non-deterministic Turing machine that results from My by adding an initial
step that replaces the initial tape content by an encoding of D. Then, by Lemma 11, ¥ is in CTK{*
if and only if no run of MED on the empty input visits g, infinitely many times. O

Lemma 13. The class CTK{* is IT}-hard.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

109:8 David Carral, Lukas Gerlach, Lucas Larroque, and Michaél Thomazo

To prove hardness, we reduce non-recurrence through g, on the empty word to knowledge base
termination. In other words, to a Turing machine M, we will associate a database D, and a rule set
> um such that there exists a run of M on the empty word reaching g, infinitely often if and only if
the restricted chase of > on D, does not halt.

A perhaps surprising feature of this reduction is that the restricted chase must halt for rule sets
generated from Turing machines that do not halt on the empty word, as long as they reach g, only
finitely often. As we cannot get any computable bound on the number of steps required to reach
qr, we must simulate any finite run of the Turing machine in a terminating way. This calls for the
use of emergency brakes as presented in the introduction. We “stack” such brakes, each one being
responsible to prevent the non-termination for runs that do not go through g;.

Schema. We will make use of the following predicates. Note that the last position usually holds
an emergency brake. We introduce: For each letter a in the Turing machine alphabet or equal to
the blank B, a binary predicate a. For each state g of the Turing machine, a binary predicate q. Two
ternary predicates F and R, that encode the successor relation for time and for cells. Two binary
predicates C. and Cg, used to copy tapes content. A unary predicate Real and a binary predicate
NextBr, used for the machinery of emergency brakes. Two unary predicates Brake and End to
identify terms used as emergency brakes and the last element of a configuration, respectively.

Each time a new term is created during the chase, we link it in a specific way to the rele-
vant brake. To simplify the subsequent presentation, we denote by brSet(x, w) the set of atoms
{F(x, w, w),R(x, w, w),Real(x),Brake(w)}. The remainder of this section is devoted to the reduc-
tion from the “non-recurrence through g,” problem to knowledge base restricted chase termination.
We first present the reduction, and then focus on the main ideas required to show correctness.

The Reduction. Each configuration p of a Turing machine is encoded by a database as follows.

Definition 14. The database D, encoding a configuration p = (n,t,p, q) is

D, ={R(ci, civ1, wi), @i (ciwi) | 1 < i < mya; = t(i)} U {a(cp, W), B(cns1, wi), End(cper, wi) }
U U br‘Set(ci, W1)
1<i<n+1

For a word w, we denote by D,, the database D,, , where p., is the initial configuration of M on w.

Given a Turing machine M with states Q and tape alphabet T, we build X); composed of the
following rules. We first have a set of rules required for setting up emergency brakes.

Brake(w) — /\ a(w,w), /\ q(w, w),F(w, w, w), R(w, w, w),
ael'U{B} qeQ

CL(w, w), Cr(w, w),Real(w), nextBr(w,w) (Rsrake)

brSet(x, w), nextBr(w,w’) — brSet(x,w’) (Rnextsr)

The next four rules are responsible of simulating the moves of the head of the Turing machine.
The first two rules deal with the case where the machine is not in g,, and the head moves to the

right (resp. to the left). The important feature of these rules is the presence in both the body and
the head of the same brake w.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

Restricted Chase Termination: You Want More than Fairness 109:9

Forallq # q,,q' € Qand a,b,c € T U {B} such that (¢’, b, =) € 5(q, a):
q(x, w), a(x, w),R(x, y, w), c(y, w), brSet(x, w),brSet(y, w)
— 3",y 9'(¥', w), c(y', w), b(x", w), CL(x", w), Cr(y', W), (R=g,
R(x",y", w),F(x,x",w),F(y,y’, w),brSet(x’, w), brSet(y’, w)
Forallg # q,,q' € Q and a,b,c € T U {B} such that (¢’, b, <) € 5(q, a):
q(x, w),a(x, w),R(y, x, w), c(y, w), brSet(x, w), brSet(y, w)
— 3",y ' (Y, w), c(y’, w), b(x", w), CL(y', w), Cr(x', w), (RS,)
R(y',x",w),F(x,x",w),F(y,y’, w),brSet(x’, w), brSet(y’, w)

The following two rules treat the case where the transition is from g,. The only difference with
the two above rules is the introduction of a new brake w’ in the head of the rules. This permits
non-terminating restricted chase sequences in the presence of specific runs.

Forall ¢’ € Q and a,b,c € T U {B} such that (¢’, b, —) € 5(q;, a):
gr(x, w),R(x, y, w), a(x, w), c(y, w), brSet(x, w), brSet(y, w)
- 3,y w, 9, w), ey, w),b(x,w),R(x", ¢y, w), (R,
Flx,x",w'),F(y,y/,w"),CL(x’,w"), Cr(y/, W),
brSet(x’,w’), brSet(y’, w'), nextBr(w, w’)
Forall ¢ € Q and a,b,c € T U {B} such that (¢’, b, <) € 5(q;, a):
gr(x, w),R(y, x, w), a(x, w), c(y, w), brSet(x, w), brSet(y, w)
— 3y, w, (Y, w), ey, w),b(x",w),R(y, x", w'), (R:I_r
Flx,x, w'), F(y,y/, w), CL(y, w'), Cr(x, W),
brSet(x’,w’), brSet(y’, w’), nextBr(w, w’)

The following rules copy the content of unchanged cells to the right and the left of the head
from one configuration to the next. We instantiate one of each rule for each a € T U {B}.

Cr(x", W), F(x, x", w'),R(x,y, w), a(y, w), brSet(x, w), brSet(x’, w’), brSet(y, w)

— 3y’ F(y,y,w),R(X, ¢, w'),a(y’, w'),Cr(y’, W), brset(y’, w’) (Rez)
CL(x", W), F(x,x",w'),R(y, x, w), a(y, w), brSet(x, w), brSet(x’, w’), brSet(y, w)
— 3y’ F(y,y,w),R(,x",w'),a(y’, w),CL(y’,w),brSet(y’, w’) (Re,)

Finally, we extend the represented part of the configuration by one cell at each step, as coherent
with our definition of Turing machine runs:

Cr(x’, W), F(x,x’,w"),End(x, w), brSet(x, w),brSet(x’, w’)
— 3y, R(x",y’,w’),B(y',w'),End(y’, w'), brSet(y’, w") (Rend)

Example 15. Consider a machine M = {{qo, ¢:}, {0, 1}, §) where & is a transition function that maps

(40, 0) to {{gr, 1, =)}, (qr,B) t0 {{qo, 1,)}, (q0, 1) to {{gr, 1, =)}, and (gr, 1) to {{qo, 1, <)} note
how the (only) run of M on the word 0 contains infinitely many configurations with the state q,. In
this representation, every label on an edge or a term represents several facts in the chase. For the sake

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

109:10 David Carral, Lukas Gerlach, Lucas Larroque, and Michaél Thomazo

,All’ﬁ"eﬁ?za §0:0- - - - - - B,End
1 T—R]
'/ -Brake, Real- ==~ - Fro===-- _'>E ==t
nextBr L1,CL -qrB,Cr- - - -B,End
R—¢

Fig. 2. An Infinite Restricted Chase Sequence of (21, Do) where M is the machine from Example 15, and
AllPredssg above is a shortcuts for “F, R, qo, ¢r, 0, 1, B, Cg, CL, nextBr”.

of clarity, these labels can be extended with another argument, which should be some ‘Brake” term in
the same dashed or later dashed box.

Correctness proof of the reduction. The reduction is now fully described, and we claim that:

Proposition 16. X, universally halts for the restricted chase on D,, if and only if there exists no run
of M on p that goes infinitely often through q.

We first prove that if there exists a run of M going through g, infinitely often, then there exists a
non-terminating chase sequence. To that purpose, we identify interesting subsets of databases.

Definition 17 (Wild Frontier of Configuration p). A set of atomsF has a wild frontier of configuration
p ={nt,p,q) overseen by w € terms(F) if there exists x1, ..., Xn+1 € terms(F) such that:

e Real(w) ¢ F;

o {R(xj,Xi41, w),ai(x;,w)} CF foralli € {1,...,n}, a; = t(i);

® q(xp, w), End(xp41, W), B(Xp41, W) € F;

e brSet(x;,w) € F foralli e {1,...,n+1};

e any other atom of F having x; as first argument has w as second.

A wild frontier has three important features (i) it contains the necessary atoms to simulate the
run of a Turing machine on that configuration; (ii) it is correctly connected to a (not yet real) brake
w; (iii) it does not contain atoms preventing the above run to be simulated through a restricted
derivation. By comparing Definition 14 and Definition 17, it is clear that D, has a wild frontier
of the configuration of M on the empty word, overseen by w;. The construction of an infinite
restricted derivation is made by inductively using the following key proposition.

Proposition 18. IfF has a wild frontier of p overseen by w, and p’ is reachable in one step by a
transition of M, then there exists a restricted derivation D,_,, = F,...,F’ such that F' has a wild
frontier of p’ overseen by w’, where w’ # w is a fresh existential if p is in q,, and w' = w otherwise.

Concatenating the infinite sequence of derivations built in Proposition 18 does not however
provide a fair sequence of derivations, because of Rules Rgrake, Rnextsr and of the non-determinism

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

Restricted Chase Termination: You Want More than Fairness 109:11

of M. Fairness is enforced by applying Rgrake and Ryextsr “late enough” to ensure that none of the
triggers involved in the proof of Proposition 18 are made obsolete. This is possible because the
run of M going infinitely many often through g,, infinitely many brakes are created. Details are
provided in the appendix.

Lemma 19. Let (p;)ien be a run of M on the empty word that visits q, infinitely often. There exists
an infinite restricted chase sequence for (X, D).

To show the converse, we fix an infinite restricted chase sequence D as (F;);en, where Fy = D,.
We build from D an infinite run that visits g, infinitely often by identifying a substructure of the
chase, consisting of state atoms. We then prove that a run can be built from these states atoms (and
other elements of the chase), which fulfills the required conditions.

Definition 20. A state atom of F is an atom of F of the form q(x, w) where q € Q and x is not a
brake. A state atom A precedes A’ if there is a trigger t such that A € support(t) and A’ € output(t).
In this case, we write A < A’.

It is worth noticing that in the chase of (3, D,), state atoms are organised as a tree structure
rooted in the unique state atom belonging to D,, and such that A is a parent of A’ if and only
if A < A’. Intuitively, we can assign with each of these state atoms a configuration such that
the configuration associated with A’ is reachable in one transition of M from the configuration
associated with its parent A. The key property is that in an infinite restricted chase, there exists an
infinite sequence (A,)nen With good properties.

Lemma 21. For all databases D, and all infinite chase sequences from (Z, D) with result F, there is
an infinite sequence (An)nen of state atoms of F such that:

e Ay e D;

o A, < Ay foralln e N;

o for infinitely manyi € N, A; is of the shape q,(t;, w;).

-

PROOF sKETCH. Since the rules that introduce state atoms (Rules R, R;”, RS, and R7},) feature
a state atom in their body, < defines a forest structure over state atoms, where the root of each tree
is an atom of the database. There is thus a finite amount of trees. We can prove by induction that
there is a finite amount of atoms that feature a given brake. Thus, there is an infinite amount of
brakes in F. Then, since the rules that introduce new brakes (Rules R;” and R{ ") introduce a state
atom too, there is an infinite number of state atoms. Thus, one of the trees must be infinite, and
since branching can be proven to be finite, there must be an infinite branch by Kénig’s lemma. O

Lemma 22. For every configuration p, if the restricted chase does not terminate on (X, D)) then
there exists a run of M on p which visits q, infinitely many times.

Lemmas 19 and 22 directly imply Proposition 16, and hence the correctness of the reduction.

5 Rule set termination
Theorem 23. CTR[* is II}-complete.

The theorem immediately follows from the upcoming Lemma 24 and Lemma 25.
Lemma 24. Deciding membership in CTRY* is in I1}.

Proor. We reduce to universal non-recurrence through g,. More precisely, we show that a rule
set 3 is in CTR{* if and only if My, from Definition 10 is universally non-recurring through g;.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

109:12 David Carral, Lukas Gerlach, Lucas Larroque, and Michaél Thomazo

a
1 Q 1 (] 1 0
b
F F

c -

0,90 1 1
d 1 1,9r 1

1,B 1 B 1,00
e

Fig. 3. First three steps of the restricted chase from (Rpy, D) as defined in Example 26. The predicate F and the
brakes are not represented for the sake of readability, but terms are connected through the future predicate
to an element on the same line at the previous step. Unlabeled arrows represent R-atoms.

If 3 is in CTR{™, then (X, D) is in CTK{/* for each D. Hence, by Lemma 11, My is non-recurring
on every input that is the encoding of some database D. On inputs that are not encodings of
databases, My halts immediately by Definition 10. Therefore, My is universally non-recurring.

If My is universally non-recurring through g, then, in particular, My is non-recurring through
qr on every input that is the encoding of a database. Hence, by Lemma 11, each restricted chase
sequence for each knowledge base with ¥ is finite. Therefore, 3 is in CTR{/*". O

Lemma 25. CTR™ membership is 11} -hard.

The rest of the section is dedicated to proving this lemma, by reducing robust non-recurrence
through g, to rule set termination. In fact, the reduction is very similar to the one we use for
knowledge base termination: to a machine M, we associate the rule set Xy, which will belong to
CTR}™ if and only if M is robust non-recurring through g,. The direct implication follows from
Lemma 22 by contrapositive: if a Turing machine M is not robust non-recurring through g,, then
there is a configuration p such that M visits g, infinitely many times from p. Then, by Lemma 22,
the restricted chase does not terminate on (X, D,), and thus Xy ¢ CTRQ“‘. The other direction
requires more work. Consider a Turing machine M, and assume that there is some database D
such that the restricted chase does not terminate on (3, D). We then show that M is not robust
non-recurring through g,.

Since the restricted chase does not terminate on (3, D), there is an infinite chase sequence
from this knowledge base. We use F to denote its result. As in Section 4, by Lemma 21, F contains
an infinite sequence of state atoms A = (Ay)nen such that Ay € D, A, < Apyq foralln € N, and
there are infinitely many integers i such that A; is a q,-atom.

In the knowledge base case, we had control over the database as part of the knowledge base,
which meant that we could start from a “well-formed” database (in the sense that it encodes a
single start configuration). This allowed us to extract the unique configuration associated with a
state atom. However, in the rule set case, the database D leading to non-termination is arbitrary
and can contain any kind of structure, as highlighted by the following example.

Example 26. Consider a Turing machine M that moves to the right in every step, writing 1 regardless of
the symbol it reads. It alternates between its start state qo and the designated state q,. Now, consider the
database depicted on the left side of Fig. 3, which contains the atomsR(a, by, w), R(a, ba, w), R(b1, ¢, w),
R(ba, c,w),R(c,d, w),R(d, e,w),qo(c, w), 1(a, w), 1(b1, w),0(bs, w),0(c,w),1(d, w),1(e,w),B(e, w),
and brSet(x, w) for all x € {a, by, by, ¢, d, e}. This database represents four different configurations,

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

Restricted Chase Termination: You Want More than Fairness 109:13

each with a tape of size 5, the start state g, and the head positioned at the third cell. These configurations
correspond to tapes with contents 11011, 10011, 1101B, and 1001B.

As the simulation progresses, these configurations evolve simultaneously, creating new structures
shown in the middle and right of Fig. 3. Notice how term e has two successors through the F predicate,
one for each symbol atom it belongs to. Furthermore, when the head encounters a branching structure,
it splits into two, as observed in the third step of the simulation. In a sense, if the machine simulation
is able to perform steps on the database at all, then it will gradually “heal” the structure step by step
towards proper encodings of machine configurations.

As highlighted by this example, the structure of the set of atoms connected to a state atom not
present in the database is specific: it is the union of two trees rooted in the state atom. The first has
arrows going towards the state atom, and the second one has arrows going away from the state
atom. In fact, this structure represent the set of paths in the initial database (after the appropriate
number of steps of simulation), which we coin a bow tie, due to its shape.

Definition 27. The inverse E~ of a binary relation E is the relation defined by (x,y) € E™ if and
only if (y, x) € E. In a directed graph G = (V, E) we denote with V, ’ the connected component® of x
in the subgraph induced by V' \ {y} on G, for any two vertices x and y. A bow tie is a graph (V,E)
with two distinguished vertices x and y that has the following properties:

(1) (xy) € E

(2) The subgraph induced by V. ¥ on (V,E~) is a directed tree rooted in x;

(3) The subgraph induced by V,;/* on (V,E) is a directed tree rooted in y;

(4) The sets V, ¥ and V,* form a partition of V; that is, they are disjoint and V = Ve lu V.

The edge (x,y) is called the center of the bow tie, and the sets Vy ¥ and V, ™ are called the left and
right parts of the bow tie, respectively.

In the following, we denote with semterms(F) (for semantically meaningful terms) the set of all
the terms in F, except the brakes (which appear in the last position of atoms). We also define Eg as
the relation over semterms(F) such that (x, y) € Eg if and only if there is w such that R(x, y, w) € F.
For all state atoms A = q(x, w) generated during the chase, we denote the connected component of
x in the graph (semterms(F), Eg) with bowtie(A). The following lemma explains how this bow tie
structure is generated at each step.

Lemma 28. For all database D, and every F result of a chase sequence for (p, D), the graph
bowtie(A) is a finite bow tie for all state atoms A € F \ D. In addition:

o The center of the bow tie is the atom generated along with A, by rule R‘:qr, qur, Rf]_r or Rq_:;
o all the atoms in the left part of the bow tie are generated by rule Rc ;
e all the atoms in the right part of the bow tie are generated by rule Re,, except possibly the end of

a maximal path, which may have been generated by rule Reng.

Proor skeTcH. This proof relies on an analysis of how R-atoms are generated during the chase.
All the rules that generate R-atoms (over non-brake terms) generate R-atoms containing at least
one existentially quantified variable. Three cases occur:

e RulesR<, ,R” R:; and R generate an R-atom R(u, v, w) where u and v are both existentially

. —qr’ " gy’ qr
quantified.
e Rule R¢, generates an R-atom R(u, v, w) where u is existentially quantified and v is a frontier
variable.

3We consider here weakly connected components; a weakly connected component in a directed graph is a maximal subgraph
such that there is an undirected path between any two vertices.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

109:14 David Carral, Lukas Gerlach, Lucas Larroque, and Michaél Thomazo

o Rules Re, and Rgng generate an R-atom R(u, v, w) where u is a frontier variable and v is
existentially quantified.

Thus, all connected components are generated by a rule of the first kind, and then extended
to the left by a rule of the second kind, and to the right by a rule of the third kind. Since no rule
can generate an atom R(u, v, w) where u and v are both frontier variable (assuming u and v are not
brakes), this yields the wanted structure. Finiteness is guaranteed by the emergency brakes. O

We now have a bit of structure to work with. Let us give a bit of intuition before concluding
the proof. We have considered an infinite sequence A = (Ap)nen of state atoms, with Ay € D and
Ap < Apy for all n € N, and we have just shown that to each state atom (not in D) is attached a
bow tie structure. As mentioned before, the bow tie bowtie(A,) consists in a set of (non-disjoint)
paths that represent configurations that can be obtained from a configuration containing Ay in
the database, after n steps of simulation. In addition, Lemma 28 shows how each of these paths is
constructed using a path from bowtie(A,_). We also have seen in Example 26 that a bow tie can
get split. From these two facts we get that the number of configurations represented by bowtie(A,)
decreases as n grows. Since this number is an integer, and each bow tie represents at least one
configuration, this sequence will be stationnary at some point N. At this point, we know that each
of the configurations represented by bowtie(Ay) visits ¢, infinitely many time. Thus, we pick such
a configuration p, and we show that the restricted chase does not terminate on (X, D,), which is
enough to conclude the proof by Lemma 22. We then formalize this argument.

Definition 29. The set of configurations configs(A,) associated to a state atom A, = g(x, w) € A,
with n > 0, is the set whose elements are the sets

{A,} U U brSet(x;, w) U{P(y1,...,yx,w) € F| P € {R,0,1,B,End} and Vi, y; € {x1,...,xm}}

i<m

for all maximal paths (x1, ..., xy) in bowtie(A,).

Lemma 30. Foralln > 0, configs(A,) is finite, non-empty, and each of its elements homomorphically
embeds into D, for some configuration p. Also, there is an injective function pred,, from configs(A,41)
to configs(A,) such that S € configs(Ap+1) can be generated using only atoms in pred, (S).

ProorF skeTcH. To each set S € configs(A,+1) we can associate a configuration p and a path p
in bowtie(A,+1). We then define pred, (S) as the set of atoms that was used to generate it, which
is not hard: its associated configuration is an extension of a configuration that yields p, and its
associated path is connected through the F-predicate to p. To show injectivity of pred,, we then
rely on a lemma stating that if F(x, z, w) and F(y, z, w) are both in F, then x = y. m]

Since for all n, there is an injective function from configs(Ay+1) to configs(A,), the sequence
(|configs(An)|)nen., is a decreasing sequence of natural numbers, as mentioned before. Thus, there
must be some N € N such that for all n > N, |configs(A,)| = |configs(An)| > 0. We pick S, in
configs(An), and let p be a configuration such that So homomorphically embeds into D,.

Lemma 31. The restricted chase does not terminate on (X1, D).

Proor skeTcH. Since for all n > N, |configs(A,)| = |configs(An)|, pred,, is actually a bijection.
We thus define S, as predl_\,{rn (Sn)- Intuitively, the sequence (S,),en encodes the run of M that
visits g, infinitely many times from p. We then construct an infinite chase sequence from (X, D,)
such that S, homomorphically embed in it for all n. O

By Lemma 22, this means that there is a run of M which visits g, infinitely many times, and thus
that M is not robust non-recurring through g,, concluding the reduction.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

Restricted Chase Termination: You Want More than Fairness 109:15

6 An Alternative to Fairness to Simplify Restricted Chase Termination

All chase variants can be applied to semi-decide Boolean conjunctive query (BCQ) entailment. This
is the case because, if a KB K entails a BCQ Q under standard first-order semantics, then every chase
sequence of K features a fact set that entails Q. Consequently, it suffices to compute an (arbitrarily
large) finite prefix of any (arbitrarily chosen) chase sequence of K to semi-decide whether K entails
Q. Note that semi-decidability of BCQ entailment breaks down if we remove the fairness condition
from the definition of a chase sequence. Unfortunately, this condition complicates the problem of
universal termination for the restricted chase (see Theorems 9 and 23). To address this situation, we
propose an alternative to fairness in the following definition that retains semi-decidability while
simplifying the termination problem of the chase (see Theorem 34).

Definition 32. A breadth-first chase sequence for a KB (Z, D) is a chase derivation Fy, Fy, . .. such
that, (1) if some X-trigger A is loaded for some F;, then there is some j € {i,...,i+n} such that A is
obsolete for F; and n is the (finite) number of X-triggers that are loaded and not obsolete for F;.

Note that, since (1) implies fairness as introduced in Definition 3, every breadth-first chase
sequence is also a chase sequence and we preserve semi-decidability of BCQ entailment.

Definition 33. Let CTKI\;" be the class of all KBs that only admit finite breadth-first chase sequences.
Let CTR{}” be the class containing a rule set ifCTK\}j” contains all KBs with this rule set.

Theorem 34. The class CTKi’,” is in RE, and the class CTR\b,” is in 1.

Proor. To show that CTK{;I’ is in RE, we define a semi-decision procedure, which executes the
following instructions on a given input KB K = (3, D):

(1) Initialise the set P, of lists of facts that contains the (unary) list D, and a counter i := 2.

(2) Compute the set C; of all chase derivations of length i of K that can be obtained by extending
a chase derivation in $;_; with one fact set. Intuitively, C; includes all lists of length i that
can be extended into breadth-first chase sequences for K.

(3) Compute the maximal subset $; of C; that does not contain a chase derivation Fy, ..., F; € C;
if there is some 1 < k < i and some X-trigger A such that A is loaded for Fy, the trigger A is
not obsolete for F;, and i — k is larger than the number of 2-triggers that are loaded and not
obsolete for Fy. Intuitively, #; filters out prefixes in C; that already violate (7).

(4) If P; is empty, accept. Otherwise, increment i := i + 1 and go to 2.

If the procedure accepts, then P; is empty for some i and all breadth-first chase sequences of K are
of length at most i — 1. If the procedure loops, then there is an infinite chase derivation Fy, Fy, . . . of
K such that Fy, ..., Fi_; € P; for every i > 1, which is a breadth-first derivation for K.

The class CTRY" is in TIS because we can semi-decide if a rule set = is not in CTRY/" using an
oracle that solves CTK\”,”. We simply enumerate every database D, use the oracle to check if the
KB (%, D) is in CTK@”, and accept if this is not the case.]

The previous result holds because the condition () is finitely verifiable; that is, every infinite
chase derivation that does not satisfy this condition has a finite prefix that witnesses this violation.
Note that fairness does not have this property since any finite prefix of any chase derivation can
be extended into a (fair) chase sequence. In fact, we can readily show a version of Theorem 34
for any other alternative condition if it is finitely verifiable. For an example of one such trigger
application strategy, consider the one from [20], which is a bit more complex to define than () but
nevertheless results in a very efficient implementation of the restricted chase.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

109:16 David Carral, Lukas Gerlach, Lucas Larroque, and Michaél Thomazo

7 Open Problems

After settling the general case regarding restricted chase termination and proposing an alternative
fairness condition, there are still open challenges. Namely, what is the undecidability status of the
classes CTK([/* and CTR{/* if we only consider single-head rules or only guarded (multi-head) rules?
Note that, with guarded rules, it is not obvious how to simulate a Turing machine. For single-head
rules, we cannot implement the emergency brake and thus our proofs do not apply. Moreover, if
we only consider single-head rule sets, we can ignore fairness when determining restricted chase
termination because of the “fairness theorem” [12]: a single-head KB admits an infinite (possibly
unfair) chase derivation if and only if admits an infinite (fair) chase sequence. We think that answers
to these problems will help to develop a better understanding for the (restricted) chase overall.

Acknowledgments

On TU Dresden side, this work is partly supported by Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) in project number 389792660 (TRR 248, Center for Perspicuous Systems),
by the Bundesministerium fiir Bildung und Forschung (BMBF, Federal Ministry of Education and
Research) in the Center for Scalable Data Analytics and Artificial Intelligence (project SCADS25B,
ScaDS.AI), and by Bundesministerium fiir Bildung und Forschung (BMBF, Federal Ministry of
Education and Research) and Deutscher Akademischer Austauschdienst (DAAD, German Academic
Exchange Service) in project 57616814 (SECAI, School of Embedded and Composite Al).

References

[1] Bartosz Bednarczyk, Robert Ferens, and Piotr Ostropolski-Nalewaja. 2020. All-Instances Oblivious Chase Termination
is Undecidable for Single-Head Binary TGDs. In Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI 2020, Christian Bessiere (Ed.). ijcai.org, 1719-1725. https://doi.org/10.24963/IJCAIL2020/238

[2] Marco Calautti, Georg Gottlob, and Andreas Pieris. 2015. Chase Termination for Guarded Existential Rules. In
Proceedings of the 34th ACM Symposium on Principles of Database Systems, PODS 2015, Melbourne, Victoria, Australia,
May 31 - June 4, 2015, Tova Milo and Diego Calvanese (Eds.). ACM, 91-103. https://doi.org/10.1145/2745754.2745773

[3] Marco Calautti and Andreas Pieris. 2021. Semi-Oblivious Chase Termination: The Sticky Case. Theory Comput. Syst.
65, 1(2021), 84-121. https://doi.org/10.1007/S00224-020-09994-5

[4] David Carral, Irina Dragoste, and Markus Krétzsch. 2017. Restricted Chase (Non)Termination for Existential Rules
with Disjunctions. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, [JCAI 2017,
Melbourne, Australia, August 19-25, 2017, Carles Sierra (Ed.). ijcai.org, 922-928. https://doi.org/10.24963/IJCAL2017/128

[5] David Carral, Lucas Larroque, Marie-Laure Mugnier, and Michaél Thomazo. 2022. Normalisations of Existential Rules:
Not so Innocuous!. In Proceedings of the 19th International Conference on Principles of Knowledge Representation and
Reasoning, KR 2022, Haifa, Israel, July 31 - August 5, 2022, Gabriele Kern-Isberner, Gerhard Lakemeyer, and Thomas
Meyer (Eds.). https://proceedings.kr.org/2022/11/

[6] Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. 2008. The chase revisited. In Proceedings of the Twenty-Seventh ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2008, June 9-11, 2008, Vancouver, BC,
Canada, Maurizio Lenzerini and Domenico Lembo (Eds.). ACM, 149-158. https://doi.org/10.1145/1376916.1376938

[7] Haim Gaifman, Harry G. Mairson, Yehoshua Sagiv, and Moshe Y. Vardi. 1993. Undecidable Optimization Problems for
Database Logic Programs. J. ACM 40, 3 (1993), 683-713. https://doi.org/10.1145/174130.174142

[8] Lukas Gerlach and David Carral. 2023. Do Repeat Yourself: Understanding Sufficient Conditions for Restricted Chase
Non-Termination. In Proceedings of the 20th International Conference on Principles of Knowledge Representation and
Reasoning, KR 2023, Rhodes, Greece, September 2-8, 2023, Pierre Marquis, Tran Cao Son, and Gabriele Kern-Isberner
(Eds.). 301-310. https://doi.org/10.24963/KR.2023/30

[9] Lukas Gerlach and David Carral. 2023. General Acyclicity and Cyclicity Notions for the Disjunctive Skolem Chase. In
Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications
of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence, EAAI
2023, Washington, DC, USA, February 7-14, 2023, Brian Williams, Yiling Chen, and Jennifer Neville (Eds.). AAAI Press,
6372-6379. https://doi.org/10.1609/AAALV3715.25784

[10] Tomasz Gogacz and Jerzy Marcinkowski. 2014. All-Instances Termination of Chase is Undecidable. In Automata,
Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014,

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

https://www.perspicuous-computing.science/
https://www.scads.de/
https://scads.ai/
https://www.secai.org/
https://www.secai.org/
https://doi.org/10.24963/IJCAI.2020/238
https://doi.org/10.1145/2745754.2745773
https://doi.org/10.1007/S00224-020-09994-5
https://doi.org/10.24963/IJCAI.2017/128
https://proceedings.kr.org/2022/11/
https://doi.org/10.1145/1376916.1376938
https://doi.org/10.1145/174130.174142
https://doi.org/10.24963/KR.2023/30
https://doi.org/10.1609/AAAI.V37I5.25784

Restricted Chase Termination: You Want More than Fairness 109:17

Proceedings, Part II (Lecture Notes in Computer Science, Vol. 8573), Javier Esparza, Pierre Fraigniaud, Thore Husfeldt,
and Elias Koutsoupias (Eds.). Springer, 293-304. https://doi.org/10.1007/978-3-662-43951-7_25

[11] Tomasz Gogacz and Jerzy Marcinkowski. 2014. Termination of oblivious chase is undecidable. CoRR abs/1401.4840
(2014). arXiv:1401.4840 http://arxiv.org/abs/1401.4840

[12] Tomasz Gogacz, Jerzy Marcinkowski, and Andreas Pieris. 2023. Uniform Restricted Chase Termination. SIAM J.
Comput. 52, 3 (2023), 641-683. https://doi.org/10.1137/20M1377035

[13] Gosta Grahne and Adrian Onet. 2018. Anatomy of the Chase. Fundam. Informaticae 157, 3 (2018), 221-270. https:
//doi.org/10.3233/FI-2018-1627

[14] Bernardo Cuenca Grau, lan Horrocks, Markus Krotzsch, Clemens Kupke, Despoina Magka, Boris Motik, and Zhe Wang.
2013. Acyclicity Notions for Existential Rules and Their Application to Query Answering in Ontologies. . Artif. Intell.
Res. 47 (2013), 741-808. https://doi.org/10.1613/JAIR.3949

[15] David Harel. 1986. Effective transformations on infinite trees, with applications to high undecidability, dominoes, and
fairness. J. ACM 33, 1 (jan 1986), 224-248. https://doi.org/10.1145/4904.4993

[16] Markus Krotzsch, Maximilian Marx, and Sebastian Rudolph. 2019. The Power of the Terminating Chase (Invited
Talk). In 22nd International Conference on Database Theory, ICDT 2019, March 26-28, 2019, Lisbon, Portugal (LIPIcs,
Vol. 127), Pablo Barcel6é and Marco Calautti (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 3:1-3:17.
https://doi.org/10.4230/LIPICS.ICDT.2019.3

[17] Michel Leclere, Marie-Laure Mugnier, Michaél Thomazo, and Federico Ulliana. 2019. A Single Approach to Decide
Chase Termination on Linear Existential Rules. In 22nd International Conference on Database Theory, ICDT 2019,
March 26-28, 2019, Lisbon, Portugal (LIPIcs, Vol. 127), Pablo Barcel6 and Marco Calautti (Eds.). Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 18:1-18:19. https://doi.org/10.4230/LIPICS.ICDT.2019.18

[18] Bruno Marnette. 2009. Generalized schema-mappings: from termination to tractability. In Proceedings of the Twenty-

Eigth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2009, June 19 - July 1, 2009,

Providence, Rhode Island, USA, Jan Paredaens and Jianwen Su (Eds.). ACM, 13-22. https://doi.org/10.1145/1559795.

1559799

Hartley Rogers, Jr. 1987. Theory of recursive functions and effective computability (Reprint from 1967). MIT Press.

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3182

[20] Jacopo Urbani, Markus Krotzsch, Ceriel J. H. Jacobs, Irina Dragoste, and David Carral. 2018. Efficient Model Construction
for Horn Logic with VLog - System Description. In Automated Reasoning - 9th International Joint Conference, [JCAR
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings (Lecture Notes
in Computer Science, Vol. 10900), Didier Galmiche, Stephan Schulz, and Roberto Sebastiani (Eds.). Springer, 680-688.
https://doi.org/10.1007/978-3-319-94205-6_44

[19

—

Received December 2024; revised February 2025; accepted March 2025

A TIj-complete Turing Machine Problems for Reductions

Our definition of non-recurring machines differs slightly from descriptions found in previous
literature. Indeed, Harel showed that the following problem is IT{-complete: decide if a (non-
deterministic Turing) machine admits a run on the empty word that features the initial state g
infinitely many times (see Corollary 6.2 in [15]). Our definition is slightly different since we choose
a different state g, to keep track of this infinite recurrence; note that this state may be different
from the initial state. Fortunately, the choice of the initial state in the proof of Corollary 6.2 of Harel
[15] is arbitrary, making it straightforward to adapt his proof to any given state. We first prove
this in Section A.1, and then use this result to get IT}-completeness for the other Turing machine
problems we consider in Section A.2.

A.1 Non-Recurrence on the Empty Word

To show that checking if a machine is non-recurring on the empty word is I1}-complete, we adapt
the proof of Corollary 6.2 in [15]. To do so, we first need to introduce some preliminary notions. A
list is a finite sequence. The concatenation of two lists u = uy, ..., u, and v = vy, ...,v,, is the list
U 0 =Up,...,Up 01 ..., 0m. Alist uy,...,u, with n > 2 is the child of uy,...,u,—1. Alist u is an
ancestor of another list v, written u < v, if u is a prefix of v; that is, if u - w = v for some list w.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

https://doi.org/10.1007/978-3-662-43951-7_25
https://arxiv.org/abs/1401.4840
http://arxiv.org/abs/1401.4840
https://doi.org/10.1137/20M1377035
https://doi.org/10.3233/FI-2018-1627
https://doi.org/10.3233/FI-2018-1627
https://doi.org/10.1613/JAIR.3949
https://doi.org/10.1145/4904.4993
https://doi.org/10.4230/LIPICS.ICDT.2019.3
https://doi.org/10.4230/LIPICS.ICDT.2019.18
https://doi.org/10.1145/1559795.1559799
https://doi.org/10.1145/1559795.1559799
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3182
https://doi.org/10.1007/978-3-319-94205-6_44

109:18 David Carral, Lukas Gerlach, Lucas Larroque, and Michaél Thomazo

Definition 35. An w-tree T is a set of lists of natural numbers closed under <. A node is an element
in T; aleaf is a node without children in T. Such a tree is computable if so is the following function:

0 ifu¢gT
xr(u) =41 ifueTanduisaleaf
2 ifu €T andu is not a leaf

A possibly infinite sequence of natural numbers is a branch of T if the latter contains every finite
prefix of the former. Such a tree is well founded if all of its branches are finite.

In the following, we identify a computable w-tree T with the machine that computes the function
xr- Note that this is a machine that implements a function mapping lists of natural numbers to
elements of {0, 1, 2} as indicated in Definition 35. Checking if such a machine does correspond to a
well-founded tree is a IT}-complete problem.

Lemma 36 ([19], Theorem 16). Checking if a computable w-tree is well founded is I1}-complete.

Definition 37. For a natural numberk > 0, a k-tree T is an w-tree that does not contain sequences
with numbers larger than k. A b-tree (b for bounded) is a k-tree for some k > 0. A marked b-tree is a
pair (T,) consisting of a b-tree T and a marking function y; that is, a function from T to {0,1}. A
marked b-tree is computable if the following function is computable:

0 ifueT
)(?(u) =141 ifu €T andu is marked (that is, p(u) = 1)
2 ifu €T and u is not marked

A marked b-tree is recurring if it has a branch with infinitely many marked prefixes.

As we do for computable w-trees, we identify a computable marked b-tree (T,) with the decider
that implements the function)(?.

Lemma 38 ([15], Corollary 5.3). Checking if a computable b-tree is non-recurring is I1; -complete.
We are ready now to show the main result in this subsection.

Proposition 39. The problem of checking if a machine is non-recurring through some state q, on the
empty word ¢ is I1-complete.

Proor. To show membership, we present a reduction that maps a machine M = (Q,T,J) to a
computable marked b-tree (T, i) such that M is non-recurring through a given state g, € Q on the
empty word ¢ if and only if (T, p) is non-recurring. To define (T, u), we consider an (arbitrarily
chosen) enumeration ¢, . . ., g, of the states in Q.

o Let T be the set containing a list of natural numbers iy, . . ., i, if there is a partial run py, . . ., p,
of M on ¢ such that p; features the state g;, for every 1 < j < n.
o Let y be the function that maps alistu € T to 1if and only if ¢; = g, where i is the last element
in u. That is, if the last element of u is the index that corresponds to g, in the enumeration
CI1 ey qn~
For every infinite branch of T, there is an infinite run of M and vice-versa. Furthermore, by the
definition of i, a branch of (T, 1) containing infinitely many marked nodes corresponds to a run of
M visiting g, infinitely many times. Therefore, M is non-recurring through g, if and only if (T, p)
is non-recurring.
For hardness, we present a reduction that maps a computable w-tree T to a non-deterministic
machine M = (Q, T, §) such that T is well-founded if and only if M is non-recurring through a state

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

Restricted Chase Termination: You Want More than Fairness 109:19

qr € Q on the empty word ¢. Intuitively, the machine M proceeds by doing a traversal of the full
w-tree; formally, it implements the following instructions on input ¢:

(1) Initialise the variable u = 0, which stores a list of natural numbers.
(2) If u ¢ T, replace the last element i in u with i + 1.
(3) If u € T, make a non-deterministic choice between the following options:
(a) Replace the last element i in u with i + 1.
(b) Append 0 to the list stored in u and visit the state g,.
(4) Go to (2).
We can effectively check if a list u is a node in T above because T is a computable w-tree and hence,
so is function yr. Intuitively, each run of M on the empty word corresponds to a traversal of a branch
in T; note how we use non-determinism in (3) to alternatively visit the sibling (Instruction 3.a) or
the child (Instruction 3.b) of a node in the tree. Furthermore, note that M only visits g, when it
moves deeper on a given branch; that is, when it executes instruction (3.b). Therefore, there is a
run of M visiting g, infinitely often if and only if there is an infinite branch in T. O

A.2 Reductions between Turing Machine Problems

Proposition 40. The problem of checking if a machine is universally non-recurring through a given
state g, is I1{ -complete.

Proor. To show membership, we present a reduction that maps a machine M to another machine
M’ such that M is universally non-recurring through a state g, if and only if M’ is non-recurring
through a state g, on ¢. On input ¢, the machine M’ first guesses some input word and then simulates
M on this input. Formally, it executes the following instructions:

(1) Make a non-deterministic choice to decide whether to go to (2) or to (3).

(2) Replace the first occurrence of the blank symbol B in the input tape with some non-deterministically
chosen symbol in the input alphabet of M. Then, go to (1).

(3) Simulate M on the (finite) word written down in the input tape. During this simulation, visit
q, whenever M would have visited g;.

Note that there are infinite runs of M’ on ¢ where the machine never executes Instruction 3. This
does not invalidate our reduction since M’ never visits ¢/ in these branches.

To show hardness, we present a reduction that maps a machine M to another machine M’ such
that M is non-recurring through a state g, on ¢ if and only if M’ is universally non-recurring
through a state g,.. The machine M’ first discards its input by replacing it with a special symbol
that is treated like the blank symbol B.* Then, M’ simulates M on ¢; during this simulation, M’
visits q,. whenever M would have visited g, O

Proposition 41. Checking if a machine is robust non-recurring through g, is I1}-complete.

Proor. To show membership, we present a reduction from a machine M to a machine M” such
that M is robust non-recurring through a state g, if and only if M’ is universally non-recurring
through a state q,.. The machine M’ scans its input and halts if it does not encode a configuration
of M. Otherwise, M” simulates M starting on this input configuration; during this simulation, M’
visits g, whenever M would have visited g;.

To show hardness, we present a reduction from a machine M to another machine M’ such that M
is non-recurring through a state ¢, on the empty word ¢ if and only if M’ is robust non-recurring
through a state g;. The machine M’ executes the following instructions:

(1) Halt if the input does not contain some configuration p of M.

4We consider a special symbol here because, as per our definition, machines may not print the blank symbol B.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

109:20 David Carral, Lukas Gerlach, Lucas Larroque, and Michaél Thomazo

(2) If the configuration in the tape p features the special state q,, then visit g.

(3) After the encoding of p in the tape, (non-deterministically) simulate a run of M on ¢ until it
terminates or you reach the configuration p. If the run terminates, without finding p, halt.
Otherwise, continue in (4).

(4) If Nextp(p) is empty, halt. Otherwise, replace the configuration p in the tape with a non-
deterministically chosen configuration in Nexts(p), and go to (1).

Intuitively speaking, Instruction 3 implements a reachability check for the configuration p in
the tape. That is, this procedure ensures that this configuration is reachable from the starting
configuration of M on the empty word ¢ by some run. Note that the reachability check makes
non-deterministic choices itself. So it can happen that M’ terminates early or even runs forever
because it picks the wrong run in Instruction 3. This does not invalidate our reduction though since
on those runs, M’ only visits g finitely many times.

If M’ is robust non-recurring through g;, then it is also non-recurring on the starting configuration
with the encoding of the starting configuration of M on ¢. Since M’ uses non-determinism to simulate
all possible runs M on ¢ and visits g, whenever M would have visited g,, we conclude that M is
non-recurring through g, on ¢.

Suppose that there is a configuration p’ of M’ that may lead to a run that visits g, infinitely many
times. In turn, this implies that there is a configuration p of M that leads to a run of M that visits g,
infinitely many times. Moreover, all the configurations of M in this infinite run are reachable from
the start configuration of M on ¢ because of the check implemented in Instruction 3. Therefore, M
is recurring through g, on the empty word. O

B Proofs for Section 4 (Knowledge base termination)

Proposition 18. IfF has a wild frontier of p overseen by w, and p’ is reachable in one step by a
transition of M, then there exists a restricted derivation D,_,, = F,...,F’ such that F' has a wild
frontier of p’ overseen by w’, where w’ # w is a fresh existential if p is in q,, and w' = w otherwise.

Proor. We consider the case where p = (n, t, p, q), with q # g,, and where p’ is obtained from p
because (b, q’, —) € 6(¢(p), q). We consider x, . .., Xp4+1, w as provided by the definition of a wild
frontier of configuration p.

—

e we start by applying Rule R}, , mapping x to xp, y to xp+1 and w to w. This produces
the atoms q’(xi’m, w), C(x;'>+1= w), b(x, w), Ci(x,, w), Cr (x;,>+1’ w), R(x,, x;/>+1’ w), F(xp, xp, w),
F(xp+1,xl’,+1, w), brSet(xI’,, w), brSet(xl’,H, w);

e we apply Rule Rc, p — 1 times. The it (for i from 1 to p — 1) application maps x to Xp—itl>
x’ to x;H.H, y to x,_;, w and w to w. It creates atoms F(xp_i,xl’)fi,w), R(x;H. w),
t(p — 1) (x) s W), CL(x)_ W), brSet(x) _w):

’
’xp7i+1’

e we apply Rule R, n — p times. The i (for i from 1 to n — p) application maps x to X+,
x’ to x;m., y to Xp4is1, W' and w to w. It creates atoms F(xp4i41, w), R(x;,ﬂ.,x;mﬂ, w),
t(p+1i+ 1)(x1’7+i+1, w), CR(xI’mH, w), brSet(xI’mH, w)

e we apply Rule Rgnq, mapping x” to x/ ., x to x,4+1, w and w’ to w. It creates the atoms

n+1°

R(x7,, 1> X0 W), B(x,, 5, W), End(x),,,, w),brSet(x;,,, w).

’
xp+i+1’

The result of that derivation has a wild frontier of configuration p’ overseen by w, as witnessed by

/ ’
terms Xisen s Xp o

If p’ is obtained from p because (b, q’, <) € 5(t(p), q), with q # q,, we consider xi, ..., Xp41, W
as provided by the definition of a wild frontier of configuration p.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

Restricted Chase Termination: You Want More than Fairness 109:21

e we start by applying Rule RZ, , mapping x to x,, y to x,_1, w to w. This produces the

g,
atoms q (xp_l,w), c(xp_l,w) b(W), CL(x’ LW, CR(xl’,,w), R(xl’,_ w) F(xp, ,W),
F(xp_l,xj’J_l,w),brSet(, W), brSet()

e we apply Rule R, p — 2 times. The it (for ifrom1top—2) application maps x to x,_;, x
to xP Y tox,_i_q,and w,w’ to w. It creates atoms F(xp_;_1, X P W), R(x;)_l._l,x;)_i, w),
t(p -i- ‘I)(xp,i,p W)’ CL(xp—l—ls W)’ brset(xp—l—h W),

e we apply Rule R, n — p + 1 times. The i (for i from 1ton —p + 1) application maps x to
Xp—14i> X toxl'y 1+ Y to Xpy;, and w, w’ to w. It creates atoms F(xpﬂ-,x}’m,w) R(x! X i l,xI’JJri,w),
tp—-1i-1)(x erl,w) Cr(x erl,w) brSet(x’ Xy w);

* we apply Rule Rgng, mapping x’ to x/_ ., x to xp+1, w and w’ to w. It creates the atoms

n+1’
R(x7,, 1> X000 W), B(x), 5, w), End(x] ,, w),brSet(x],, w).
The result of that derivation has a wild frontier of configuration p’ overseen by w, as witnessed by
terms x7,...,x,,,.

If p’ is obtained from p because (b, q’, —) € 5(t(p), qr), we consider xi, ..., W,y as provided by
the definition of a wild frontier of configuration p.

e we start by applying Rule R, mapping x to xp, y to x,+1 and w to w. This rule application pro-
duces the atoms g’ (x p+1,w) c(x p+1,w’) b(w), CL(,w’), Cr(x p+1,w), R(p+1,w N,
F(xp, x5, W'),F (xps1, X e W '), brset(x,, w’), brSet(X W w');

° we apply Rule R, p — 1 times. The it (for i from 1 to p — 1) application maps x to xp i+1, X' to
x;,_iﬂ, y to x,_;, w to w and w’ to w’. It creates atoms F(x;_;, x;_l, w'), R(w),
t(p— i)(xl’)fi, w’), CL(x;H., w’), br‘Set(xl’)fi, w');

e we apply Rule R, n — p times. The it (for i from 1 to n — p) application maps x to xp+i, x" to

1;'“’ Yy t0 Xp4ir1, W to w and w’ to w’. It creates atoms F(xp+i+1,x1’,+i+1, w’), R(x/ w’),
tp+i+1)(x pﬂﬂ,w) Cr(x p+1+1’W) brSet(x’ Xy ivts w’)

° we apply Rule Reng, mapping x” to x],;, x t0 X1, w to w and w’ to w’. It creates atoms

R(x’ w’),B(x’,,,w'), End(x’ ., w’),brSet(x’

p i+
p+z’ p+z+1’

’
n+1° n+2’ n+2° n+2° n+2 W)

The result of that derivation has a wild frontier of configuration p” overseen by w’, as witnessed

’ ’
by terms xi,...,x,,.

If p’ is obtained from p because (b, q’, <) € §(¢(p), qr), we consider x, . . ., X,41, W as provided
by the definition of a wild frontier of configuration p.

e we start by applying Rule R; ", mapping x to x, y to x,_1, w to w. This rule application pro-
duces the atoms q’(xf’,fl, w’), c(L W), b(xl’,, w’), CL(X;,,l, w'), CR(x;,, w’), R(xl’kl,x;,, w’),
F(xp, W), F(xp_1,x p W), brSet(w’), brSet(xl’)_l,w');

* we apply Rule Re, p—2 times. The i* (for i from 1top—2) application maps x to x,_;, x’ to xj’,
ytox,_;j_1,and w to w and w’ to w’. It creates atoms F(x,_;_1, X p i—p W), R(xl')_l._l, s w'),
tp—i-1D(x,_ ;s w), CL(xp-i-1, W), brSet(xp_i—1, w');

e we apply Rule R¢, n — p + 1 times. The it" (for i from 1 to n — p + 1) application maps x
to xp_144, X" to x;/)—1+z’ y to xp4;, and w to w and w’ to w’. It creates atoms F(xp4;, x;m., w’),
R(;’)+z 1’ 1,)+1’ ,) t(p -i- 1)(p+l’w) CR(p+l’ ,) brset(p+1’);

° we apply Rule Reng, mapping x” to x7,;, x t0 Xn41, w to w and w’ to w’. It creates atoms
R(x’ w’), B(x’ ., w'), End(x’ ., w’),brSet(x’

1°

’
n+1° n+2’ n+2° n+2° n+2 W)

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

109:22 David Carral, Lukas Gerlach, Lucas Larroque, and Michaél Thomazo

The result of that derivation has a wild frontier of configuration p’ overseen by w’, as witnessed
by terms x7,...,x],.
]

A rule is datalog if its head does not contain any existentially quantified variable.

Proposition 42. Let Fy, ..., Fi be restricted derivation. Let w* € terms(F) \ terms(Fy) such that
Real(w*) € Fi. Then for any j > k, the only rules generating w* as a last argument having non-
obsolete triggers on F; are datalog rules.

ProoFr. We consider a non-datalog rule R and ¢ a homomorphism of body(R) into F;. We prove
that o can be extended in a homomorphism of head(R) into F;, showing that (R, o) is obsolete.
Note that as Real(w*) € Fy, it holds that Rule Rgake has been applied by mapping w to w*.

* Rules R, and R7} : extend o by mapping x” and y’ to a(w) = w".
e Rules R~ and R : extend o by mapping x’,y’, w’ to o(w) = w*
e Rules R¢,, Re,, and Reng: extend o by mapping y to o(w’) = w*.
[m]

Lemma 19. Let (p;)iew be a run of M on the empty word that visits q, infinitely often. There exists
an infinite restricted chase sequence for (X, De).

Proor. Let (ij) jen be the infinite strictly increasing sequence of integers such that i; = 1 and p
is in g, if and only if k = i; for some j. We denote by @pi]- —~pisn the concatenation of the restricted
derivations provided by Proposition 18. Let us consider the derivation build by induction:

* D= Z)pil—)Piz
e D7 extends D by the application of Rule Rgrake mapping w to the brake overseeing the wild
frontier of the last element of D1, as well as by applying any datalog rule mapping w to that
brake.
* D; extends D’;_, by the derivation Doy, —piy,s
e D', extends D; by the application of Rule Rgrake mapping w to the brake overseeing the
wild frontier of the last element of D}, and by applying Rule Rnextgr in any possible way
that maps w to the brake overseeing the wild frontier of the last element of D, as well by
applying any datalog rule mapping w to that brake.
This derivation is fair:
e any created atom has a brake as argument;
e brakes are created exactly once in each derivation D P, = Pis (by definition of (i) jen); let us
call w; the brake appearing in D,, and wj,; the brake crated in Z)pl.j —pij
¢ by Proposition 42, the application of Rule Rgrake mapping w to w; deactivates any trigger of
a non-datalog rule mapping creating an atom with w; as a last argument;
e by definition of D’ all datalog rules creating an atom with w; as last argument are applied.
[m}

Lemma 43. Let F be the result of an infinite restricted chase sequence Fy, Fi, ... from (Zy, D) for
some D. For any w such that Brake(w) € F, there are finitely many atoms having w as last argument
in F. There is thus an infinite amount of brakes in F.

Proor. Consider a term w such that Brake(w) € F, which we call a brake. By fairness and
Rule Rgake, there must be some integer i such that Real(w) € F;. At this step, there is a finite
number of atoms with w as last argument, and by Proposition 42, the only rules that can generate

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

Restricted Chase Termination: You Want More than Fairness 109:23

such atoms after step i are datalog. Rule Rgrake Only generates atoms over w, so it is applicable at
most one, and will yield at most 6 new atoms. Thus, the only rule left is Rule Rpextar-

Only two rules create new Brake-atoms that do not already appear in their bodies, which are
Rules R, and R;". Both these rules also generate an atom of the form nextBr(w, w’), where
Brake(w) is the brake in their body, and Brake(w’) is the newly created brake. As this is the only
way to generate nextBr-atoms, the predicate nextBr defines a forest relationship over the brakes,
where the root of each tree is a term wy such that Brake(wy) € D. There is thus a finite number of
trees. We then show that Rule Rnextgr can only create a finite number of atoms by induction on
this forest structure.

e If Brake(w) € D, then all the atoms of the form nextBr(w’,w) are in D, so w’ is in D
too. Thus, Rule R,extpr can only create sets of atoms of the form brSet(x, w’), where x is a
database term. As there is a finite amount of database terms, this yields a finite number of
atoms.

o If Brake(w’) € F\ D, nextBr(w,w’) € F and there is a finite number of atoms having w as
last argument, then first notice that w is the only term such that nextBr(w, w’) € F, since
Rules R;” and R} both generate nextBr-atoms featuring an existential variable in second
position. Then, as there is a finite amount of atoms featuring w as their last argument, there
is a finite amount of terms x such that brSet(x, w) C F. Thus, Rule Rycxtsr generates at most
brSet(x, w’) for all these terms, which represents a finite number of atoms.

Thus, there is a finite number of atoms that feature a given brake as their last argument. As Fy, Fy, . ..
is infinite, F must have an infinite amount of atoms, that were generated during the chase. Since
Brake(w) is required in the body of all the rules where w appears as the last argument of an atom,
there is thus an infinite amount of brakes in F. |

Lemma 21. For all databases D, and all infinite chase sequences from (X g, D) with result F, there is
an infinite sequence (Ap)nen of state atoms of F such that:

° AO € D;
o A, < Ay foralln e N;
o for infinitely many i € N, A; is of the shape q,(t;, w;).

Proor. Since the rules that introduce state atoms (Rules R; ", R(;’, RS, and R_)) feature a state
atom in their body, < defines a forest structure over state atoms, Where the root of each tree is an
atom of the database. There is thus a finite amount of trees (as there is a finite amount of atoms in
the database). By Lemma 43, there is an infinite amount of brakes in F. Then, since the rules that
introduce new brakes (Rules R, and R:;) introduce a state atom too, there is an infinite number
of state atoms. Thus, one of the trees must be infinite. In addition, since there is a finite amount
of atoms that feature a given brake as last argument, and each state atom features a brake as last
argument, each state atom only has a finite number of successors for <. Indeed, infinitely many
successors would require infinitely many rule applications, and thus infinitely many atoms featuring
the same last argument as the state atom. We thus have an infinite tree with finite branching. It thus
features an infinite branch, which must contain infinitely many qg,-atoms (as there are infinitely
many g,-atoms), by Kénig’s lemma. O

To each state atom, we associate both a set of atoms and a configuration.

Definition 44 (Atoms associated with a state atom). Let Fy be a fact set occuring in a chase derivation
from D,,. The atoms associated with a state atom q(x, w) in Fy is the largest subset of Fi. whose terms
are included in {x, w} U X; and such that:

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

109:24 David Carral, Lukas Gerlach, Lucas Larroque, and Michaél Thomazo

e X; is the set of terms reachable or co-reachable through an R-path from x not going through a
brake;

e w can only appear in the last position of atoms.

Definition 45 (Configuration of a state atom). Let F appearing in a restricted chase sequence for
(3,D,). The configuration associated with a state atom q(x, w), written conf(q(x, w)), is defined by
induction:
* ifq(x,w) € D, conf(q(x,w)) = p
e otherwise, let A be the unique state atom such that A < q(x,w). Let (¢'b,d) be the element
0f 6(q, a) due to which the rule whose application generated q(w, x) belongs to X). We define
conf(q(x, w)) as the configuration obtained from conf(A) where the content of the head cell of
conf(A) is replaced by b, the head moves by d and switches to state q'.

Note that the above definition implies that if A, is the parent of A, then conf(A) is reachable in
one transition of M from conf(A,). Intuitively, the configuration of a state atom is encoded by the
atoms associated with it. However, the restricted derivation may not have derived all such atoms,
hence we consider a weaker notion, that we coin consistency.

Definition 46 (Consistency). A set of atoms A associated with a state atom is consistent with the
configuration (n, t, p, q) if:
o there exists x and w such that q(x, w) is the only state atom in A, and conf(x) is in state q;
o a(x,w) is the only letter predicate having x as argument in A, and t(p) = a;
e if there is an R path of length i from x to x’, and there is an atom a(x’,x""), then x"” = w,
p+i<n+landt(p+i)=a;
e there exists at most one atom End(x’,x"") in A, and if it exists then x’" = w and there is an
R-path from x to x’ of length i, such thatp +i=n+1;
o if there is an R path of length i from x" to x, and there is an atom a(x’,x"), then x"” = w,
p—ix>1landt(p—i)=a.

As expected, the set of atoms associated wtih a state atom is consistent with its configuration,
and this allows us to prove Lemma 22.

Proposition 47. Let Fy appearing in a restricted chase sequence for (3, D,). For any state atom A of
Fy, the set of atoms associated with A is consistent with conf(A).

Proor. We prove the result by induction. If A is a state atom that does not have any parent,
then A € Fy = D,,. The set of atoms associated with A is D,,, which is consistent with the initial
configuration of M on p by definition, which is configuration of A;

Otherwise, let A = ¢’ (y’, w) be a state atom of F.. We prove the result assuming that A has been
created by the application of Rule R , mapping x to x,, w to w and y to y,. Ap, the parent of A, is
thus of the shape g(x,, w) (other possible case would be A being created by Rules R7, , R~ or R,
which are treated similarly). It is easy to check that any term reachable from y’ by an R-path not
going through a brake is either created by the same rule application as y’, or has been created by
an application of Rule R, mapping x’ to a term reachble by an R-path from y’ (and similarly for
terms co-reachable and Rule R,). Then:

e if there exists y” | such thatR(y” |, y’, w) € Fy, then y’ | has been created by the application of
Rule R, , in which case a(y” ,, w) is generated if the cell two positions on the left of the head
of conf(A,) contains an g, that is, if the cell one position on the left of the head of conf(A)
contains an g; predecessors of y’ further away from y’ are treated by induction in a similar
way.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

Restricted Chase Termination: You Want More than Fairness 109:25

e there exists a y’, such that R(y’, y},, w) € Fy, as such an element is created by the application
of Rule RS, . The same application create the atom b(y};, w), which is consistent with the
fact that conf(A,) contains a b in the first cell at the right of the head; cells further to the
right are treated similarly to cells to the left, which are necessarily created by Rule Rc,.

e the only way to derive an atom of the shape End(x’, x”’) is to apply Rule Rgng, which can
only be done after n — p rule applications of Rule Rg,, yielding a path of length n — p + 2
from position p — 1 of the current configuration, which fulfills the condition of Definition 46
(remember that the length of conf(A) is incremented by 1 with respect to the length of
conf(A,)).

O

Lemma 22. For every configuration p, if the restricted chase does not terminate on (3, D)) then
there exists a run of M on p which visits q, infinitely many times.

Proor. We consider the sequence of states atoms (A,),en provided by Lemma 21, and the
sequence (conf(Ay))nen-

e conf(Ay) is the starting configuration of M on ¢, and thus a run of M on that configuration;

o if (Ap)nen is not a run, there exists a smallest j € N such that (conf(A;))1<n<; is not a run.
conf(A;_;) is consistent with the set of atoms associated with A;_; by Proposition 47. Hence
conf(A;) is obtained by applying the transition correponding to the rule creating A;, and
thus (conf(A,))1<n<; is a run, which leads to a contradiction.

]

C Proofs for Section 5 (Rule set termination)

The following lemmas are used in later proofs of the section.

Lemma 48. For all databases D, and every F result of a chase sequence for (X, D), if the atoms
F(x,z,w) andF(y,z, w) are both in F and z is a null, then x = y.

Proor. This result follows from the fact that whenever an F-atom appears in the head of a rule,
it contains an existentially quantified variable in second position, and no two F-atoms contain this
variable in second position. Thus, if z is a null and x and y are different, the atoms F(x, z, w) and
F(y, z, w) must have been generated by two rule applications, which both introduce z, which is
impossible. O

Lemma 49. For all databases D, and every F result of a chase sequence for (2, D), for each null y
in semterms(F \ D), there are a unique w and a unique a € ' U {B} such that a(y, w) € F.

Proor. Whenever there is an existentially quantified variable x in the head of a rule in Xy \
{Rsrake}, it appears in a unique atom of the form a(x, w) in the same head. In addition, all the
atoms of the same form in heads of rules feature an existentially quantified variable in first position
(except for Rgrake, Which feature a brake). Thus, when the null y is introduced in the chase, there is
a unique atom a(y, w) introduced along with it (hence implying existence), and no other rule can
introduce an atom of the same form (hence implying uniqueness). O

Lemma 28. For all database D, and every F result of a chase sequence for (Xyr, D), the graph
bowtie(A) is a finite bow tie for all state atoms A € F \ D. In addition:

o The center of the bow tie is the atom generated along with A, by rule R‘:qr, R::]r, R(q_r or Rq_:;
e all the atoms in the left part of the bow tie are generated by rule Rc ;
o all the atoms in the right part of the bow tie are generated by rule Re,, except possibly the end of

a maximal path, which may have been generated by rule Re,g.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

109:26 David Carral, Lukas Gerlach, Lucas Larroque, and Michaél Thomazo

Proor. First, notice that all the rules that generate R-atoms (over non-brake terms) generate
R-atoms containing at least one existentially quantified variable. Three cases occur:

e RulesRT ,R” R ~and R_’ generate an R-atom R(u, v, w) where u and v are both existentially

_|q > —|q b
quantified.
e Rule R, generates an R-atom R(u, v, w) where u is existentially quantified and v is a frontier
variable.

o Rules Rc, and Rengq generate an R-atom R(u, v, w) where u is a frontier variable and v is
existentially quantified.

Thus, no connected component can contain two R-atoms that are generated using a rule among
rules R;_q , R:ZI , R‘_ and Rq_:. Indeed, these rules create a new connected component, and to connect
two connected components, we need a rule generating an R-atom R(u, v, w) where u and v are both
frontier variables, which is not the case with this rule set. This also implies that (bowtie(A), Er) is
acyclic, even when seen as an undirected graph, for the same reason.

Thus, since A = q(x, w) is generated by a rule among R, , R7; , R;~ and R’ along with an
R-atom, all the other atoms in the connected component of x must have been generated by Rc,, R,
or Renq. We assume here that A was generated by rule qur or R‘qj, as the other cases are symmetric.
Then, A is generated along the atom R(x, y, w), which will be the center of our bow tie, and atoms
CL(x,w) and Cr(y, w).

We then consider the sets bowtie(A);” and bowtie(A) 4" as defined in Definition 27. First, as
mentioned before, the undirected graph induced by (bowtie(A), Eg) is acyclic and connected, so
these sets form a partition of bowtie(A). Thus, it only remains to show that the subgraphs induced
by bowtie(A);” on (bowtie(A), ER) and by bowtie(A),* on (bowtie(A), Er) are trees. Again, since
both proofs are similar, we only prove it for the second graph.

A directed tree is an acyclic and connected graph such that each vertex has in-degree at most
one. Since (bowtie(A), Er) is acyclic, the subgraph induced by bowtie(A) 4 is acyclic too, and
as it is a connected component, it is connected. Thus, it only remains to show that each term in
bowtie(A),™ has an in-degree of at most one. Our previous analysis of the rules entails that only a
term ¢ such that C, (#, w) € F can have an in-degree greater than one. Indeed, the only rule that can
increase the in-degree of an existing element is rule R, , which requires this atom in its body. We
thus show that there is no ¢t in bowtie(A) ~* such that C (¢, w) € F.

Only two kinds of rules can generate C, - atoms (over non-brakes), which are transition rules (R, g
R7 . Ry and R;’), and the rule Rc, . All these rules generate atoms of the form C, (u, w) where u is
existentially quantlﬁed. As stated before, in bowtie(A), only the atom R(x, y, w) has been generated
using a transition rule, and every other R-atom has been generated using Rc, or Rc,. Now, for a
contradiction, assume that t is the first term of bowtie(A) v introduced during the chase such that
CL(#, w) € F. Since the trigger generating R(x, y, w) only generates C_ (x, w), and x ¢ bowtie(A),*,
the term ¢ has been generated by rule Rc, . This means that there is a term u € bowtie(A),* such
that C_(u, w) € F before C_ (¢, w) is introduced, which contradicts our hypothesis. Note that u does
have to be in bowtie(A),*, since otherwise, t ¢ bowtie(A)_*, as no rule can connect two disjoint
connected components.

Thus, there is no C, -atom over a term in bowtie(A),*, meaning that (bowtie(A);x, ER) is a tree.
As mentioned before, an analog line of reasoning can be used to show that (bowtie(A)y ", Ep)
is also a tree, so bowtie(A) is indeed a bow tie. Note also that since no C_-atom over a term in
bowtie(A),*, all the R-atoms of the right part of the bow tie must have been generated by rule R,
or Reng. However, rule Reng generates a new null y such that Cr(y, w) ¢ F (by the same description
as previously), and both rules R¢, and Reng require an atom of this form to extend a path. Thus, if
an R-atom is generated using rule Rgng, it is necessarily the end of a maximal path.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

Restricted Chase Termination: You Want More than Fairness 109:27

It remains to show that bowtie(A) is finite: if F is finite, then so is A and therefore bowtie(A).
Otherwise, note that all atoms in bowtie(A) are associated with the same brake w. Then, by
Lemma 43, bowtie(A) must be finite. o

Recall that A = (A,) is the sequence of state atoms provided by Lemma 21.

Lemma 30. Foralln > 0, configs(A,) is finite, non-empty, and each of its elements homomorphically
embeds into D, for some configuration p. Also, there is an injective function pred,, from configs(A,41)
to configs(A;,) such that S € configs(Ap+1) can be generated using only atoms in pred, (S).

Proor. Non-emptiness and finiteness. Non-emptiness and finiteness of configs(A,) follow

from Lemma 28, since a finite bow tie has a finite non-zero amount of maximal paths.
The elements of configs(A,) embed into some D,,. We then consider an element S of configs(A,),
and (xi, ..., xp) the path associated with it. Also, let A,, = q(x, w). First, since (xy, ..., x,) is a path
in (bowtie(Ay,), Eg), for all i, the atom R(x;, x;+1, w) is in S for all i, and these are all the R-atoms
in S by Lemma 28. Then, by Lemma 49, there is a unique atom a; (x;, w) for all i < n. In addition,
since all the maximal paths in a bow tie go through its center, there is some p such that x, = x. We
thus define the configuration p = (n, (a;)i<n, p, q)-

By mapping x; to c; for all i, and w to wy, we get that S and D,, are isomorphic, except for the

End-atoms. However, as per the last item of Lemma 28, the only position that can have End(x;, w)
is the end of a maximal path (since this kind of atoms can only be generated by rule Rgnq over
non-brakes). Thus, the only possible End-atom in S is End(x,, w), which has a counterpart in D,,.
Thus, S homomorphically embeds into D,,.
Construction of pred,. We then construct the function pred,. Let A, = q(x,w) and Ay =
q’(y, w’). First notice that the rule that generates A,,; in the chase is among R:zr’ R::]r, R:z_r and
Rq‘r" Then, there are some atoms F(x, z, w’), and R(z, y, w”) or R(y, z, w") depending on the direction
of the transition. We then assume that the transition is to the right, as the left case is analogous.

Consider aset S € configs(An+1), (Y1, - - ., yx) the associated path, and p’ = (k, (b1, ..., br),p’, q")
the associated configuration, as defined earlier in the proof. Then, let pred, (S) be one of the sets
in configs(A,) with associated path (xi, ..., x,,) and configuration p = (m, (ay, ..., am), p,q) such
that there is an integer [such that

e forall i < k, we have F(x;;,y;, W) € F;

o if End(xy, w’) € S, then End(yx+;-1) € F, and otherwise F(xg.s, yr, w’') € F;

o foralli+p' —1,b; =apy;

ep +l=p+1.
The function pred, is well-defined. By definition of S and its associated path and configuration,
there must be some atoms R(y;, yi+1, w') and b; (y;, w’) for all i, with y = y,y. By Lemma 28,
R(yp-1, Ypr) has been generated by rule R7, or R_ along with Ap.1, and R(xk-1, x¢) may have
been generated by rule Reng or Re,. Other than that, all the R-atoms in the path yy, . . ., yx have been
generated by rules R, and Rc,. We then show that there is a path x{, .. x,’< such that for all i < k,
F(x/,yi,w) € F,foralli # p’ — 1, bj(x],w) € F, and either End(xli_l,w) € Fandk’ =k —1) or
F(x;, Yk, w) € F (and k" = k), depending on whether End(yx, w) € S or not.

First, since the atom A4 has been generated by rule R:;r or Rq_:’ there must be a term z and some
atoms R(x,z, w), R(yp'—1, Y, w), F(x,yp_1, w) and F(z,y, w) in F. Thus, let x;_l = x and xl’), =z
We will then extend this path in both directions to construct x7, . .. ,x,’c,.

If the path has been extended up to x;,,+i for some i < k — 1 —p’, we then extend it to x;,H.H.
As mentioned before, the atom R(yp+i, Ypr+i+1, W) has been generated by rule R, (since p” +i < k).
Thus, there must be some terms z, t and atoms R(z, t,), F(z, ypr+i, W), F(t, Ypr4i+1, w) and b; (£, w)
in F. By Lemma 48, we then have z = x;,ﬂ, since both F(z, y,14, w) and F(x;,ﬂ, Yp+i, W) are present

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

109:28 David Carral, Lukas Gerlach, Lucas Larroque, and Michaél Thomazo

in F. We thus set t = X;J’ +i+1- The same reasoning lets us extend the path to x;/_i_l provided we
have extended it to x;),_i, using the left copy rule instead of the right copy.

We now treat the case where i = k — 1 — p. If End(yx, w) ¢ S, then R(yk_1, yx, w) has been
generated by rule Rc,, so the same reasoning as before applies, and k” = k. Otherwise, R(yx—1, yx, W)
ha been introduced by rule Rgng, meaning that there are some term z and atoms End(z, w) and
F(2,yk-1) in F. Thus, since both F(z, yx-1) and F(x; _,, yx-1) are in F, by Lemma 48, z = yx_;, and
we have the atom End(yx—;, w) in F as promised, and k" = k — 1.

We thus have a path x, ... ,x,’C in bowtie(A,) as described before. However, this path does
not define an element of configs(4,), since it is not maximal. Thus, consider any maximal path
X1, ..., Xm in bowtie(A,) that extends x7, ... ,xl’c, pred,(S) the corresponding set in configs(4,),
(m, (ay,...,am), p, q) the corresponding configuration, and let [be the integer such that x;,; = x7.
Then, by definition of (x{,...,x;,), the first two points of the definition of pred,,(S) hold. Then,
since A, = q(x;,fl, w), and x;_l = Xp_141, WE havep =p' —1+1,s0o p+1=p’ +I In addition,
since for all i # p’ — 1, b; (x;45, w) € F, we have a;;; = b;. Thus, there is indeed a set in configs(A,)
that fits the definition of pred,,(S). Note however that this path is not necessarily unique, but we
only need an injective function, so this is fine.

The set pred, (S) is enough to generate S. First note that all the rule applications described
earlier suffice to generate S. It is then enough to notice that all the atoms in the support of the
mentioned triggers are present in pred, (S), or generated during the application of the previous
triggers.

Injectivity of pred,,.

Consider two sets S; with associated path (yi, . . ., yk,) and configuration (ki, (b1, ..., bx,), p1.q),
and S, with associated path (y,. ..,yl’cz) and configuration (kj, (b7, . ..,b,’cz),pz,q’), such that
pred, (S;) = pred, (S;) = S, and S’ has path (x3,. .., x,) and configuration (m, (ay, ..., am), p, q).
Thus, there must be some [; and I; such that:

o for all i, F(x;q,, yi, w') € F and F(xy,, y;, w’) € F;

o foralli # p; —1,b; = aiyy, and for all i # p; — 1, b} = a;4y,;

e pi+lhi=p+1=py+1.
Assume w.lo.g. that [; > I, and let d = [; — [,. We then get that p, = p; +d, and b; = a;4, =
Qivdil, = b;+d, for all i # p;. We then show that for all i suchthat 1 < i <kjand1 <i+d < k,
we have y; = y; ;. First, this is true for i = py, since y, = y = y,,, (Where A1 = q'(y,w’)) and
p2 = p1 +d. This is also true for i = p; — 1, since by definition of a bow tie and Lemma 28, there is
only one term ¢ such that R(t,y,,, w') € F. We then extend this to all i by induction.

Assume that 1 < i+1 < kyand1 < i+1+d < kp, and that y; = y;+d for some i > p;
(the case where i < p; — 1 is similar, using R, instead of Rc,). We then show that y;y; =y}, . &
Both the atoms R(y;, yi+1, w') and R(y;, y}, |, ,» w’) have been generated using rule Rc,. We then
show that the triggers generating these atoms are equal, so these atoms must be equal. The body
of rule Re, is {Cr(x’, W), F(x, x", w"),R(x,y, w), bi (y, w), Real(x),Real(x’),Real(y)}. To generate
R(yi, yir1, w"), x’ must be mapped to y; (and w’ to himself). Then, by Lemma 48, each term v can
only have one term u such that F(u, 0, w) € F, so x is mapped to x4, and y to x;14;, (and w to
himself), since F(x;41,, yi, w') and F(xi1141,, Yir1, w'). However, we also have F (x4, y}, ;, w’) and
F(Xis141,5 Y}, 1 W), SO the triggers generating R(y;, yiv1, w') and R(yi(p, X), v}, , ,» w') are equal,
and yiyy = y1{+1+d'

Thus, l; = I; and k; = k;. Indeed, if [; > [, then we can extend y, ..., y, into a bigger path

Yp oo y;, Y1, ..., Yk,, which contradicts its maximality. If k; # k,, then we can extend the shortest
path into the longest, also contradicting its maximality. Thus, both paths are equal, and S; = S,.
From this we deduce that pred,, is injective. O

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

Restricted Chase Termination: You Want More than Fairness 109:29

Lemma 31. The restricted chase does not terminate on (X1, D,).

Proor. First note that since for all n > N, |configs(A,)| = |configs(An)|, pred,, is actually a
bijection, since it is injective between sets of equal sizes. It thus has an inverse pred,_ll. Thus, for
all n € N, we define S,,; as pred;,in(sn). Note that we picked Sy from configs(Ax) and that S,
homomorphically embeds into D,,.

We then inductively construct a sequence of derivations (D,),en such that for all n € N, if S, is
over terms xy, ..., X, w, then

e D, extends Dy;

o there is a homomorphism 7, from S, to the result R, of D,;
o if F(m,(x;), y, my(w)) € Dy, for some i, then y = 7, (w);

e Real(m,(w)) ¢ D,

First, as stated in Lemma 30, Sy embeds in D, so we let Dy = D,, which does fulfill all the
conditions above. Then, assume that we have constructed derivation 9, as described. By Lemma 30
again, all the atoms in S,4; can be generated using only atoms in pred,(S;+1) = S,. We thus
extend the derivation D, into a derivation D), with the triggers needed to generate the atoms in
Sn+1, composed with 7,. All these triggers are applicable since they all create atoms of the form
F(mn(xi), y, mn(w)) and Real(y), which are not in the database by the third and forth item. The
homomorphism 7,4; is then defined naturally (the triggers that generate S,4; from S,, were used
here to generate new nulls, to which we can map nulls of S,,4). Then, if S,, contains an atom of
the form g, (x, w"), we add the trigger (Rgrake, {W — 7n(w)}) at the end of this new derivation, to
construct D .. The first and second point then follow by design. The third point follows from the
fact that the triggers that were used to generate S,4; from S,, do not generate other F-atoms, and
the last point from the fact that if g, (x, w’) € S,,, then S,, and S,,;; use different brakes.

We now show that the derivation D = |J, D, is fair. First, by Lemma 21, there are infinitely
many g,-atoms in (A,)nen, and thus infinitely many n € N such that S,, contains a q,-atom. Then,
notice that whenever we encounter a g,-atom in 9, we make the previous brake real, blocking any
rule application involving the atoms containing it. Thus, for any trigger that is applicable at some
step n, there is a step m at which the brake that appears in this trigger’s support gets real, making
this trigger obsolete. Thus, D is fair, and the restricted chase does not terminate on (X, Dp). O

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Knowledge base termination
	5 Rule set termination
	6 An Alternative to Fairness to Simplify Restricted Chase Termination
	7 Open Problems
	Acknowledgments
	References
	A 11-complete Turing Machine Problems for Reductions
	A.1 Non-Recurrence on the Empty Word
	A.2 Reductions between Turing Machine Problems

	B Proofs for Section 4 (Knowledge base termination)
	C Proofs for Section 5 (Rule set termination)

