
Restricted Chase Termination: You Want More than Fairness
DAVID CARRAL, LIRMM, Inria, University of Montpellier, CNRS, France

LUKAS GERLACH, Knowledge-Based Systems Group, TU Dresden, Germany

LUCAS LARROQUE, Inria, DI ENS, ENS, CNRS, PSL University, France

MICHAËL THOMAZO, Inria, DI ENS, ENS, CNRS, PSL University, France

The chase is a fundamental algorithm with ubiquitous uses in database theory. Given a database and a set of

existential rules (aka tuple-generating dependencies), it iteratively extends the database to ensure that the rules

are satisfied in a most general way. This process may not terminate, and a major problem is to decide whether

it does. This problem has been studied for a large number of chase variants, which differ by the conditions

under which a rule is applied to extend the database. Surprisingly, the complexity of the universal termination

of the restricted (aka standard) chase is not fully understood. We close this gap by placing universal restricted

chase termination in the analytical hierarchy. This higher hardness is due to the fairness condition, and we

propose an alternative condition to reduce the hardness of universal termination.

CCS Concepts: • Theory of computation→ Constraint and logic programming; Logic and databases.

Additional Key Words and Phrases: Existential Rules, Tuple Generating Dependencies, Restricted Chase

ACM Reference Format:
David Carral, Lukas Gerlach, Lucas Larroque, and Michaël Thomazo. 2025. Restricted Chase Termination:

You Want More than Fairness. Proc. ACM Manag. Data 3, 2 (PODS), Article 109 (May 2025), 29 pages. https:

//doi.org/10.1145/3725246

1 Introduction
The chase is a fundamental algorithm in database theory that is applied to address a wide range

of problems. For instance, it is used to check containment of queries under constraints, in data

exchange settings, or to solve ontology-based query answering; see the introductions of [11, 13] for

more information. Technically speaking, the chase is a bottom-up materialisation procedure that

attempts to compute a universal model (a model that can be embedded into all other models via

homomorphism) for a knowledge base (KB), consisting of an (existential) rule set
1
and a database.

Example 1. Consider the KB K1 = ⟨Σ, 𝐷⟩ where 𝐷 is the database {Bicycle(𝑏)} and Σ contains:

∀𝑥 .Bicycle(𝑥) → ∃𝑦.HasPart(𝑥,𝑦) ∧ Wheel(𝑦) ∀𝑥,𝑦.HasPart(𝑥,𝑦) → IsPartOf(𝑦, 𝑥)
∀𝑥 .Wheel(𝑥) → ∃𝑦.IsPartOf(𝑥,𝑦) ∧ Bicycle(𝑦) ∀𝑥,𝑦.IsPartOf(𝑥,𝑦) → HasPart(𝑦, 𝑥)

Then, {Bicycle(𝑏), HasPart(𝑏, 𝑡), IsPartOf(𝑡, 𝑏), Wheel(𝑡)} is a universal model of K .

1
Other researchers refer to these first-order formulas as “tuple generating dependencies” or simply as “TGDs”.

Authors’ Contact Information: David Carral, LIRMM, Inria, University of Montpellier, CNRS, Montpellier, France, david.

carral@inria.fr; Lukas Gerlach, Knowledge-Based Systems Group, TU Dresden, Dresden, Germany, lukas.gerlach@tu-

dresden.de; Lucas Larroque, Inria, DI ENS, ENS, CNRS, PSL University, Paris, France, lucas.larroque@inria.fr; Michaël

Thomazo, Inria, DI ENS, ENS, CNRS, PSL University, Paris, France, michael.thomazo@inria.fr.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2836-6573/2025/5-ART109

https://doi.org/10.1145/3725246

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

HTTPS://ORCID.ORG/0000-0001-7287-4709
HTTPS://ORCID.ORG/0000-0003-4566-0224
HTTPS://ORCID.ORG/0009-0007-2351-2681
HTTPS://ORCID.ORG/0000-0002-1437-6389
https://doi.org/10.1145/3725246
https://doi.org/10.1145/3725246
https://orcid.org/0000-0001-7287-4709
https://orcid.org/0000-0003-4566-0224
https://orcid.org/0009-0007-2351-2681
https://orcid.org/0000-0002-1437-6389
https://orcid.org/0000-0002-1437-6389
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725246


109:2 David Carral, Lukas Gerlach, Lucas Larroque, and Michaël Thomazo

B:1

W:2
HP:2

IP:3
B:1

W:2

B:3

W:4
HP:2

IP:6

IP:3

HP:7

HP:4

IP:5
B:1

W:2

B:3

W:5

B:7

W:9
HP:2

IP:4

IP:3

HP:6

HP:5

IP:8

IP:7

HP:10

HP:9

Fig. 1. Three Different Restricted Chase Sequences for the KB K1 from Example 1

Although there are many variants of the chase, they all implement a similar strategy. Namely,

they start with the database and then, in a step-by-step manner, extend this structure with new

atoms to satisfy the rules in the input rule set in a most general way. Since none of these variants

are guaranteed to terminate (some KBs do not even admit finite universal models), it is only natural

to wonder about their respective halting problems [1, 5, 6, 10, 13, 18]. Despite intensive efforts,

some results have remained open (until now!). Specifically, prior research has established tight

bounds for all classes of chase terminating KBs and rule sets, except for the following:

• The class CTKrest
∀ of all KBs that only admit finite restricted chase sequences.

• The class CTRrest
∀ containing a rule set Σ if ⟨Σ, 𝐷⟩ ∈ CTKrest

∀ for every database 𝐷 .

Our main contribution is to show that both classes are Π1

1
-complete, a surprising result given that

these are significantly harder than the corresponding classes for other chase variants [13].

The restricted chase differs from other variants in that it introduces new terms to satisfy existential

quantifiers in rules only if these are not already satisfied by existing terms. Because of this, the

order of rule applications impacts the termination of a chase sequence. For instance, the KB K1

from Example 1 admits finite and infinite restricted chase sequences; some of these are represented

in Fig. 1, where atoms are numbered to denote the sequence step at which they were introduced.

CTKrest
∀ has been claimed to be recursively enumerable (RE) in [13], probably with the following

procedure in mind: given an input KB, compute all of its restricted chase sequences in parallel, and

halt and accept if all of them are finite. Alas, this strategy does not work as there are terminating

input KBs that admit infinitely many finite sequences that are of ever-increasing length.

Example 2. Consider the KBK2 = ⟨Σ, 𝐷⟩ where 𝐷 is the database {Real(𝑎), E(𝑎, 𝑐), E(𝑐, 𝑏), Real(𝑐),
E(𝑏, 𝑏), Brake(𝑏)} and Σ is the rule set that contains all of the following:

∀𝑥,𝑦, 𝑧.Real(𝑥) ∧ E(𝑥,𝑦) ∧ Real(𝑦) ∧ Brake(𝑧) → ∃𝑣 .E(𝑦, 𝑣) ∧ E(𝑣, 𝑧) ∧ Real(𝑣)
∀𝑥 .Brake(𝑥) → Real(𝑥)

For any 𝑘 ≥ 1, there is a restricted chase sequence of K2 that yields the (finite) universal model
𝐷 ∪ {E(𝑐, 𝑡1)} ∪ {E(𝑡𝑖 , 𝑡𝑖+1) | 𝑖 < 𝑘} ∪ {E(𝑡𝑖 , 𝑏), Real(𝑡𝑖 ) | 𝑖 ≤ 𝑘} ∪ {Real(𝑏)} ofK2. Such a sequence
is obtained by applying the first rule 𝑘 consecutive times and then applying the second one once to
derive Real(𝑏). After this application, the first rule is satisfied and the restricted chase halts.

The KB K2 in the previous example is in CTKrest
∀ because of fairness. This is a built-in condition

in the definition of all chase variants that guarantees that the chase yields a model of the KB by

requiring that, if a rule is applicable at some point during the computation of a sequence, then this

rule must be eventually satisfied. Hence, the second rule in K2 must sooner or later be applied in

all restricted chase sequences and thus, all such sequences are finite.

The KB in Example 2 uses a technique called the emergency brake, initially proposed by Krötzsch

et al. in [16]. The idea is to connect every term in the chase to a special term (the constant 𝑏 in this

example) that is not “Real” and acts as a “Brake”. Eventually, this term becomes “Real” because
of fairness, all existential restrictions are satisfied, and the restricted chase halts. The emergency

brake allows to grow the chase for an arbitrary number of steps whilst guaranteeing its termination.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



Restricted Chase Termination: You Want More than Fairness 109:3

By activating infinite sequences of emergency brakes, we emulate the eternal recurrence often

displayed by Π1

1
-complete problems and thus define the reductions that lead to our main results.

After presenting the necessary preliminaries in Section 2, we discuss related work in Section 3.

Then, we show that CTKrest
∀ and CTRrest

∀ are Π1

1
-complete in Sections 4 and 5, respectively. In

Section 6, we propose an alternative to fairness for the restricted chase that simplifies its universal

termination problem. We conclude with a brief discussion about future work in Section 7.

2 Preliminaries
First-Order Logic. Consider pairwise disjoint, countably infinite sets of predicates Preds, variables

Vars, constants Cons, and nulls Nulls. Every predicate has an arity through ar : Preds→ N ∪ {0}.
Elements in Vars ∪ Cons ∪Nulls are called terms. An atom is an expression of the form P(®𝑡) where
®𝑡 a list of terms and P is a |®𝑡 |-ary predicate. A fact is a variable-free atom. An (existential) rule 𝑅 is a

closed first-order formula of the form ∀®𝑥, ®𝑦.𝐵 [®𝑥, ®𝑦] → ∃®𝑧.𝐻 [®𝑦, ®𝑧] where ®𝑥 , ®𝑦, and ®𝑧 are pairwise
disjoint lists of variables; 𝐵 and𝐻 are null-free conjunctions of atoms featuring exactly the variables

in ®𝑥, ®𝑦 and ®𝑦, ®𝑧, respectively; and 𝐻 is non-empty. We write body(𝑅) and head(𝑅) to denote 𝐵 and

𝐻 , respectively; and refer to the list ®𝑦 of variables as the frontier of 𝑅. We omit universal quantifiers

for brevity. A database is a finite fact set without nulls. A knowledge base (KB) is a pair ⟨Σ, 𝐷⟩
consisting of a finite rule set Σ and a database 𝐷 .

The Chase. A substitution 𝜎 is a partial mapping from variables to constants or nulls. For an

(arbitrary) expression 𝜑 , let 𝜎 (𝜑) be the expression that results from 𝜑 by replacing all occurrences

of every variable 𝑣 in 𝜑 by 𝜎 (𝑣) if the latter is defined. A trigger is a pair ⟨𝑅, 𝜎⟩ consisting of a rule 𝑅
and a substitution 𝜎 that is defined exactly on the universally quantified variables in 𝑅. The support
of a trigger ⟨𝑅, 𝜎⟩ is support(⟨𝑅, 𝜎⟩) = 𝜎 (body(𝑅)). A trigger ⟨𝑅, 𝜎⟩ is loaded for a fact set 𝐹 if this

fact set includes its support; and obsolete for 𝐹 if there exists a substitution 𝜎 ′ that extends 𝜎 to

the existential variables in 𝑅 such that 𝜎 ′ (head(𝑅)) ⊆ 𝐹 . The output of a trigger ⟨𝑅, 𝜎⟩ that is not
obsolete for 𝐹 is output((⟨𝑅, 𝜎⟩) = 𝜎 ′ (head(𝑅)), where 𝜎 ′ is some substitution that extends 𝜎 by

mapping every existential variable in 𝑅 to a fresh null. A Σ-trigger is a trigger with a rule in Σ.

Definition 3. A (restricted) chase derivation for a KB ⟨Σ, 𝐷⟩ is a possibly infinite sequence 𝐹0, 𝐹1, . . .
of fact sets such that (1) 𝐹0 = 𝐷 and, (2) for each 𝑖 ≥ 0, there is some Σ-trigger ⟨𝑅, 𝜎⟩ that is loaded
and not obsolete for 𝐹𝑖 such that 𝐹𝑖+1 = 𝐹𝑖 ∪ output(⟨𝑅, 𝜎⟩). Such a chase derivation is a (restricted)
chase sequence if, (3) for every Σ-trigger 𝜆 and every 𝑖 ≥ 0 such that 𝜆 is loaded for 𝐹𝑖 , there is some
𝑗 ≥ 𝑖 such that 𝜆 is obsolete for 𝐹 𝑗 .

Condition (3) is known as fairness. Note that, if no appropriate trigger according to condition
(2) exists for some 𝑖 ≥ 0, then the sequence necessarily ends at 𝐹𝑖 . The result of a chase sequence
F is the union of all fact sets in F . It is well-known that the result 𝐹 of any chase sequence for

a KB K = ⟨Σ, 𝐷⟩ is a universal model for K . That is, every model of K can be homomorphically

embedded into 𝐹 , which is also a model of this theory. Note that, if we consider infinite sequences,

the result of the chase may not be a model of K if we disregard fairness.

A chase sequence terminates if it is finite. A KB existentially terminates if it admits a terminating

chase sequence; it universally terminates if all of its chase sequences terminate. A rule set Σ
existentially terminates if every KB with Σ existentially terminates; it universally terminates if every
KB with Σ universally terminates. The classes of knowledge bases that existentially and universally

terminate are denoted by CTKrest
∃ and CTKrest

∀ , respectively. The classes of rule sets that existentially

and universally terminate are denoted by CTRrest
∃ and CTRrest

∀ , respectively. We also consider similar

classes for the oblivious and core chase variants, which we denoted in the obvious manner. For

instance, CTRobl
∃ is the set of all rule sets that existentially terminate for the oblivious chase.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



109:4 David Carral, Lukas Gerlach, Lucas Larroque, and Michaël Thomazo

Turing Machines. As per our definition, all machines reuse the same initial state. Moreover,

machines do not write blanks and cannot access accepting or rejecting states; these are not relevant

in our context because we only consider halting problems.

Definition 4. A (non-deterministic Turing) machine is a tuple ⟨𝑄, Γ, 𝛿⟩ where 𝑄 is a set of states
that contains the initial state 𝑞0, Γ is a tape alphabet with Γ ⊇ {0, 1} and B ∉ Γ, and 𝛿 is a transition
function for 𝑄 . That is, 𝛿 is a function that maps from 𝑄 × Γ ∪ {B} to P(𝑄 × Γ × {←,→}).

Definition 5. A configuration for a machine ⟨𝑄, Γ, 𝛿⟩ is a tuple ⟨𝑛, 𝑡, 𝑝, 𝑞⟩ where 𝑛 is a natural
number; 𝑡 : {1, . . . , 𝑛} → Γ ∪ {B} is a function such that 𝑡 (𝑛) = B, and 𝑡 (𝑖 + 1) = B if 𝑡 (𝑖) = B for
some 1 ≤ 𝑖 < 𝑛; 𝑝 is a number in {1, . . . , 𝑛}; and 𝑞 is a state in 𝑄 . The starting configuration on some
word𝑤1, . . . ,𝑤𝑛 ∈ {0, 1}∗ is the tuple ⟨𝑛 + 1, 𝑡, 1, 𝑞0⟩ where 𝑡 is the function that maps 1 to𝑤1, 2 to
𝑤2, . . . , 𝑛 to𝑤𝑛 , and 𝑛 + 1 to B.

For a configuration ⟨𝑛, 𝑡, 𝑝, 𝑞⟩, we use 𝑡 to encode the contents of the tape at each position;

moreover, we use 𝑝 and𝑞 to encode the position of the head and the state of themachine, respectively.

Note that elements of the tape alphabet Γmay not occur after a blank symbol in such a configuration.

Definition 6. Consider a machine 𝑀 = ⟨𝑄, Γ, 𝛿⟩ and a configuration 𝜌 = ⟨𝑛, 𝑡, 𝑝, 𝑞⟩ with 𝑞 ∈ 𝑄 .
Then, let Next𝑀 (𝜌) be the smallest set that, for every ⟨𝑟, 𝑎,↔⟩ ∈ 𝛿 (𝑡 (𝑝), 𝑞) with↔ = → or 𝑝 ≥ 2,
contains the configuration ⟨𝑛 + 1, 𝑡 ′, 𝑝′, 𝑟 ⟩ where:
• Let 𝑡 ′ (𝑝) = 𝑎, let 𝑡 ′ (𝑛 + 1) = B, and let 𝑡 ′ (𝑖) = 𝑡 (𝑖) for every 1 ≤ 𝑖 ≤ 𝑛 with 𝑖 ≠ 𝑝 .
• If↔ =←, then 𝑝′ = 𝑝 − 1; otherwise, 𝑝′ = 𝑝 + 1.

As described above, any given machine defines a function that maps configurations to sets of

configurations. An exhaustive traversal through a path in this possibly infinite tree of configurations

that begins with a starting configuration yields a run:

Definition 7. A run of a machine𝑀 on a configuration 𝜌1 is a possibly infinite sequence 𝑆 = 𝜌1, 𝜌2, . . .

of configurations such that 𝜌𝑖+1 is in Next𝑀 (𝜌𝑖 ) for every 1 ≤ 𝑖 < |𝑆 |, and Next𝑀 (𝜌 |𝑆 | ) = ∅ if 𝑆 is
finite. A partial run of𝑀 on 𝜌1 is a sequence of configurations that can be extended into a run of𝑀 on
𝜌1. A (partial) run of𝑀 on a word ®𝑤 is a (partial) run on the starting configuration of ®𝑤 .

Computability Theory. The arithmetical hierarchy consists of classes of formal languages Σ0

𝑖 with

𝑖 ≥ 1 where Σ0

1
is the class of all semi-decidable languages and Σ0

𝑖+1 is obtained from Σ0

𝑖 with a

Turing jump [19]. The co-classes are denoted by Π0

𝑖 . Equivalently, these classes can be viewed

as the sets of natural numbers definable by first-order logic formulas with bounded quantifier

alternation. That is, Σ0

𝑖 is the class of sets of natural numbers definable with a formula of the

form ∃®𝑥1∀®𝑥2 . . . 𝑄𝑖 ®𝑥𝑖 .𝜙 [𝑥, ®𝑥1, . . . , ®𝑥𝑖 ] where 𝜙 is a quantifier-free formula and𝑄𝑖 is ∃ if 𝑖 is odd or ∀
otherwise. For Π0

𝑖 , the alternation starts with ∀. We also the first level of the analytical hierarchy;
that is, Σ1

1
and Π1

1
[19]. The analytical hierarchy can analogously be defined using second-order

formulae with bounded second-order quantifier alternation. In the following, we introduce complete

problems for these classes that we later use in our reductions. Consider a machine𝑀 and a state 𝑞𝑟 .

• The machine𝑀 is non-recurring through 𝑞𝑟 on some word ®𝑤 if every run of𝑀 on ®𝑤 features

𝑞𝑟 finitely many times.

• It is universally non-recurring through 𝑞𝑟 if it is non-recurring through 𝑞𝑟 on all words.

• It is robust non-recurring through 𝑞𝑟 if every run of𝑀 on any configuration features 𝑞𝑟 finitely

many times.

We obtain Π1

1
-completeness of the first problem by adjusting a proof from the literature [15] and

for the latter two using simple reductions that we define in Appendix A.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



Restricted Chase Termination: You Want More than Fairness 109:5

KB Rule Set
Sometimes Always Sometimes Always

Oblivious RE-complete [6] RE-complete [10, 18]

Restricted RE-complete [6] Π1

1
-complete Π0

2
-complete [13] Π1

1
-complete

Core RE-complete [6] Π0

2
-complete [13]

Table 1. Undecidability status of the main decision problems related to chase termination; the results
presented without citations refer to the main contributions of this article

3 Related Work
Novel Notation. The notation introduced in Section 2 to refer to classes of terminating KBs

and rule sets differs from previous literature [13]; for instance, we write CTRrest
∀ instead of CTrest∀∀ .

Moreover, given some database 𝐷 , we do not consider a class such as CTrest
𝐷∀ [13], which contains a

rule set Σ if ⟨Σ, 𝐷⟩ universally terminates for the restricted chase. For our purposes, it is clearer to

consider a single class of terminating KBs (such as CTKrest
∀ ) instead of one class of terminating rule

sets for every possible database because of the following result.

Proposition 8. For a database 𝐷 ′, a quantifier𝑄 ∈ {∀, ∃}, and a chase variant var ∈ {obl, rest, core};
there is a many-one reduction from CTKvar

𝑄
to CTvar

𝐷 ′𝑄 and vice-versa.

Proof. There is a many-one reduction CTvar
𝐷 ′𝑄 to CTKvar

𝑄
since, for a rule set Σ, we have that

Σ ∈ CTvar
𝐷 ′𝑄 if and only if ⟨Σ, 𝐷 ′⟩ ∈ CTKvar

𝑄
. To show that there is a many-one reduction in the

other direction we describe a computable function that maps a KB K = ⟨Σ, 𝐷⟩ into the rule set Σ′

such that K ∈ CTKvar
𝑄

if and only if Σ′ ∈ CTvar
𝐷 ′𝑄 . Namely, let Σ′ be the rule set that results from

applying the following modifications to Σ: (i) replace all occurrences of every predicate 𝑃 with a

fresh predicate 𝑃 ′, (ii) add the conjunction

∧
𝑃 (®𝑐 ) ∈𝐷 𝑃 ′ (®𝑐) to the body of every rule, and (iii) add

the rule→ ∧
𝑃 (®𝑐 ) ∈𝐷 𝑃 ′ (®𝑐). The reduction is correct because one can easily establish a one-to-one

correspondence between the sequences ofK and those of ⟨Σ′, 𝐷 ′⟩ once we ignore the single trigger
with→ ∧

𝑃 (®𝑐 ) ∈𝐷 𝑃 ′ (®𝑐) at the beginning of every sequence of the latter KB. Note that the sets of facts
produced at subsequent steps of these corresponding sequences are identical modulo replacement

of all occurrences of every predicate 𝑃 by 𝑃 ′. □

Chase Termination in the General Case. All decision problems related to chase termination are

undecidable. However, these are complete for different classes within the arithmetical and analytical

hierarchies, as summarised in Table 1. In the following paragraphs, we discuss some simple proofs

as well as the relevant references to understand all of the results in this table.

One can readily show via induction that, if a fact occurs in some oblivious chase sequence of some

KB, then it also occurs in all oblivious chase sequences of this KB. Hence, all such chase sequences

of a KB yield the same result, and thus we conclude that CTKobl
∃ = CTKobl

∀ and CTRobl
∃ = CTRobl

∀ .

Deutsch et al. proved that, if a KB admits a finite universal model, then all of its core chase

sequences yield precisely this model and thus all of these sequences are finite; see Theorem 7 in [6].

Regardless of the variant, all terminating chase sequences yield a (not necessarily minimal) finite

universal model; hence, if a KB does not admit a finite universal model, then it does not admit any

finite chase sequence. Therefore, we have that either all core chase sequences of a KB are finite or

all of them are infinite. Because of this, we conclude that CTKcore
∃ = CTKcore

∀ and CTRcore
∃ = CTRcore

∀ .

To understand why CTKobl
∃ (resp. CTKrest

∃ or CTKcore
∃ ) is recursively enumerable (RE), consider

the following procedure: given some input KB, compute all of its oblivious (resp. restricted or core)

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



109:6 David Carral, Lukas Gerlach, Lucas Larroque, and Michaël Thomazo

chase sequences in parallel and accept as soon as you find a finite one. Deutsch et al. proved that

CTKrest
∃ is RE-hard. More precisely, they defined a reduction that takes a machine𝑀 as input and

produces a KB K as output such that𝑀 halts on the empty word if and only K is in CTKrest
∃ ; see

Theorem 1 in [6]. This reduction works because all restricted chase sequences of K yield the same

result, which encodes the computation of𝑀 on the empty word with a grid-like structure (as we

ourselves do in later sections). One can use the same reduction to show that CTKobl
∃ is also RE-hard.

Deutsch et al. also proved that CTKcore
∃ is RE-hard. More precisely, they showed that checking if

a KB admits a universal model is undecidable; see Theorem 6 in [6]. Moreover, they proved that

the core chase is a procedure that halts and yields a finite universal model for an input KB if this

theory admits one; see Theorem 7 of the same paper. Therefore, the core chase can be applied as a

semi-decision procedure for checking if a KB admits a finite universal model.

In Section 4, we argue that CTKrest
∀ is Π1

1
-complete. This contradicts Theorem 5.1 in [13], which

states that CTKrest
∀ is RE-complete. Specifically, it is claimed that this theorem follows from results

in [6], but the authors of that paper only demonstrate that CTKrest
∀ is undecidable without proving

that it is in RE. Before our completeness result, the tightest lower bound was proven by Carral

et al., who proved that this class is Π0

2
-hard; see Proposition 42 in [5].

Marnette proved that CTRobl
∃ is in RE. More precisely, he showed that a rule set Σ is in CTRobl

∃
if and only if the KB ⟨Σ, 𝐷★

Σ ⟩ is in CTKobl
∃ where 𝐷★

Σ = {P(★, . . . ,★) | P ∈ Preds(Σ)} is the critical
instance and ★ is a special fresh constant; see Theorem 2 in [18]. This result follows because one

can show that, for any database 𝐷 , the (only) result of the oblivious chase of ⟨Σ, 𝐷★
Σ ⟩ includes the

(only) result of the oblivious chase of ⟨Σ, 𝐷⟩ if we replace all syntactic occurrences of constants in
the latter with ★. Since CTKobl

∃ is in RE, we conclude that CTRobl
∃ is also in this class.

Gogacz and Marcinkowski proved that CTRobl
∃ is RE-hard. More precisely, they presented a

reduction that takes a 3-counter machine𝑀 as input and produces a rule set Σ such that𝑀 halts

on 𝜀 if and only if ⟨Σ, 𝐷★
Σ ⟩ is in CTKobl

∃ ; see Lemma 6 in [10].
2
Hence,𝑀 halts on the 𝜀 and only if Σ

is in CTRobl
∃ by Theorem 2 in [18]. Furthermore, Bednarczyk et al. showed that this hardness result

holds even when we consider single-head binary rule sets; see Theorem 1.1 in [1].

To understand why CTRrest
∃ is in Π0

2
, consider the following semi-decision procedure that can

access an oracle that decides the RE-complete class CTKrest
∃ : given some input rule set Σ; iterate

through every database 𝐷 , use the oracle to decide if ⟨Σ, 𝐷⟩ is in CTKrest
∃ , and accept if this is not

the case. Consider an analogous procedure to understand why CTRcore
∃ is in Π0

2
.

Grahne and Onet proved that CTRrest
∃ is Π0

2
-hard. To show this, they defined two reductions that

take a word rewriting system 𝑅 and a word ®𝑤 as input, and produce a rule set Σ𝑅 and a database 𝐷 ®𝑤 ,
respectively. Then, they proved that 𝑅 terminates on ®𝑤 if and only if the KB ⟨Σ𝑅, 𝐷 ®𝑤⟩ is in CTKrest

∃ ;

this claim holds because ⟨Σ𝑅, 𝐷 ®𝑤⟩ only admits a single restricted chase result, which encodes all

branches of computation of 𝑅 on ®𝑤 in an implicit tree-like structure. Therefore, 𝑅 is uniformly

terminating if Σ𝑅 is in CTRrest
∃ . To ensure that Σ𝑅 is in CTRrest

∃ if 𝑅 is uniformly terminating, Grahne

and Onet make use of “flooding”, a technique used in earlier work dealing with datalog boundedness

[7]. For a comprehensive presentation of this technique and its applications, see Section 2 of [11].

Using the very same reduction, Grahne and Onet also proved that CTRcore
∃ is Π0

2
-hard.

In Section 5, we show that CTRrest
∀ is Π1

1
-complete. This contradicts Theorem 5.16 in [13], where

it is stated that this class is Π0

2
-complete. The error in the upper-bound of this theorem arose from

the assumption that CTKrest
∀ is in RE, which, as previously discussed, is not the case. Regarding

the lower bound, they consider an extended version of this class of rule sets where they allow the

inclusion of a single “denial constraint”; that is, an implication with an empty head that halts the

2
We do not think that it is possible to intuitively explain this reduction in a couple of lines. Go read this paper, it’s worth it!

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



Restricted Chase Termination: You Want More than Fairness 109:7

chase if the body is satisfied during the computation of a chase sequence. They prove that the

always restricted halting problem for rule sets is Π0

2
-hard if one such constraint is allowed. Our

results imply that we do not need to consider such an extension to obtain a higher lower bound.

Chase Termination of Syntactic Fragments. Undeterred by the undecidability results discussed

above, researchers have proven we can decide chase termination if we consider syntactic fragments

of existential rules for which query entailment is decidable [2, 3, 12, 17]. Another way of checking

termination in practice is to develop acyclicity and cyclicity notions; that is, sufficient conditions

for termination and non-termination of the chase. Indeed, experiments show that we can determine

chase termination for a large proportion of real-world rule sets with these checks [4, 8, 9, 14].

4 Knowledge base termination
Theorem 9. The class CTKrest

∀ is Π1

1
-complete.

The theorem immediately follows from the upcoming Lemma 12 and Lemma 13.

For the membership part, we define a non-deterministic Turing machine that loops on 𝑞𝑟 if and

only if there is a non-terminating chase sequence for a given rule set.

Definition 10. Consider a rule set Σ. For a fact set 𝐹 , let active(𝐹 ) be the set of all triggers with a
rule in Σ that are loaded and not obsolete for 𝐹 . LetMΣ be a non-deterministic Turing machine with
start state 𝑞0 and a designated state 𝑞𝑟 that executes the following procedure.

(1) Check if the input tape contains a valid encoding of a database. If not, halt.
(2) Initialize two counters 𝑖 = 𝑗 = 0 and a set of facts 𝐹0 containing exactly the encoded database.
(3) If active(𝐹𝑖 ) is empty, halt.
(4) Non-deterministically pick a trigger ⟨𝑅, 𝜎⟩ from active(𝐹𝑖 ) and let 𝐹𝑖+1 = 𝐹𝑖 ∪ 𝜎 ′ (head(𝑅))

where 𝜎 ′ extends 𝜎 by mapping existential variables in 𝑅 to fresh nulls (not occurring in 𝐹𝑖 ).
(5) If all triggers in active(𝐹 𝑗 ) are obsolete for 𝐹𝑖 , then increment 𝑗 and visit 𝑞𝑟 once.
(6) Increment 𝑖 and go to 3.

Lemma 11. For every database 𝐷 and rule set Σ, there is a run ofMΣ on the encoding of 𝐷 that visits
𝑞𝑟 infinitely often if and only if there is a non-terminating chase sequence for ⟨Σ, 𝐷⟩.

Proof. Assume that there is a run ofMΣ on the encoding of 𝐷 that visits 𝑞𝑟 infinitely many

times. Then, the sequence 𝐹0, 𝐹1, . . . constructed byMΣ is an infinite restricted chase derivation for

⟨Σ, 𝐷⟩ by construction. Since 𝑞𝑟 is visited infinitely many times, 𝑗 grows towards infinity. Therefore,

every trigger that is loaded for some 𝐹 𝑗 with 𝑗 ≥ 0 is obsolete for some 𝑖 ≥ 𝑗 ; which is exactly

fairness. Hence, the infinite derivation is a proper chase sequence.

Assume that there is an infinite chase sequence 𝐹0, 𝐹1, . . . for ⟨Σ, 𝐷⟩. By definition, for each

𝑖 ≥ 0, there is a trigger 𝜆 ∈ active(𝐹𝑖 ) that yields 𝐹𝑖+1. Hence, there is a run of MΣ that non-

deterministically picks these triggers. Because of fairness, for every trigger 𝜆 in active(𝐹 𝑗 ) with
𝑗 ≥ 0, there is 𝑖 ≥ 𝑗 such that 𝜆 is obsolete for 𝐹𝑖 . Hence, the run ofMΣ visits 𝑞𝑟 infinitely often. □

Lemma 12. Deciding membership in CTKrest
∀ is in Π1

1
.

Proof. We show a reduction to non-recurrence through 𝑞𝑟 on the empty word. For a given rule

set Σ, letM𝐷
Σ be a non-deterministic Turing machine that results fromMΣ by adding an initial

step that replaces the initial tape content by an encoding of 𝐷 . Then, by Lemma 11, Σ is in CTKrest
∀

if and only if no run ofM𝐷
Σ on the empty input visits 𝑞𝑟 infinitely many times. □

Lemma 13. The class CTKrest
∀ is Π1

1
-hard.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



109:8 David Carral, Lukas Gerlach, Lucas Larroque, and Michaël Thomazo

To prove hardness, we reduce non-recurrence through 𝑞𝑟 on the empty word to knowledge base

termination. In other words, to a Turing machine𝑀 , we will associate a database 𝐷𝜀 and a rule set

Σ𝑀 such that there exists a run of𝑀 on the empty word reaching 𝑞𝑟 infinitely often if and only if

the restricted chase of Σ𝑀 on 𝐷𝜀 does not halt.

A perhaps surprising feature of this reduction is that the restricted chase must halt for rule sets

generated from Turing machines that do not halt on the empty word, as long as they reach 𝑞𝑟 only

finitely often. As we cannot get any computable bound on the number of steps required to reach

𝑞𝑟 , we must simulate any finite run of the Turing machine in a terminating way. This calls for the

use of emergency brakes as presented in the introduction. We “stack” such brakes, each one being

responsible to prevent the non-termination for runs that do not go through 𝑞𝑟 .

Schema. We will make use of the following predicates. Note that the last position usually holds

an emergency brake. We introduce: For each letter 𝑎 in the Turing machine alphabet or equal to

the blank B, a binary predicate a. For each state 𝑞 of the Turing machine, a binary predicate q. Two
ternary predicates F and R, that encode the successor relation for time and for cells. Two binary

predicates CL and CR, used to copy tapes content. A unary predicate Real and a binary predicate

NextBr, used for the machinery of emergency brakes. Two unary predicates Brake and End to

identify terms used as emergency brakes and the last element of a configuration, respectively.

Each time a new term is created during the chase, we link it in a specific way to the rele-

vant brake. To simplify the subsequent presentation, we denote by brSet(𝑥,𝑤) the set of atoms

{F(𝑥,𝑤,𝑤), R(𝑥,𝑤,𝑤), Real(𝑥), Brake(𝑤)}. The remainder of this section is devoted to the reduc-

tion from the “non-recurrence through 𝑞𝑟 ” problem to knowledge base restricted chase termination.

We first present the reduction, and then focus on the main ideas required to show correctness.

The Reduction. Each configuration 𝜌 of a Turing machine is encoded by a database as follows.

Definition 14. The database 𝐷𝜌 encoding a configuration 𝜌 = ⟨𝑛, 𝑡, 𝑝, 𝑞⟩ is

𝐷𝜌 ={R(𝑐𝑖 , 𝑐𝑖+1,𝑤1), ai (𝑐𝑖 ,𝑤1) | 1 ≤ 𝑖 ≤ 𝑛; ai = 𝑡 (𝑖)} ∪
{
q(𝑐𝑝 ,𝑤1), B(𝑐𝑛+1,𝑤1), End(𝑐𝑛+1,𝑤1)

}
∪

⋃
1≤𝑖≤𝑛+1

brSet(𝑐𝑖 ,𝑤1)

For a word𝑤 , we denote by 𝐷𝑤 the database 𝐷𝜌𝑤 , where 𝜌𝑤 is the initial configuration of𝑀 on𝑤 .

Given a Turing machine 𝑀 with states 𝑄 and tape alphabet Γ, we build Σ𝑀 composed of the

following rules. We first have a set of rules required for setting up emergency brakes.

Brake(𝑤) →
∧

a∈Γ∪{B}
a(𝑤,𝑤),

∧
q∈𝑄

q(𝑤,𝑤),F(𝑤,𝑤,𝑤), R(𝑤,𝑤,𝑤),

CL (𝑤,𝑤), CR (𝑤,𝑤), Real(𝑤), nextBr(𝑤,𝑤) (𝑅Brake)

brSet(𝑥,𝑤), nextBr(𝑤,𝑤 ′) → brSet(𝑥,𝑤 ′) (𝑅nextBr)

The next four rules are responsible of simulating the moves of the head of the Turing machine.

The first two rules deal with the case where the machine is not in 𝑞𝑟 , and the head moves to the

right (resp. to the left). The important feature of these rules is the presence in both the body and

the head of the same brake𝑤 .

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



Restricted Chase Termination: You Want More than Fairness 109:9

For all 𝑞 ≠ 𝑞𝑟 , 𝑞
′ ∈ 𝑄 and 𝑎, 𝑏, 𝑐 ∈ Γ ∪ {B} such that (𝑞′, 𝑏,→) ∈ 𝛿 (𝑞, 𝑎):
q(𝑥,𝑤), a(𝑥,𝑤), R(𝑥,𝑦,𝑤), c(𝑦,𝑤), brSet(𝑥,𝑤), brSet(𝑦,𝑤)
→ ∃𝑥 ′, 𝑦′ q′ (𝑦′,𝑤), c(𝑦′,𝑤), b(𝑥 ′,𝑤), CL (𝑥 ′,𝑤), CR (𝑦′,𝑤), (𝑅→¬𝑞𝑟 )

R(𝑥 ′, 𝑦′,𝑤), F(𝑥, 𝑥 ′,𝑤), F(𝑦,𝑦′,𝑤), brSet(𝑥 ′,𝑤), brSet(𝑦′,𝑤)

For all 𝑞 ≠ 𝑞𝑟 , 𝑞
′ ∈ 𝑄 and 𝑎, 𝑏, 𝑐 ∈ Γ ∪ {B} such that (𝑞′, 𝑏,←) ∈ 𝛿 (𝑞, 𝑎):
q(𝑥,𝑤), a(𝑥,𝑤), R(𝑦, 𝑥,𝑤), c(𝑦,𝑤), brSet(𝑥,𝑤), brSet(𝑦,𝑤)
→ ∃𝑥 ′, 𝑦′ q′ (𝑦′,𝑤), c(𝑦′,𝑤), b(𝑥 ′,𝑤), CL (𝑦′,𝑤), CR (𝑥 ′,𝑤), (𝑅←¬𝑞𝑟 )

R(𝑦′, 𝑥 ′,𝑤), F(𝑥, 𝑥 ′,𝑤), F(𝑦,𝑦′,𝑤), brSet(𝑥 ′,𝑤), brSet(𝑦′,𝑤)
The following two rules treat the case where the transition is from 𝑞𝑟 . The only difference with

the two above rules is the introduction of a new brake 𝑤 ′ in the head of the rules. This permits

non-terminating restricted chase sequences in the presence of specific runs.

For all 𝑞′ ∈ 𝑄 and 𝑎, 𝑏, 𝑐 ∈ Γ ∪ {B} such that (𝑞′, 𝑏,→) ∈ 𝛿 (𝑞𝑟 , 𝑎):
q𝑟 (𝑥,𝑤), R(𝑥,𝑦,𝑤), a(𝑥,𝑤), c(𝑦,𝑤), brSet(𝑥,𝑤), brSet(𝑦,𝑤)
→ ∃𝑥 ′, 𝑦′,𝑤 ′, q′ (𝑦′,𝑤 ′), c(𝑦′,𝑤 ′), b(𝑥 ′,𝑤 ′), R(𝑥 ′, 𝑦′,𝑤 ′), (𝑅→𝑞𝑟 )

F(𝑥, 𝑥 ′,𝑤 ′), F(𝑦,𝑦′,𝑤 ′), CL (𝑥 ′,𝑤 ′), CR (𝑦′,𝑤 ′),
brSet(𝑥 ′,𝑤 ′), brSet(𝑦′,𝑤 ′), nextBr(𝑤,𝑤 ′)

For all 𝑞′ ∈ 𝑄 and 𝑎, 𝑏, 𝑐 ∈ Γ ∪ {B} such that (𝑞′, 𝑏,←) ∈ 𝛿 (𝑞𝑟 , 𝑎):
q𝑟 (𝑥,𝑤), R(𝑦, 𝑥,𝑤), a(𝑥,𝑤), c(𝑦,𝑤), brSet(𝑥,𝑤), brSet(𝑦,𝑤)
→ ∃𝑥 ′, 𝑦′,𝑤 ′, q′ (𝑦′,𝑤 ′), c(𝑦′,𝑤 ′), b(𝑥 ′,𝑤 ′), R(𝑦′, 𝑥 ′,𝑤 ′), (𝑅←𝑞𝑟 )

F(𝑥, 𝑥 ′,𝑤 ′), F(𝑦,𝑦′,𝑤 ′), CL (𝑦′,𝑤 ′), CR (𝑥 ′,𝑤 ′),
brSet(𝑥 ′,𝑤 ′), brSet(𝑦′,𝑤 ′), nextBr(𝑤,𝑤 ′)

The following rules copy the content of unchanged cells to the right and the left of the head

from one configuration to the next. We instantiate one of each rule for each 𝑎 ∈ Γ ∪ {B}.

CR (𝑥 ′,𝑤 ′), F(𝑥, 𝑥 ′,𝑤 ′), R(𝑥,𝑦,𝑤), a(𝑦,𝑤), brSet(𝑥,𝑤), brSet(𝑥 ′,𝑤 ′), brSet(𝑦,𝑤)
→ ∃𝑦′ F(𝑦,𝑦′,𝑤 ′), R(𝑥 ′, 𝑦′,𝑤 ′), a(𝑦′,𝑤 ′), CR (𝑦′,𝑤 ′), brSet(𝑦′,𝑤 ′) (𝑅CR )

CL (𝑥 ′,𝑤 ′), F(𝑥, 𝑥 ′,𝑤 ′), R(𝑦, 𝑥,𝑤), a(𝑦,𝑤), brSet(𝑥,𝑤), brSet(𝑥 ′,𝑤 ′), brSet(𝑦,𝑤)
→ ∃𝑦′ F(𝑦,𝑦′,𝑤 ′), R(𝑦′, 𝑥 ′,𝑤 ′), a(𝑦′,𝑤 ′), CL (𝑦′,𝑤 ′), brSet(𝑦′,𝑤 ′) (𝑅CL )

Finally, we extend the represented part of the configuration by one cell at each step, as coherent

with our definition of Turing machine runs:

CR (𝑥 ′,𝑤 ′), F(𝑥, 𝑥 ′,𝑤 ′), End(𝑥,𝑤), brSet(𝑥,𝑤), brSet(𝑥 ′,𝑤 ′)
→ ∃𝑦′, R(𝑥 ′, 𝑦′,𝑤 ′), B(𝑦′,𝑤 ′), End(𝑦′,𝑤 ′), brSet(𝑦′,𝑤 ′) (𝑅End)

Example 15. Consider a machine𝑀 = ⟨{𝑞0, 𝑞𝑟 }, {0, 1}, 𝛿⟩ where 𝛿 is a transition function that maps
⟨𝑞0, 0⟩ to {⟨𝑞𝑟 , 1,→⟩}, ⟨𝑞𝑟 , B⟩ to {⟨𝑞0, 1,←⟩}, ⟨𝑞0, 1⟩ to {⟨𝑞𝑟 , 1,→⟩}, and ⟨𝑞𝑟 , 1⟩ to {⟨𝑞0, 1,←⟩}; note
how the (only) run of𝑀 on the word 0 contains infinitely many configurations with the state 𝑞𝑟 . In
this representation, every label on an edge or a term represents several facts in the chase. For the sake

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



109:10 David Carral, Lukas Gerlach, Lucas Larroque, and Michaël Thomazo

𝑞0,0 B,End

1,CL 𝑞𝑟 ,B,CR B,End

𝑞0,1,CL 1,CR B,CR B,End

1,CL 𝑞𝑟 ,1,CR B,CR B,CR B,End

𝑞0,1,CL 1,CR B,CR B,CR B,CR B,End

Brake, Real

Brake, Real

Brake, Real

R

R R

R R R

R R R R

R R R R R

F F

F F F

F F F F

F F F F F

F F F F F F

AllPreds≥2

AllPreds≥2

AllPreds≥2

nextBr

nextBr

Fig. 2. An Infinite Restricted Chase Sequence of ⟨Σ𝑀 , 𝐷0⟩ where 𝑀 is the machine from Example 15, and
AllPreds≥2 above is a shortcuts for “F, R, 𝑞0, 𝑞𝑟 , 0, 1, B, CR, CL, nextBr”.

of clarity, these labels can be extended with another argument, which should be some “Brake” term in
the same dashed or later dashed box.

Correctness proof of the reduction. The reduction is now fully described, and we claim that:

Proposition 16. Σ𝑀 universally halts for the restricted chase on 𝐷𝜌 if and only if there exists no run
of𝑀 on 𝜌 that goes infinitely often through 𝑞𝑟 .

We first prove that if there exists a run of𝑀 going through 𝑞𝑟 infinitely often, then there exists a

non-terminating chase sequence. To that purpose, we identify interesting subsets of databases.

Definition 17 (Wild Frontier of Configuration 𝜌). A set of atoms 𝐹 has awild frontier of configuration
𝜌 = ⟨𝑛, 𝑡, 𝑝, 𝑞⟩ overseen by𝑤 ∈ terms(𝐹 ) if there exists 𝑥1, . . . , 𝑥𝑛+1 ∈ terms(𝐹 ) such that:
• Real(𝑤) ∉ 𝐹 ;
• {R(𝑥𝑖 , 𝑥𝑖+1,𝑤), ai (𝑥𝑖 ,𝑤)} ⊆ 𝐹 for all 𝑖 ∈ {1, . . . , 𝑛}, ai = 𝑡 (𝑖);
• q(𝑥𝑝 ,𝑤), End(𝑥𝑛+1,𝑤), B(𝑥𝑛+1,𝑤) ∈ 𝐹 ;
• brSet(𝑥𝑖 ,𝑤) ∈ 𝐹 for all 𝑖 ∈ {1, . . . , 𝑛 + 1};
• any other atom of 𝐹 having 𝑥𝑖 as first argument has𝑤 as second.

A wild frontier has three important features (i) it contains the necessary atoms to simulate the

run of a Turing machine on that configuration; (ii) it is correctly connected to a (not yet real) brake

𝑤 ; (iii) it does not contain atoms preventing the above run to be simulated through a restricted

derivation. By comparing Definition 14 and Definition 17, it is clear that 𝐷𝜀 has a wild frontier

of the configuration of 𝑀 on the empty word, overseen by 𝑤1. The construction of an infinite

restricted derivation is made by inductively using the following key proposition.

Proposition 18. If 𝐹 has a wild frontier of 𝜌 overseen by 𝑤 , and 𝜌 ′ is reachable in one step by a
transition of 𝑀 , then there exists a restricted derivation D𝜌→𝜌 ′ = 𝐹, . . . , 𝐹 ′ such that 𝐹 ′ has a wild
frontier of 𝜌 ′ overseen by𝑤 ′, where𝑤 ′ ≠ 𝑤 is a fresh existential if 𝜌 is in 𝑞𝑟 , and𝑤 ′ = 𝑤 otherwise.

Concatenating the infinite sequence of derivations built in Proposition 18 does not however

provide a fair sequence of derivations, because of Rules 𝑅Brake, 𝑅nextBr and of the non-determinism

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



Restricted Chase Termination: You Want More than Fairness 109:11

of𝑀 . Fairness is enforced by applying 𝑅Brake and 𝑅nextBr “late enough” to ensure that none of the

triggers involved in the proof of Proposition 18 are made obsolete. This is possible because the

run of𝑀 going infinitely many often through 𝑞𝑟 , infinitely many brakes are created. Details are

provided in the appendix.

Lemma 19. Let (𝜌𝑖 )𝑖∈N be a run of𝑀 on the empty word that visits 𝑞𝑟 infinitely often. There exists
an infinite restricted chase sequence for ⟨Σ𝑀 , 𝐷𝜀⟩.

To show the converse, we fix an infinite restricted chase sequence D as (𝐹𝑖 )𝑖∈N, where 𝐹0 = 𝐷𝜀 .

We build from D an infinite run that visits 𝑞𝑟 infinitely often by identifying a substructure of the

chase, consisting of state atoms. We then prove that a run can be built from these states atoms (and

other elements of the chase), which fulfills the required conditions.

Definition 20. A state atom of 𝐹 is an atom of 𝐹 of the form q(𝑥,𝑤) where 𝑞 ∈ 𝑄 and 𝑥 is not a
brake. A state atom 𝐴 precedes 𝐴′ if there is a trigger 𝑡 such that 𝐴 ∈ support(𝑡) and 𝐴′ ∈ output(𝑡).
In this case, we write 𝐴 ≺ 𝐴′.

It is worth noticing that in the chase of ⟨Σ𝑀 , 𝐷𝜀⟩, state atoms are organised as a tree structure

rooted in the unique state atom belonging to 𝐷𝜀 , and such that 𝐴 is a parent of 𝐴′ if and only

if 𝐴 ≺ 𝐴′. Intuitively, we can assign with each of these state atoms a configuration such that

the configuration associated with 𝐴′ is reachable in one transition of 𝑀 from the configuration

associated with its parent 𝐴. The key property is that in an infinite restricted chase, there exists an

infinite sequence (𝐴𝑛)𝑛∈N with good properties.

Lemma 21. For all databases 𝐷 , and all infinite chase sequences from ⟨Σ𝑀 , 𝐷⟩ with result 𝐹 , there is
an infinite sequence (𝐴𝑛)𝑛∈N of state atoms of 𝐹 such that:
• 𝐴0 ∈ 𝐷 ;
• 𝐴𝑛 ≺ 𝐴𝑛+1 for all 𝑛 ∈ N;
• for infinitely many 𝑖 ∈ N, 𝐴𝑖 is of the shape q𝑟 (𝑡𝑖 ,𝑤𝑖 ).

Proof sketch. Since the rules that introduce state atoms (Rules 𝑅←𝑞𝑟 , 𝑅
→
𝑞𝑟
, 𝑅←¬𝑞𝑟 and 𝑅

→
¬𝑞𝑟 ) feature

a state atom in their body, ≺ defines a forest structure over state atoms, where the root of each tree

is an atom of the database. There is thus a finite amount of trees. We can prove by induction that

there is a finite amount of atoms that feature a given brake. Thus, there is an infinite amount of

brakes in 𝐹 . Then, since the rules that introduce new brakes (Rules 𝑅→𝑞𝑟 and 𝑅←𝑞𝑟 ) introduce a state
atom too, there is an infinite number of state atoms. Thus, one of the trees must be infinite, and

since branching can be proven to be finite, there must be an infinite branch by König’s lemma. □

Lemma 22. For every configuration 𝜌 , if the restricted chase does not terminate on ⟨Σ𝑀 , 𝐷𝜌⟩ then
there exists a run of𝑀 on 𝜌 which visits 𝑞𝑟 infinitely many times.

Lemmas 19 and 22 directly imply Proposition 16, and hence the correctness of the reduction.

5 Rule set termination
Theorem 23. CTRrest

∀ is Π1

1
-complete.

The theorem immediately follows from the upcoming Lemma 24 and Lemma 25.

Lemma 24. Deciding membership in CTRrest
∀ is in Π1

1
.

Proof. We reduce to universal non-recurrence through 𝑞𝑟 . More precisely, we show that a rule

set Σ is in CTRrest
∀ if and only ifMΣ from Definition 10 is universally non-recurring through 𝑞𝑟 .

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



109:12 David Carral, Lukas Gerlach, Lucas Larroque, and Michaël Thomazo

1

1 0

0,q0

1

1,B

1 1

1 0

1

1,q𝑟

1 B

1 1

1 0

1

1

1,q0

1 1

1 0

1

1

B,q0

⇒ ⇒
F F

𝑎

𝑏

𝑐

𝑑

𝑒

Fig. 3. First three steps of the restricted chase from ⟨R𝑀 , 𝐷⟩ as defined in Example 26. The predicate F and the
brakes are not represented for the sake of readability, but terms are connected through the future predicate
to an element on the same line at the previous step. Unlabeled arrows represent R-atoms.

If Σ is in CTRrest
∀ , then ⟨Σ, 𝐷⟩ is in CTKrest

∀ for each 𝐷 . Hence, by Lemma 11,MΣ is non-recurring

on every input that is the encoding of some database 𝐷 . On inputs that are not encodings of

databases,MΣ halts immediately by Definition 10. Therefore,MΣ is universally non-recurring.

IfMΣ is universally non-recurring through 𝑞𝑟 , then, in particular,MΣ is non-recurring through

𝑞𝑟 on every input that is the encoding of a database. Hence, by Lemma 11, each restricted chase

sequence for each knowledge base with Σ is finite. Therefore, Σ is in CTRrest
∀ . □

Lemma 25. CTRrest
∀ membership is Π1

1
-hard.

The rest of the section is dedicated to proving this lemma, by reducing robust non-recurrence

through 𝑞𝑟 to rule set termination. In fact, the reduction is very similar to the one we use for

knowledge base termination: to a machine𝑀 , we associate the rule set Σ𝑀 , which will belong to

CTRrest
∀ if and only if 𝑀 is robust non-recurring through 𝑞𝑟 . The direct implication follows from

Lemma 22 by contrapositive: if a Turing machine𝑀 is not robust non-recurring through 𝑞𝑟 , then

there is a configuration 𝜌 such that𝑀 visits 𝑞𝑟 infinitely many times from 𝜌 . Then, by Lemma 22,

the restricted chase does not terminate on ⟨Σ𝑀 , 𝐷𝜌⟩, and thus Σ𝑀 ∉ CTRrest
∀ . The other direction

requires more work. Consider a Turing machine 𝑀 , and assume that there is some database 𝐷

such that the restricted chase does not terminate on ⟨Σ𝑀 , 𝐷⟩. We then show that𝑀 is not robust

non-recurring through 𝑞𝑟 .

Since the restricted chase does not terminate on ⟨Σ𝑀 , 𝐷⟩, there is an infinite chase sequence

from this knowledge base. We use 𝐹 to denote its result. As in Section 4, by Lemma 21, 𝐹 contains

an infinite sequence of state atoms A = (𝐴𝑛)𝑛∈N such that 𝐴0 ∈ 𝐷 , 𝐴𝑛 ≺ 𝐴𝑛+1 for all 𝑛 ∈ N, and
there are infinitely many integers 𝑖 such that 𝐴𝑖 is a q𝑟 -atom.

In the knowledge base case, we had control over the database as part of the knowledge base,

which meant that we could start from a “well-formed” database (in the sense that it encodes a

single start configuration). This allowed us to extract the unique configuration associated with a

state atom. However, in the rule set case, the database 𝐷 leading to non-termination is arbitrary

and can contain any kind of structure, as highlighted by the following example.

Example 26. Consider a Turingmachine𝑀 that moves to the right in every step, writing 1 regardless of
the symbol it reads. It alternates between its start state 𝑞0 and the designated state 𝑞𝑟 . Now, consider the
database depicted on the left side of Fig. 3, which contains the atoms R(𝑎, 𝑏1,𝑤), R(𝑎, 𝑏2,𝑤), R(𝑏1, 𝑐,𝑤),
R(𝑏2, 𝑐,𝑤), R(𝑐, 𝑑,𝑤), R(𝑑, 𝑒,𝑤), q0 (𝑐,𝑤), 1(𝑎,𝑤), 1(𝑏1,𝑤), 0(𝑏2,𝑤), 0(𝑐,𝑤), 1(𝑑,𝑤), 1(𝑒,𝑤), B(𝑒,𝑤),
and brSet(𝑥,𝑤) for all 𝑥 ∈ {𝑎, 𝑏1, 𝑏2, 𝑐, 𝑑, 𝑒}. This database represents four different configurations,

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



Restricted Chase Termination: You Want More than Fairness 109:13

each with a tape of size 5, the start state q0, and the head positioned at the third cell. These configurations
correspond to tapes with contents 11011, 10011, 1101B, and 1001B.
As the simulation progresses, these configurations evolve simultaneously, creating new structures

shown in the middle and right of Fig. 3. Notice how term 𝑒 has two successors through the F predicate,
one for each symbol atom it belongs to. Furthermore, when the head encounters a branching structure,
it splits into two, as observed in the third step of the simulation. In a sense, if the machine simulation
is able to perform steps on the database at all, then it will gradually “heal” the structure step by step
towards proper encodings of machine configurations.

As highlighted by this example, the structure of the set of atoms connected to a state atom not

present in the database is specific: it is the union of two trees rooted in the state atom. The first has

arrows going towards the state atom, and the second one has arrows going away from the state

atom. In fact, this structure represent the set of paths in the initial database (after the appropriate

number of steps of simulation), which we coin a bow tie, due to its shape.

Definition 27. The inverse 𝐸− of a binary relation 𝐸 is the relation defined by (𝑥,𝑦) ∈ 𝐸− if and
only if (𝑦, 𝑥) ∈ 𝐸. In a directed graph 𝐺 = (𝑉 , 𝐸) we denote with 𝑉 −𝑦𝑥 the connected component3 of 𝑥
in the subgraph induced by 𝑉 \ {𝑦} on 𝐺 , for any two vertices 𝑥 and 𝑦. A bow tie is a graph (𝑉 , 𝐸)
with two distinguished vertices 𝑥 and 𝑦 that has the following properties:
(1) (𝑥,𝑦) ∈ 𝐸;
(2) The subgraph induced by 𝑉 −𝑦𝑥 on (𝑉 , 𝐸−) is a directed tree rooted in 𝑥 ;
(3) The subgraph induced by 𝑉 −𝑥𝑦 on (𝑉 , 𝐸) is a directed tree rooted in 𝑦;
(4) The sets 𝑉 −𝑦𝑥 and 𝑉 −𝑥𝑦 form a partition of 𝑉 ; that is, they are disjoint and 𝑉 = 𝑉

−𝑦
𝑥 ∪𝑉 −𝑥𝑦 .

The edge (𝑥,𝑦) is called the center of the bow tie, and the sets 𝑉 −𝑦𝑥 and 𝑉 −𝑥𝑦 are called the left and
right parts of the bow tie, respectively.

In the following, we denote with semterms(𝐹 ) (for semantically meaningful terms) the set of all

the terms in 𝐹 , except the brakes (which appear in the last position of atoms). We also define 𝐸𝑅 as

the relation over semterms(𝐹 ) such that (𝑥,𝑦) ∈ 𝐸𝑅 if and only if there is𝑤 such that 𝑅(𝑥,𝑦,𝑤) ∈ 𝐹 .
For all state atoms 𝐴 = q(𝑥,𝑤) generated during the chase, we denote the connected component of

𝑥 in the graph (semterms(𝐹 ), 𝐸𝑅) with bowtie(𝐴). The following lemma explains how this bow tie

structure is generated at each step.

Lemma 28. For all database 𝐷 , and every 𝐹 result of a chase sequence for ⟨Σ𝑀 , 𝐷⟩, the graph
bowtie(𝐴) is a finite bow tie for all state atoms 𝐴 ∈ 𝐹 \ 𝐷 . In addition:
• The center of the bow tie is the atom generated along with 𝐴, by rule 𝑅←¬𝑞𝑟 , 𝑅

→
¬𝑞𝑟 , 𝑅

←
𝑞𝑟

or 𝑅→𝑞𝑟 ;
• all the atoms in the left part of the bow tie are generated by rule 𝑅CL ;
• all the atoms in the right part of the bow tie are generated by rule 𝑅CR , except possibly the end of
a maximal path, which may have been generated by rule 𝑅End.

Proof sketch. This proof relies on an analysis of how R-atoms are generated during the chase.

All the rules that generate R-atoms (over non-brake terms) generate R-atoms containing at least

one existentially quantified variable. Three cases occur:

• Rules𝑅←¬𝑞𝑟 ,𝑅
→
¬𝑞𝑟 ,𝑅

←
𝑞𝑟

and𝑅→𝑞𝑟 generate an R-atom R(𝑢, 𝑣,𝑤) where𝑢 and 𝑣 are both existentially

quantified.

• Rule 𝑅CL generates an R-atom R(𝑢, 𝑣,𝑤) where 𝑢 is existentially quantified and 𝑣 is a frontier

variable.

3
We consider here weakly connected components; a weakly connected component in a directed graph is a maximal subgraph

such that there is an undirected path between any two vertices.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



109:14 David Carral, Lukas Gerlach, Lucas Larroque, and Michaël Thomazo

• Rules 𝑅CR and 𝑅End generate an R-atom R(𝑢, 𝑣,𝑤) where 𝑢 is a frontier variable and 𝑣 is

existentially quantified.

Thus, all connected components are generated by a rule of the first kind, and then extended

to the left by a rule of the second kind, and to the right by a rule of the third kind. Since no rule

can generate an atom R(𝑢, 𝑣,𝑤) where 𝑢 and 𝑣 are both frontier variable (assuming 𝑢 and 𝑣 are not

brakes), this yields the wanted structure. Finiteness is guaranteed by the emergency brakes. □

We now have a bit of structure to work with. Let us give a bit of intuition before concluding

the proof. We have considered an infinite sequence A = (𝐴𝑛)𝑛∈N of state atoms, with 𝐴0 ∈ 𝐷 and

𝐴𝑛 ≺ 𝐴𝑛+1 for all 𝑛 ∈ N, and we have just shown that to each state atom (not in 𝐷) is attached a

bow tie structure. As mentioned before, the bow tie bowtie(𝐴𝑛) consists in a set of (non-disjoint)

paths that represent configurations that can be obtained from a configuration containing 𝐴0 in

the database, after 𝑛 steps of simulation. In addition, Lemma 28 shows how each of these paths is

constructed using a path from bowtie(𝐴𝑛−1). We also have seen in Example 26 that a bow tie can

get split. From these two facts we get that the number of configurations represented by bowtie(𝐴𝑛)
decreases as 𝑛 grows. Since this number is an integer, and each bow tie represents at least one

configuration, this sequence will be stationnary at some point 𝑁 . At this point, we know that each

of the configurations represented by bowtie(𝐴𝑁 ) visits 𝑞𝑟 infinitely many time. Thus, we pick such

a configuration 𝜌 , and we show that the restricted chase does not terminate on ⟨Σ𝑀 , 𝐷𝜌⟩, which is

enough to conclude the proof by Lemma 22. We then formalize this argument.

Definition 29. The set of configurations configs(𝐴𝑛) associated to a state atom 𝐴𝑛 = 𝑞(𝑥,𝑤) ∈ A,
with 𝑛 > 0, is the set whose elements are the sets

{𝐴𝑛} ∪
⋃
𝑖≤𝑚

brSet(𝑥𝑖 ,𝑤) ∪ {P(𝑦1, . . . , 𝑦𝑘 ,𝑤) ∈ 𝐹 | 𝑃 ∈ {R, 0, 1, B, End} and ∀𝑖, 𝑦𝑖 ∈ {𝑥1, . . . , 𝑥𝑚}}

for all maximal paths (𝑥1, . . . , 𝑥𝑚) in bowtie(𝐴𝑛).

Lemma 30. For all 𝑛 > 0, configs(𝐴𝑛) is finite, non-empty, and each of its elements homomorphically
embeds into 𝐷𝜌 for some configuration 𝜌 . Also, there is an injective function pred𝑛 from configs(𝐴𝑛+1)
to configs(𝐴𝑛) such that 𝑆 ∈ configs(𝐴𝑛+1) can be generated using only atoms in pred𝑛 (𝑆).

Proof sketch. To each set 𝑆 ∈ configs(𝐴𝑛+1) we can associate a configuration 𝜌 and a path 𝑝

in bowtie(𝐴𝑛+1). We then define pred𝑛 (𝑆) as the set of atoms that was used to generate it, which

is not hard: its associated configuration is an extension of a configuration that yields 𝜌 , and its

associated path is connected through the F-predicate to 𝑝 . To show injectivity of pred𝑛 , we then
rely on a lemma stating that if F(𝑥, 𝑧,𝑤) and F(𝑦, 𝑧,𝑤) are both in 𝐹 , then 𝑥 = 𝑦. □

Since for all 𝑛, there is an injective function from configs(𝐴𝑛+1) to configs(𝐴𝑛), the sequence
( |configs(𝐴𝑛) |)𝑛∈N>0

is a decreasing sequence of natural numbers, as mentioned before. Thus, there

must be some 𝑁 ∈ N such that for all 𝑛 ≥ 𝑁 , |configs(𝐴𝑛) | = |configs(𝐴𝑁 ) | > 0. We pick 𝑆0 in

configs(𝐴𝑁 ), and let 𝜌 be a configuration such that 𝑆0 homomorphically embeds into 𝐷𝜌 .

Lemma 31. The restricted chase does not terminate on ⟨Σ𝑀 , 𝐷𝜌⟩.

Proof sketch. Since for all 𝑛 ≥ 𝑁 , |configs(𝐴𝑛) | = |configs(𝐴𝑁 ) |, pred𝑛 is actually a bijection.

We thus define 𝑆𝑛+1 as pred−1𝑁+𝑛 (𝑆𝑛). Intuitively, the sequence (𝑆𝑛)𝑛∈N encodes the run of𝑀 that

visits 𝑞𝑟 infinitely many times from 𝜌 . We then construct an infinite chase sequence from ⟨Σ𝑀 , 𝐷𝜌⟩
such that 𝑆𝑛 homomorphically embed in it for all 𝑛. □

By Lemma 22, this means that there is a run of𝑀 which visits 𝑞𝑟 infinitely many times, and thus

that𝑀 is not robust non-recurring through 𝑞𝑟 , concluding the reduction.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



Restricted Chase Termination: You Want More than Fairness 109:15

6 An Alternative to Fairness to Simplify Restricted Chase Termination
All chase variants can be applied to semi-decide Boolean conjunctive query (BCQ) entailment. This

is the case because, if a KBK entails a BCQ𝑄 under standard first-order semantics, then every chase

sequence of K features a fact set that entails 𝑄 . Consequently, it suffices to compute an (arbitrarily

large) finite prefix of any (arbitrarily chosen) chase sequence of K to semi-decide whetherK entails

𝑄 . Note that semi-decidability of BCQ entailment breaks down if we remove the fairness condition

from the definition of a chase sequence. Unfortunately, this condition complicates the problem of

universal termination for the restricted chase (see Theorems 9 and 23). To address this situation, we

propose an alternative to fairness in the following definition that retains semi-decidability while

simplifying the termination problem of the chase (see Theorem 34).

Definition 32. A breadth-first chase sequence for a KB ⟨Σ, 𝐷⟩ is a chase derivation 𝐹0, 𝐹1, . . . such
that, (†) if some Σ-trigger 𝜆 is loaded for some 𝐹𝑖 , then there is some 𝑗 ∈ {𝑖, . . . , 𝑖 + 𝑛} such that 𝜆 is
obsolete for 𝐹 𝑗 and 𝑛 is the (finite) number of Σ-triggers that are loaded and not obsolete for 𝐹𝑖 .

Note that, since (†) implies fairness as introduced in Definition 3, every breadth-first chase

sequence is also a chase sequence and we preserve semi-decidability of BCQ entailment.

Definition 33. Let CTKb1r
∀ be the class of all KBs that only admit finite breadth-first chase sequences.

Let CTRb1r
∀ be the class containing a rule set if CTKb1r

∀ contains all KBs with this rule set.

Theorem 34. The class CTKb1r
∀ is in RE, and the class CTRb1r

∀ is in Π0

2
.

Proof. To show that CTKb1r
∀ is in RE, we define a semi-decision procedure, which executes the

following instructions on a given input KB K = ⟨Σ, 𝐷⟩:
(1) Initialise the set P1 of lists of facts that contains the (unary) list 𝐷 , and a counter 𝑖 := 2.

(2) Compute the set C𝑖 of all chase derivations of length 𝑖 of K that can be obtained by extending

a chase derivation in P𝑖−1 with one fact set. Intuitively, C𝑖 includes all lists of length 𝑖 that

can be extended into breadth-first chase sequences for K .
(3) Compute the maximal subset P𝑖 of C𝑖 that does not contain a chase derivation 𝐹1, . . . , 𝐹𝑖 ∈ C𝑖

if there is some 1 ≤ 𝑘 ≤ 𝑖 and some Σ-trigger 𝜆 such that 𝜆 is loaded for 𝐹𝑘 , the trigger 𝜆 is

not obsolete for 𝐹𝑖 , and 𝑖 − 𝑘 is larger than the number of Σ-triggers that are loaded and not

obsolete for 𝐹𝑘 . Intuitively, P𝑖 filters out prefixes in C𝑖 that already violate (†).
(4) If P𝑖 is empty, accept. Otherwise, increment 𝑖 := 𝑖 + 1 and go to 2.

If the procedure accepts, then P𝑖 is empty for some 𝑖 and all breadth-first chase sequences of K are

of length at most 𝑖 − 1. If the procedure loops, then there is an infinite chase derivation 𝐹0, 𝐹1, . . . of

K such that 𝐹0, . . . , 𝐹𝑖−1 ∈ P𝑖 for every 𝑖 ≥ 1, which is a breadth-first derivation for K .
The class CTRb1r

∀ is in Π0

2
because we can semi-decide if a rule set Σ is not in CTRb1r

∀ using an

oracle that solves CTKb1r
∀ . We simply enumerate every database 𝐷 , use the oracle to check if the

KB ⟨Σ, 𝐷⟩ is in CTKb1r
∀ , and accept if this is not the case. □

The previous result holds because the condition (†) is finitely verifiable; that is, every infinite

chase derivation that does not satisfy this condition has a finite prefix that witnesses this violation.

Note that fairness does not have this property since any finite prefix of any chase derivation can

be extended into a (fair) chase sequence. In fact, we can readily show a version of Theorem 34

for any other alternative condition if it is finitely verifiable. For an example of one such trigger

application strategy, consider the one from [20], which is a bit more complex to define than (†) but
nevertheless results in a very efficient implementation of the restricted chase.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



109:16 David Carral, Lukas Gerlach, Lucas Larroque, and Michaël Thomazo

7 Open Problems
After settling the general case regarding restricted chase termination and proposing an alternative

fairness condition, there are still open challenges. Namely, what is the undecidability status of the

classes CTKrest
∀ and CTRrest

∀ if we only consider single-head rules or only guarded (multi-head) rules?

Note that, with guarded rules, it is not obvious how to simulate a Turing machine. For single-head

rules, we cannot implement the emergency brake and thus our proofs do not apply. Moreover, if

we only consider single-head rule sets, we can ignore fairness when determining restricted chase

termination because of the “fairness theorem” [12]: a single-head KB admits an infinite (possibly

unfair) chase derivation if and only if admits an infinite (fair) chase sequence. We think that answers

to these problems will help to develop a better understanding for the (restricted) chase overall.

Acknowledgments
On TU Dresden side, this work is partly supported by Deutsche Forschungsgemeinschaft (DFG, Ger-

man Research Foundation) in project number 389792660 (TRR 248, Center for Perspicuous Systems),

by the Bundesministerium für Bildung und Forschung (BMBF, Federal Ministry of Education and

Research) in the Center for Scalable Data Analytics and Artificial Intelligence (project SCADS25B,

ScaDS.AI), and by Bundesministerium für Bildung und Forschung (BMBF, Federal Ministry of

Education and Research) and Deutscher Akademischer Austauschdienst (DAAD, German Academic

Exchange Service) in project 57616814 (SECAI, School of Embedded and Composite AI).

References
[1] Bartosz Bednarczyk, Robert Ferens, and Piotr Ostropolski-Nalewaja. 2020. All-Instances Oblivious Chase Termination

is Undecidable for Single-Head Binary TGDs. In Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI 2020, Christian Bessiere (Ed.). ijcai.org, 1719–1725. https://doi.org/10.24963/IJCAI.2020/238

[2] Marco Calautti, Georg Gottlob, and Andreas Pieris. 2015. Chase Termination for Guarded Existential Rules. In

Proceedings of the 34th ACM Symposium on Principles of Database Systems, PODS 2015, Melbourne, Victoria, Australia,
May 31 - June 4, 2015, Tova Milo and Diego Calvanese (Eds.). ACM, 91–103. https://doi.org/10.1145/2745754.2745773

[3] Marco Calautti and Andreas Pieris. 2021. Semi-Oblivious Chase Termination: The Sticky Case. Theory Comput. Syst.
65, 1 (2021), 84–121. https://doi.org/10.1007/S00224-020-09994-5

[4] David Carral, Irina Dragoste, and Markus Krötzsch. 2017. Restricted Chase (Non)Termination for Existential Rules

with Disjunctions. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017,
Melbourne, Australia, August 19-25, 2017, Carles Sierra (Ed.). ijcai.org, 922–928. https://doi.org/10.24963/IJCAI.2017/128

[5] David Carral, Lucas Larroque, Marie-Laure Mugnier, and Michaël Thomazo. 2022. Normalisations of Existential Rules:

Not so Innocuous!. In Proceedings of the 19th International Conference on Principles of Knowledge Representation and
Reasoning, KR 2022, Haifa, Israel, July 31 - August 5, 2022, Gabriele Kern-Isberner, Gerhard Lakemeyer, and Thomas

Meyer (Eds.). https://proceedings.kr.org/2022/11/

[6] Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. 2008. The chase revisited. In Proceedings of the Twenty-Seventh ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2008, June 9-11, 2008, Vancouver, BC,
Canada, Maurizio Lenzerini and Domenico Lembo (Eds.). ACM, 149–158. https://doi.org/10.1145/1376916.1376938

[7] Haim Gaifman, Harry G. Mairson, Yehoshua Sagiv, and Moshe Y. Vardi. 1993. Undecidable Optimization Problems for

Database Logic Programs. J. ACM 40, 3 (1993), 683–713. https://doi.org/10.1145/174130.174142

[8] Lukas Gerlach and David Carral. 2023. Do Repeat Yourself: Understanding Sufficient Conditions for Restricted Chase

Non-Termination. In Proceedings of the 20th International Conference on Principles of Knowledge Representation and
Reasoning, KR 2023, Rhodes, Greece, September 2-8, 2023, Pierre Marquis, Tran Cao Son, and Gabriele Kern-Isberner

(Eds.). 301–310. https://doi.org/10.24963/KR.2023/30

[9] Lukas Gerlach and David Carral. 2023. General Acyclicity and Cyclicity Notions for the Disjunctive Skolem Chase. In

Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications
of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence, EAAI
2023, Washington, DC, USA, February 7-14, 2023, Brian Williams, Yiling Chen, and Jennifer Neville (Eds.). AAAI Press,

6372–6379. https://doi.org/10.1609/AAAI.V37I5.25784

[10] Tomasz Gogacz and Jerzy Marcinkowski. 2014. All-Instances Termination of Chase is Undecidable. In Automata,
Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014,

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

https://www.perspicuous-computing.science/
https://www.scads.de/
https://scads.ai/
https://www.secai.org/
https://www.secai.org/
https://doi.org/10.24963/IJCAI.2020/238
https://doi.org/10.1145/2745754.2745773
https://doi.org/10.1007/S00224-020-09994-5
https://doi.org/10.24963/IJCAI.2017/128
https://proceedings.kr.org/2022/11/
https://doi.org/10.1145/1376916.1376938
https://doi.org/10.1145/174130.174142
https://doi.org/10.24963/KR.2023/30
https://doi.org/10.1609/AAAI.V37I5.25784


Restricted Chase Termination: You Want More than Fairness 109:17

Proceedings, Part II (Lecture Notes in Computer Science, Vol. 8573), Javier Esparza, Pierre Fraigniaud, Thore Husfeldt,
and Elias Koutsoupias (Eds.). Springer, 293–304. https://doi.org/10.1007/978-3-662-43951-7_25

[11] Tomasz Gogacz and Jerzy Marcinkowski. 2014. Termination of oblivious chase is undecidable. CoRR abs/1401.4840

(2014). arXiv:1401.4840 http://arxiv.org/abs/1401.4840

[12] Tomasz Gogacz, Jerzy Marcinkowski, and Andreas Pieris. 2023. Uniform Restricted Chase Termination. SIAM J.
Comput. 52, 3 (2023), 641–683. https://doi.org/10.1137/20M1377035

[13] Gösta Grahne and Adrian Onet. 2018. Anatomy of the Chase. Fundam. Informaticae 157, 3 (2018), 221–270. https:

//doi.org/10.3233/FI-2018-1627

[14] Bernardo Cuenca Grau, Ian Horrocks, Markus Krötzsch, Clemens Kupke, Despoina Magka, Boris Motik, and Zhe Wang.

2013. Acyclicity Notions for Existential Rules and Their Application to Query Answering in Ontologies. J. Artif. Intell.
Res. 47 (2013), 741–808. https://doi.org/10.1613/JAIR.3949

[15] David Harel. 1986. Effective transformations on infinite trees, with applications to high undecidability, dominoes, and

fairness. J. ACM 33, 1 (jan 1986), 224–248. https://doi.org/10.1145/4904.4993

[16] Markus Krötzsch, Maximilian Marx, and Sebastian Rudolph. 2019. The Power of the Terminating Chase (Invited

Talk). In 22nd International Conference on Database Theory, ICDT 2019, March 26-28, 2019, Lisbon, Portugal (LIPIcs,
Vol. 127), Pablo Barceló and Marco Calautti (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 3:1–3:17.

https://doi.org/10.4230/LIPICS.ICDT.2019.3

[17] Michel Leclère, Marie-Laure Mugnier, Michaël Thomazo, and Federico Ulliana. 2019. A Single Approach to Decide

Chase Termination on Linear Existential Rules. In 22nd International Conference on Database Theory, ICDT 2019,
March 26-28, 2019, Lisbon, Portugal (LIPIcs, Vol. 127), Pablo Barceló and Marco Calautti (Eds.). Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 18:1–18:19. https://doi.org/10.4230/LIPICS.ICDT.2019.18

[18] Bruno Marnette. 2009. Generalized schema-mappings: from termination to tractability. In Proceedings of the Twenty-
Eigth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2009, June 19 - July 1, 2009,
Providence, Rhode Island, USA, Jan Paredaens and Jianwen Su (Eds.). ACM, 13–22. https://doi.org/10.1145/1559795.

1559799

[19] Hartley Rogers, Jr. 1987. Theory of recursive functions and effective computability (Reprint from 1967). MIT Press.

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3182

[20] Jacopo Urbani, Markus Krötzsch, Ceriel J. H. Jacobs, Irina Dragoste, and David Carral. 2018. EfficientModel Construction

for Horn Logic with VLog - System Description. In Automated Reasoning - 9th International Joint Conference, IJCAR
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings (Lecture Notes
in Computer Science, Vol. 10900), Didier Galmiche, Stephan Schulz, and Roberto Sebastiani (Eds.). Springer, 680–688.

https://doi.org/10.1007/978-3-319-94205-6_44

Received December 2024; revised February 2025; accepted March 2025

A Π1

1
-complete Turing Machine Problems for Reductions

Our definition of non-recurring machines differs slightly from descriptions found in previous

literature. Indeed, Harel showed that the following problem is Π1

1
-complete: decide if a (non-

deterministic Turing) machine admits a run on the empty word that features the initial state 𝑞0
infinitely many times (see Corollary 6.2 in [15]). Our definition is slightly different since we choose

a different state 𝑞𝑟 to keep track of this infinite recurrence; note that this state may be different

from the initial state. Fortunately, the choice of the initial state in the proof of Corollary 6.2 of Harel

[15] is arbitrary, making it straightforward to adapt his proof to any given state. We first prove

this in Section A.1, and then use this result to get Π1

1
-completeness for the other Turing machine

problems we consider in Section A.2.

A.1 Non-Recurrence on the Empty Word
To show that checking if a machine is non-recurring on the empty word is Π1

1
-complete, we adapt

the proof of Corollary 6.2 in [15]. To do so, we first need to introduce some preliminary notions. A

list is a finite sequence. The concatenation of two lists 𝑢 = 𝑢1, . . . , 𝑢𝑛 and 𝑣 = 𝑣1, . . . , 𝑣𝑚 is the list

𝑢 · 𝑣 = 𝑢1, . . . , 𝑢𝑛, 𝑣1, . . . , 𝑣𝑚 . A list 𝑢1, . . . , 𝑢𝑛 with 𝑛 ≥ 2 is the child of 𝑢1, . . . , 𝑢𝑛−1. A list 𝑢 is an

ancestor of another list 𝑣 , written 𝑢 ≺ 𝑣 , if 𝑢 is a prefix of 𝑣 ; that is, if 𝑢 ·𝑤 = 𝑣 for some list𝑤 .

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.

https://doi.org/10.1007/978-3-662-43951-7_25
https://arxiv.org/abs/1401.4840
http://arxiv.org/abs/1401.4840
https://doi.org/10.1137/20M1377035
https://doi.org/10.3233/FI-2018-1627
https://doi.org/10.3233/FI-2018-1627
https://doi.org/10.1613/JAIR.3949
https://doi.org/10.1145/4904.4993
https://doi.org/10.4230/LIPICS.ICDT.2019.3
https://doi.org/10.4230/LIPICS.ICDT.2019.18
https://doi.org/10.1145/1559795.1559799
https://doi.org/10.1145/1559795.1559799
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3182
https://doi.org/10.1007/978-3-319-94205-6_44


109:18 David Carral, Lukas Gerlach, Lucas Larroque, and Michaël Thomazo

Definition 35. An 𝜔-tree 𝑇 is a set of lists of natural numbers closed under ≺. A node is an element
in 𝑇 ; a leaf is a node without children in 𝑇 . Such a tree is computable if so is the following function:

𝜒𝑇 (𝑢) =

0 if 𝑢 ∉ 𝑇

1 if 𝑢 ∈ 𝑇 and 𝑢 is a leaf
2 if 𝑢 ∈ 𝑇 and 𝑢 is not a leaf

A possibly infinite sequence of natural numbers is a branch of 𝑇 if the latter contains every finite
prefix of the former. Such a tree is well founded if all of its branches are finite.

In the following, we identify a computable 𝜔-tree𝑇 with the machine that computes the function

𝜒𝑇 . Note that this is a machine that implements a function mapping lists of natural numbers to

elements of {0, 1, 2} as indicated in Definition 35. Checking if such a machine does correspond to a

well-founded tree is a Π1

1
-complete problem.

Lemma 36 ([19], Theorem 16). Checking if a computable 𝜔-tree is well founded is Π1

1
-complete.

Definition 37. For a natural number 𝑘 ≥ 0, a 𝑘-tree 𝑇 is an 𝜔-tree that does not contain sequences
with numbers larger than 𝑘 . A b-tree (b for bounded) is a 𝑘-tree for some 𝑘 ≥ 0. A marked b-tree is a
pair (𝑇, 𝜇) consisting of a b-tree 𝑇 and a marking function 𝜇; that is, a function from 𝑇 to {0, 1}. A
marked b-tree is computable if the following function is computable:

𝜒
𝜇

𝑇
(𝑢) =


0 if 𝑢 ∉ 𝑇

1 if 𝑢 ∈ 𝑇 and 𝑢 is marked (that is, 𝜇 (𝑢) = 1)
2 if 𝑢 ∈ 𝑇 and 𝑢 is not marked

A marked b-tree is recurring if it has a branch with infinitely many marked prefixes.

As we do for computable 𝜔-trees, we identify a computable marked b-tree (𝑇, 𝜇) with the decider

that implements the function 𝜒
𝜇

𝑇
.

Lemma 38 ([15], Corollary 5.3). Checking if a computable b-tree is non-recurring is Π1

1
-complete.

We are ready now to show the main result in this subsection.

Proposition 39. The problem of checking if a machine is non-recurring through some state 𝑞𝑟 on the
empty word 𝜀 is Π1

1
-complete.

Proof. To show membership, we present a reduction that maps a machine 𝑀 = (𝑄, Γ, 𝛿) to a

computable marked b-tree (𝑇, 𝜇) such that𝑀 is non-recurring through a given state 𝑞𝑟 ∈ 𝑄 on the

empty word 𝜀 if and only if (𝑇, 𝜇) is non-recurring. To define (𝑇, 𝜇), we consider an (arbitrarily

chosen) enumeration 𝑞1, . . . , 𝑞𝑛 of the states in 𝑄 .

• Let𝑇 be the set containing a list of natural numbers 𝑖1, . . . , 𝑖𝑛 if there is a partial run 𝜌1, . . . , 𝜌𝑛
of𝑀 on 𝜀 such that 𝜌 𝑗 features the state 𝑞𝑖 𝑗 for every 1 ≤ 𝑗 ≤ 𝑛.

• Let 𝜇 be the function that maps a list𝑢 ∈ 𝑇 to 1 if and only if 𝑞𝑖 = 𝑞𝑟 where 𝑖 is the last element

in 𝑢. That is, if the last element of 𝑢 is the index that corresponds to 𝑞𝑟 in the enumeration

𝑞1, . . . , 𝑞𝑛 .

For every infinite branch of 𝑇 , there is an infinite run of 𝑀 and vice-versa. Furthermore, by the

definition of 𝜇, a branch of (𝑇, 𝜇) containing infinitely many marked nodes corresponds to a run of

𝑀 visiting 𝑞𝑟 infinitely many times. Therefore,𝑀 is non-recurring through 𝑞𝑟 if and only if (𝑇, 𝜇)
is non-recurring.

For hardness, we present a reduction that maps a computable 𝜔-tree 𝑇 to a non-deterministic

machine𝑀 = (𝑄, Γ, 𝛿) such that𝑇 is well-founded if and only if𝑀 is non-recurring through a state

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



Restricted Chase Termination: You Want More than Fairness 109:19

𝑞𝑟 ∈ 𝑄 on the empty word 𝜀. Intuitively, the machine𝑀 proceeds by doing a traversal of the full

𝜔-tree; formally, it implements the following instructions on input 𝜀:

(1) Initialise the variable 𝑢 = 0, which stores a list of natural numbers.

(2) If 𝑢 ∉ 𝑇 , replace the last element 𝑖 in 𝑢 with 𝑖 + 1.
(3) If 𝑢 ∈ 𝑇 , make a non-deterministic choice between the following options:

(a) Replace the last element 𝑖 in 𝑢 with 𝑖 + 1.
(b) Append 0 to the list stored in 𝑢 and visit the state 𝑞𝑟 .

(4) Go to (2).

We can effectively check if a list 𝑢 is a node in𝑇 above because𝑇 is a computable 𝜔-tree and hence,

so is function 𝜒𝑇 . Intuitively, each run of𝑀 on the empty word corresponds to a traversal of a branch

in 𝑇 ; note how we use non-determinism in (3) to alternatively visit the sibling (Instruction 3.a) or

the child (Instruction 3.b) of a node in the tree. Furthermore, note that 𝑀 only visits 𝑞𝑟 when it

moves deeper on a given branch; that is, when it executes instruction (3.b). Therefore, there is a

run of𝑀 visiting 𝑞𝑟 infinitely often if and only if there is an infinite branch in 𝑇 . □

A.2 Reductions between Turing Machine Problems
Proposition 40. The problem of checking if a machine is universally non-recurring through a given
state 𝑞𝑟 is Π1

1
-complete.

Proof. To showmembership, we present a reduction that maps a machine𝑀 to another machine

𝑀 ′ such that𝑀 is universally non-recurring through a state 𝑞𝑟 if and only if𝑀 ′ is non-recurring
through a state 𝑞′𝑟 on 𝜀. On input 𝜀, the machine𝑀 ′ first guesses some input word and then simulates

𝑀 on this input. Formally, it executes the following instructions:

(1) Make a non-deterministic choice to decide whether to go to (2) or to (3).

(2) Replace the first occurrence of the blank symbol B in the input tapewith some non-deterministically

chosen symbol in the input alphabet of𝑀 . Then, go to (1).

(3) Simulate𝑀 on the (finite) word written down in the input tape. During this simulation, visit

𝑞′𝑟 whenever𝑀 would have visited 𝑞𝑟 .

Note that there are infinite runs of𝑀 ′ on 𝜀 where the machine never executes Instruction 3. This

does not invalidate our reduction since𝑀 ′ never visits 𝑞′𝑟 in these branches.

To show hardness, we present a reduction that maps a machine𝑀 to another machine𝑀 ′ such
that 𝑀 is non-recurring through a state 𝑞𝑟 on 𝜀 if and only if 𝑀 ′ is universally non-recurring

through a state 𝑞′𝑟 . The machine 𝑀 ′ first discards its input by replacing it with a special symbol

that is treated like the blank symbol B.4 Then, 𝑀 ′ simulates 𝑀 on 𝜀; during this simulation, 𝑀 ′

visits 𝑞′𝑟 whenever𝑀 would have visited 𝑞𝑟 . □

Proposition 41. Checking if a machine is robust non-recurring through 𝑞𝑟 is Π1

1
-complete.

Proof. To show membership, we present a reduction from a machine𝑀 to a machine𝑀 ′ such
that 𝑀 is robust non-recurring through a state 𝑞𝑟 if and only if 𝑀 ′ is universally non-recurring

through a state 𝑞′𝑟 . The machine𝑀 ′ scans its input and halts if it does not encode a configuration

of𝑀 . Otherwise,𝑀 ′ simulates𝑀 starting on this input configuration; during this simulation,𝑀 ′

visits 𝑞′𝑟 whenever𝑀 would have visited 𝑞𝑟 .

To show hardness, we present a reduction from a machine𝑀 to another machine𝑀 ′ such that𝑀

is non-recurring through a state 𝑞𝑟 on the empty word 𝜀 if and only if𝑀 ′ is robust non-recurring
through a state 𝑞′𝑟 . The machine𝑀 ′ executes the following instructions:

(1) Halt if the input does not contain some configuration 𝜌 of𝑀 .

4
We consider a special symbol here because, as per our definition, machines may not print the blank symbol B.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



109:20 David Carral, Lukas Gerlach, Lucas Larroque, and Michaël Thomazo

(2) If the configuration in the tape 𝜌 features the special state 𝑞𝑟 , then visit 𝑞′𝑟 .
(3) After the encoding of 𝜌 in the tape, (non-deterministically) simulate a run of𝑀 on 𝜀 until it

terminates or you reach the configuration 𝜌 . If the run terminates, without finding 𝜌 , halt.

Otherwise, continue in (4).

(4) If Next𝑀 (𝜌) is empty, halt. Otherwise, replace the configuration 𝜌 in the tape with a non-

deterministically chosen configuration in Next𝑀 (𝜌), and go to (1).

Intuitively speaking, Instruction 3 implements a reachability check for the configuration 𝜌 in

the tape. That is, this procedure ensures that this configuration is reachable from the starting

configuration of 𝑀 on the empty word 𝜀 by some run. Note that the reachability check makes

non-deterministic choices itself. So it can happen that 𝑀 ′ terminates early or even runs forever

because it picks the wrong run in Instruction 3. This does not invalidate our reduction though since

on those runs,𝑀 ′ only visits 𝑞′𝑟 finitely many times.

If𝑀 ′ is robust non-recurring through𝑞′𝑟 , then it is also non-recurring on the starting configuration
with the encoding of the starting configuration of𝑀 on 𝜀. Since𝑀 ′ uses non-determinism to simulate

all possible runs 𝑀 on 𝜀 and visits 𝑞′𝑟 whenever 𝑀 would have visited 𝑞𝑟 , we conclude that 𝑀 is

non-recurring through 𝑞𝑟 on 𝜀.

Suppose that there is a configuration 𝜌 ′ of𝑀 ′ that may lead to a run that visits 𝑞′𝑟 infinitely many

times. In turn, this implies that there is a configuration 𝜌 of𝑀 that leads to a run of𝑀 that visits 𝑞𝑟
infinitely many times. Moreover, all the configurations of𝑀 in this infinite run are reachable from

the start configuration of𝑀 on 𝜀 because of the check implemented in Instruction 3. Therefore,𝑀

is recurring through 𝑞𝑟 on the empty word. □

B Proofs for Section 4 (Knowledge base termination)
Proposition 18. If 𝐹 has a wild frontier of 𝜌 overseen by 𝑤 , and 𝜌 ′ is reachable in one step by a
transition of 𝑀 , then there exists a restricted derivation D𝜌→𝜌 ′ = 𝐹, . . . , 𝐹 ′ such that 𝐹 ′ has a wild
frontier of 𝜌 ′ overseen by𝑤 ′, where𝑤 ′ ≠ 𝑤 is a fresh existential if 𝜌 is in 𝑞𝑟 , and𝑤 ′ = 𝑤 otherwise.

Proof. We consider the case where 𝜌 = ⟨𝑛, 𝑡, 𝑝, 𝑞⟩, with 𝑞 ≠ 𝑞𝑟 , and where 𝜌 ′ is obtained from 𝜌

because (𝑏, 𝑞′,→) ∈ 𝛿 (𝑡 (𝑝), 𝑞). We consider 𝑥1, . . . , 𝑥𝑛+1,𝑤 as provided by the definition of a wild

frontier of configuration 𝜌 .

• we start by applying Rule 𝑅→¬𝑞𝑟 , mapping 𝑥 to 𝑥𝑝 , 𝑦 to 𝑥𝑝+1 and 𝑤 to 𝑤 . This produces

the atoms q′ (𝑥 ′𝑝+1,𝑤), c(𝑥 ′𝑝+1,𝑤), b(𝑥 ′𝑝 ,𝑤), CL (𝑥 ′𝑝 ,𝑤), CR (𝑥 ′𝑝+1,𝑤), R(𝑥 ′𝑝 , 𝑥 ′𝑝+1,𝑤), F(𝑥𝑝 , 𝑥 ′𝑝 ,𝑤),
F(𝑥𝑝+1, 𝑥 ′𝑝+1,𝑤), brSet(𝑥 ′𝑝 ,𝑤), brSet(𝑥 ′𝑝+1,𝑤);
• we apply Rule 𝑅CL 𝑝 − 1 times. The 𝑖th (for 𝑖 from 1 to 𝑝 − 1) application maps 𝑥 to 𝑥𝑝−𝑖+1,
𝑥 ′ to 𝑥 ′𝑝−𝑖+1, 𝑦 to 𝑥𝑝−𝑖 , 𝑤 ′ and 𝑤 to 𝑤 . It creates atoms F(𝑥𝑝−𝑖 , 𝑥 ′𝑝−𝑖 ,𝑤), R(𝑥 ′𝑝−𝑖 , 𝑥 ′𝑝−𝑖+1,𝑤),
t(p − i) (𝑥 ′𝑝−𝑖 ,𝑤), CL (𝑥 ′𝑝−𝑖 ,𝑤), brSet(𝑥 ′𝑝−𝑖 ,𝑤 ′);
• we apply Rule 𝑅CR 𝑛 − 𝑝 times. The 𝑖th (for 𝑖 from 1 to 𝑛 − 𝑝) application maps 𝑥 to 𝑥𝑝+𝑖 ,
𝑥 ′ to 𝑥 ′𝑝+𝑖 , 𝑦 to 𝑥𝑝+𝑖+1, 𝑤 ′ and 𝑤 to 𝑤 . It creates atoms F(𝑥𝑝+𝑖+1, 𝑥 ′𝑝+𝑖+1,𝑤), R(𝑥 ′𝑝+𝑖 , 𝑥 ′𝑝+𝑖+1,𝑤),
t(p + i + 1) (𝑥 ′𝑝+𝑖+1,𝑤), CR (𝑥 ′𝑝+𝑖+1,𝑤), brSet(𝑥 ′𝑝+𝑖+1,𝑤)
• we apply Rule 𝑅End, mapping 𝑥 ′ to 𝑥 ′𝑛+1, 𝑥 to 𝑥𝑛+1, 𝑤 and 𝑤 ′ to 𝑤 . It creates the atoms

R(𝑥 ′𝑛+1, 𝑥 ′𝑛+2,𝑤), B(𝑥 ′𝑛+2,𝑤), End(𝑥 ′𝑛+2,𝑤),brSet(𝑥 ′𝑛+2,𝑤).
The result of that derivation has a wild frontier of configuration 𝜌 ′ overseen by𝑤 , as witnessed by

terms 𝑥 ′
1
, . . . , 𝑥 ′𝑛+2.

If 𝜌 ′ is obtained from 𝜌 because (𝑏, 𝑞′,←) ∈ 𝛿 (𝑡 (𝑝), 𝑞), with 𝑞 ≠ 𝑞𝑟 , we consider 𝑥1, . . . , 𝑥𝑛+1,𝑤
as provided by the definition of a wild frontier of configuration 𝜌 .

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



Restricted Chase Termination: You Want More than Fairness 109:21

• we start by applying Rule 𝑅←¬𝑞𝑟 , mapping 𝑥 to 𝑥𝑝 , 𝑦 to 𝑥𝑝−1, 𝑤 to 𝑤 . This produces the

atoms 𝑞′ (𝑥 ′𝑝−1,𝑤), c(𝑥 ′𝑝−1,𝑤), b(𝑥 ′𝑝 ,𝑤), CL (𝑥 ′𝑝−1,𝑤), CR (𝑥 ′𝑝 ,𝑤), R(𝑥 ′𝑝−1, 𝑥 ′𝑝 ,𝑤), F(𝑥𝑝 , 𝑥 ′𝑝 ,𝑤),
F(𝑥𝑝−1, 𝑥 ′𝑝−1,𝑤), brSet(𝑥 ′𝑝 ,𝑤), brSet(𝑥 ′𝑝−1,𝑤);
• we apply Rule 𝑅CL 𝑝 − 2 times. The 𝑖th (for 𝑖 from 1 to 𝑝 − 2) application maps 𝑥 to 𝑥𝑝−𝑖 , 𝑥 ′

to 𝑥 ′𝑝−1, 𝑦 to 𝑥𝑝−𝑖−1, and𝑤,𝑤 ′ to𝑤 . It creates atoms F(𝑥𝑝−𝑖−1, 𝑥 ′𝑝−𝑖−1,𝑤), R(𝑥 ′𝑝−𝑖−1, 𝑥 ′𝑝−𝑖 ,𝑤),
t(p − i − 1) (𝑥 ′𝑝−𝑖−1,𝑤), CL (𝑥𝑝−𝑖−1,𝑤), brSet(𝑥𝑝−𝑖−1,𝑤);
• we apply Rule 𝑅CR 𝑛 − 𝑝 + 1 times. The 𝑖th (for 𝑖 from 1 to 𝑛 − 𝑝 + 1) application maps 𝑥 to

𝑥𝑝−1+𝑖 ,𝑥 ′ to𝑥 ′𝑝−1+𝑖 ,𝑦 to𝑥𝑝+𝑖 , and𝑤,𝑤 ′ to𝑤 . It creates atoms F(𝑥𝑝+𝑖 , 𝑥 ′𝑝+𝑖 ,𝑤), R(𝑥 ′𝑝+𝑖−1, 𝑥 ′𝑝+𝑖 ,𝑤),
t(p − i − 1) (𝑥 ′𝑝+𝑖 ,𝑤), CR (𝑥 ′𝑝+𝑖 ,𝑤), brSet(𝑥 ′𝑝+𝑖 ,𝑤);
• we apply Rule 𝑅End, mapping 𝑥 ′ to 𝑥 ′𝑛+1, 𝑥 to 𝑥𝑛+1, 𝑤 and 𝑤 ′ to 𝑤 . It creates the atoms

R(𝑥 ′𝑛+1, 𝑥 ′𝑛+2,𝑤), B(𝑥 ′𝑛+2,𝑤), End(𝑥 ′𝑛+2,𝑤),brSet(𝑥 ′𝑛+2,𝑤).

The result of that derivation has a wild frontier of configuration 𝜌 ′ overseen by𝑤 , as witnessed by

terms 𝑥 ′
1
, . . . , 𝑥 ′𝑛+2.

If 𝜌 ′ is obtained from 𝜌 because (𝑏, 𝑞′,→) ∈ 𝛿 (𝑡 (𝑝), 𝑞𝑟 ), we consider 𝑥1, . . . ,𝑤𝑛+1 as provided by

the definition of a wild frontier of configuration 𝜌 .

• we start by applying Rule 𝑅→𝑞𝑟 , mapping 𝑥 to 𝑥𝑝 ,𝑦 to 𝑥𝑝+1 and𝑤 to𝑤 . This rule application pro-

duces the atoms q′ (𝑥 ′𝑝+1,𝑤 ′), c(𝑥 ′𝑝+1,𝑤 ′), b(𝑥 ′𝑝 ,𝑤 ′), CL (𝑥 ′𝑝 ,𝑤 ′), CR (𝑥 ′𝑝+1,𝑤 ′), R(𝑥 ′𝑝 , 𝑥 ′𝑝+1,𝑤 ′),
F(𝑥𝑝 , 𝑥 ′𝑝 ,𝑤 ′),F(𝑥𝑝+1, 𝑥 ′𝑝+1,𝑤 ′), brSet(𝑥 ′𝑝 ,𝑤 ′), brSet(𝑥 ′𝑝+1,𝑤 ′);
• we apply Rule 𝑅CL 𝑝 − 1 times. The 𝑖th (for 𝑖 from 1 to 𝑝 − 1) application maps 𝑥 to 𝑥𝑝−𝑖+1, 𝑥 ′ to
𝑥 ′𝑝−𝑖+1, 𝑦 to 𝑥𝑝−𝑖 , 𝑤 to 𝑤 and 𝑤 ′ to 𝑤 ′. It creates atoms F(𝑥𝑝−𝑖 , 𝑥 ′𝑝−𝑖 ,𝑤 ′), R(𝑥 ′𝑝−𝑖 , 𝑥 ′𝑝−𝑖+1,𝑤 ′),
t(p − i) (𝑥 ′𝑝−𝑖 ,𝑤 ′), CL (𝑥 ′𝑝−𝑖 ,𝑤 ′), brSet(𝑥 ′𝑝−𝑖 ,𝑤 ′);
• we apply Rule 𝑅CR 𝑛 − 𝑝 times. The 𝑖th (for 𝑖 from 1 to 𝑛 − 𝑝) application maps 𝑥 to 𝑥𝑝+𝑖 , 𝑥 ′ to
𝑥 ′𝑝+𝑖 , 𝑦 to 𝑥𝑝+𝑖+1,𝑤 to𝑤 and𝑤 ′ to𝑤 ′. It creates atoms F(𝑥𝑝+𝑖+1, 𝑥 ′𝑝+𝑖+1,𝑤 ′), R(𝑥 ′𝑝+𝑖 , 𝑥 ′𝑝+𝑖+1,𝑤 ′),
t(p + i + 1) (𝑥 ′𝑝+𝑖+1,𝑤 ′), CR (𝑥 ′𝑝+𝑖+1,𝑤 ′), brSet(𝑥 ′𝑝+𝑖+1,𝑤 ′)
• we apply Rule 𝑅End, mapping 𝑥 ′ to 𝑥 ′𝑛+1, 𝑥 to 𝑥𝑛+1, 𝑤 to 𝑤 and 𝑤 ′ to 𝑤 ′. It creates atoms

R(𝑥 ′𝑛+1, 𝑥 ′𝑛+2,𝑤 ′), B(𝑥 ′𝑛+2,𝑤 ′), End(𝑥 ′𝑛+2,𝑤 ′),brSet(𝑥 ′𝑛+2,𝑤 ′).

The result of that derivation has a wild frontier of configuration 𝜌 ′ overseen by𝑤 ′, as witnessed
by terms 𝑥 ′

1
, . . . , 𝑥 ′𝑛+2.

If 𝜌 ′ is obtained from 𝜌 because (𝑏, 𝑞′,←) ∈ 𝛿 (𝑡 (𝑝), 𝑞𝑟 ), we consider 𝑥1, . . . , 𝑥𝑛+1,𝑤 as provided

by the definition of a wild frontier of configuration 𝜌 .

• we start by applying Rule 𝑅←𝑞𝑟 , mapping 𝑥 to 𝑥𝑝 , 𝑦 to 𝑥𝑝−1,𝑤 to𝑤 . This rule application pro-

duces the atoms 𝑞′ (𝑥 ′𝑝−1,𝑤 ′), c(𝑥 ′𝑝−1,𝑤 ′), b(𝑥 ′𝑝 ,𝑤 ′), CL (𝑥 ′𝑝−1,𝑤 ′), CR (𝑥 ′𝑝 ,𝑤 ′), R(𝑥 ′𝑝−1, 𝑥 ′𝑝 ,𝑤 ′),
F(𝑥𝑝 , 𝑥 ′𝑝 ,𝑤 ′), F(𝑥𝑝−1, 𝑥 ′𝑝−1,𝑤 ′), brSet(𝑥 ′𝑝 ,𝑤 ′), brSet(𝑥 ′𝑝−1,𝑤 ′);
• we apply Rule𝑅CL 𝑝−2 times. The 𝑖th (for 𝑖 from 1 to 𝑝−2) applicationmaps 𝑥 to 𝑥𝑝−𝑖 , 𝑥 ′ to 𝑥 ′𝑝−1,
𝑦 to 𝑥𝑝−𝑖−1, and𝑤 to𝑤 and𝑤 ′ to𝑤 ′. It creates atoms F(𝑥𝑝−𝑖−1, 𝑥 ′𝑝−𝑖−1,𝑤 ′), R(𝑥 ′𝑝−𝑖−1, 𝑥 ′𝑝−𝑖 ,𝑤 ′),
t(p − i − 1) (𝑥 ′𝑝−𝑖−1,𝑤 ′), CL (𝑥𝑝−𝑖−1,𝑤 ′), brSet(𝑥𝑝−𝑖−1,𝑤 ′);
• we apply Rule 𝑅CR 𝑛 − 𝑝 + 1 times. The 𝑖th (for 𝑖 from 1 to 𝑛 − 𝑝 + 1) application maps 𝑥

to 𝑥𝑝−1+𝑖 , 𝑥 ′ to 𝑥 ′𝑝−1+𝑖 , 𝑦 to 𝑥𝑝+𝑖 , and 𝑤 to 𝑤 and 𝑤 ′ to 𝑤 ′. It creates atoms F(𝑥𝑝+𝑖 , 𝑥 ′𝑝+𝑖 ,𝑤 ′),
R(𝑥 ′𝑝+𝑖−1, 𝑥 ′𝑝+𝑖 ,𝑤 ′), t(p − i − 1) (𝑥 ′𝑝+𝑖 ,𝑤 ′), CR (𝑥 ′𝑝+𝑖 ,𝑤 ′), brSet(𝑥 ′𝑝+𝑖 ,𝑤 ′);
• we apply Rule 𝑅End, mapping 𝑥 ′ to 𝑥 ′𝑛+1, 𝑥 to 𝑥𝑛+1, 𝑤 to 𝑤 and 𝑤 ′ to 𝑤 ′. It creates atoms

R(𝑥 ′𝑛+1, 𝑥 ′𝑛+2,𝑤 ′), B(𝑥 ′𝑛+2,𝑤 ′), End(𝑥 ′𝑛+2,𝑤 ′),brSet(𝑥 ′𝑛+2,𝑤 ′).

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



109:22 David Carral, Lukas Gerlach, Lucas Larroque, and Michaël Thomazo

The result of that derivation has a wild frontier of configuration 𝜌 ′ overseen by𝑤 ′, as witnessed
by terms 𝑥 ′

1
, . . . , 𝑥 ′𝑛+2.

□

A rule is datalog if its head does not contain any existentially quantified variable.

Proposition 42. Let 𝐹0, . . . , 𝐹𝑘 be restricted derivation. Let𝑤∗ ∈ terms(𝐹𝑘 ) \ terms(𝐹0) such that
Real(𝑤∗) ∈ 𝐹𝑘 . Then for any 𝑗 > 𝑘 , the only rules generating 𝑤∗ as a last argument having non-
obsolete triggers on 𝐹 𝑗 are datalog rules.

Proof. We consider a non-datalog rule 𝑅 and 𝜎 a homomorphism of body(𝑅) into 𝐹 𝑗 . We prove

that 𝜎 can be extended in a homomorphism of head(𝑅) into 𝐹 𝑗 , showing that ⟨𝑅, 𝜎⟩ is obsolete.
Note that as Real(𝑤∗) ∈ 𝐹𝑘 , it holds that Rule 𝑅Brake has been applied by mapping𝑤 to𝑤∗.

• Rules 𝑅←¬𝑞𝑟 and 𝑅
→
¬𝑞𝑟 : extend 𝜎 by mapping 𝑥 ′ and 𝑦′ to 𝜎 (𝑤) = 𝑤∗.

• Rules 𝑅←𝑞𝑟 and 𝑅→𝑞𝑟 : extend 𝜎 by mapping 𝑥 ′, 𝑦′,𝑤 ′ to 𝜎 (𝑤) = 𝑤∗

• Rules 𝑅CL , 𝑅CR , and 𝑅End: extend 𝜎 by mapping 𝑦′ to 𝜎 (𝑤 ′) = 𝑤∗.

□

Lemma 19. Let (𝜌𝑖 )𝑖∈N be a run of𝑀 on the empty word that visits 𝑞𝑟 infinitely often. There exists
an infinite restricted chase sequence for ⟨Σ𝑀 , 𝐷𝜀⟩.

Proof. Let (𝑖 𝑗 ) 𝑗∈N be the infinite strictly increasing sequence of integers such that 𝑖1 = 1 and 𝜌𝑘
is in 𝑞𝑟 if and only if 𝑘 = 𝑖 𝑗 for some 𝑗 . We denote by D𝜌𝑖 𝑗→𝜌𝑖 𝑗+1

the concatenation of the restricted

derivations provided by Proposition 18. Let us consider the derivation build by induction:

• D1 = D𝜌𝑖
1
→𝜌𝑖

2

• D′
1
extendsD1 by the application of Rule 𝑅Brake mapping𝑤 to the brake overseeing the wild

frontier of the last element of D1, as well as by applying any datalog rule mapping𝑤 to that

brake.

• D 𝑗 extends D′𝑗−1 by the derivation D𝜌𝑖 𝑗→𝜌𝑖 𝑗+1
;

• D′𝑗 extends D 𝑗 by the application of Rule 𝑅Brake mapping 𝑤 to the brake overseeing the

wild frontier of the last element of D 𝑗 , and by applying Rule 𝑅nextBr in any possible way

that maps𝑤 to the brake overseeing the wild frontier of the last element of D 𝑗 , as well by

applying any datalog rule mapping𝑤 to that brake.

This derivation is fair:

• any created atom has a brake as argument;

• brakes are created exactly once in each derivation D𝜌𝑖 𝑗→𝜌𝑖 𝑗+1
(by definition of (𝑖 𝑗 ) 𝑗∈N); let us

call𝑤1 the brake appearing in 𝐷𝜀 , and𝑤 𝑗+1 the brake crated in D𝜌𝑖 𝑗→𝜌𝑖 𝑗+1
;

• by Proposition 42, the application of Rule 𝑅Brake mapping𝑤 to𝑤 𝑗 deactivates any trigger of

a non-datalog rule mapping creating an atom with𝑤 𝑗 as a last argument;

• by definition of D′𝑗 , all datalog rules creating an atom with𝑤 𝑗 as last argument are applied.

□

Lemma 43. Let 𝐹 be the result of an infinite restricted chase sequence 𝐹0, 𝐹1, . . . from ⟨Σ𝑀 , 𝐷⟩ for
some 𝐷 . For any𝑤 such that Brake(𝑤) ∈ 𝐹 , there are finitely many atoms having𝑤 as last argument
in 𝐹 . There is thus an infinite amount of brakes in 𝐹 .

Proof. Consider a term 𝑤 such that Brake(𝑤) ∈ 𝐹 , which we call a brake. By fairness and

Rule 𝑅Brake, there must be some integer 𝑖 such that Real(𝑤) ∈ 𝐹𝑖 . At this step, there is a finite

number of atoms with𝑤 as last argument, and by Proposition 42, the only rules that can generate

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



Restricted Chase Termination: You Want More than Fairness 109:23

such atoms after step 𝑖 are datalog. Rule 𝑅Brake only generates atoms over𝑤 , so it is applicable at

most one, and will yield at most 6 new atoms. Thus, the only rule left is Rule 𝑅nextBr.

Only two rules create new Brake-atoms that do not already appear in their bodies, which are

Rules 𝑅→𝑞𝑟 and 𝑅←𝑞𝑟 . Both these rules also generate an atom of the form nextBr(𝑤,𝑤 ′), where
Brake(𝑤) is the brake in their body, and Brake(𝑤 ′) is the newly created brake. As this is the only

way to generate nextBr-atoms, the predicate nextBr defines a forest relationship over the brakes,

where the root of each tree is a term𝑤0 such that Brake(𝑤0) ∈ 𝐷 . There is thus a finite number of

trees. We then show that Rule 𝑅nextBr can only create a finite number of atoms by induction on

this forest structure.

• If Brake(𝑤) ∈ 𝐷 , then all the atoms of the form nextBr(𝑤 ′,𝑤) are in 𝐷 , so 𝑤 ′ is in 𝐷

too. Thus, Rule 𝑅nextBr can only create sets of atoms of the form brSet(𝑥,𝑤 ′), where 𝑥 is a

database term. As there is a finite amount of database terms, this yields a finite number of

atoms.

• If Brake(𝑤 ′) ∈ 𝐹 \ 𝐷 , nextBr(𝑤,𝑤 ′) ∈ 𝐹 and there is a finite number of atoms having𝑤 as

last argument, then first notice that𝑤 is the only term such that nextBr(𝑤,𝑤 ′) ∈ 𝐹 , since
Rules 𝑅→𝑞𝑟 and 𝑅←𝑞𝑟 both generate nextBr-atoms featuring an existential variable in second

position. Then, as there is a finite amount of atoms featuring𝑤 as their last argument, there

is a finite amount of terms 𝑥 such that brSet(𝑥,𝑤) ⊆ 𝐹 . Thus, Rule 𝑅nextBr generates at most

brSet(𝑥,𝑤 ′) for all these terms, which represents a finite number of atoms.

Thus, there is a finite number of atoms that feature a given brake as their last argument. As 𝐹0, 𝐹1, . . .

is infinite, 𝐹 must have an infinite amount of atoms, that were generated during the chase. Since

Brake(𝑤) is required in the body of all the rules where𝑤 appears as the last argument of an atom,

there is thus an infinite amount of brakes in 𝐹 . □

Lemma 21. For all databases 𝐷 , and all infinite chase sequences from ⟨Σ𝑀 , 𝐷⟩ with result 𝐹 , there is
an infinite sequence (𝐴𝑛)𝑛∈N of state atoms of 𝐹 such that:

• 𝐴0 ∈ 𝐷 ;
• 𝐴𝑛 ≺ 𝐴𝑛+1 for all 𝑛 ∈ N;
• for infinitely many 𝑖 ∈ N, 𝐴𝑖 is of the shape q𝑟 (𝑡𝑖 ,𝑤𝑖 ).

Proof. Since the rules that introduce state atoms (Rules 𝑅←𝑞𝑟 , 𝑅
→
𝑞𝑟
, 𝑅←¬𝑞𝑟 and 𝑅

→
¬𝑞𝑟 ) feature a state

atom in their body, ≺ defines a forest structure over state atoms, where the root of each tree is an

atom of the database. There is thus a finite amount of trees (as there is a finite amount of atoms in

the database). By Lemma 43, there is an infinite amount of brakes in 𝐹 . Then, since the rules that

introduce new brakes (Rules 𝑅→𝑞𝑟 and 𝑅←𝑞𝑟 ) introduce a state atom too, there is an infinite number

of state atoms. Thus, one of the trees must be infinite. In addition, since there is a finite amount

of atoms that feature a given brake as last argument, and each state atom features a brake as last

argument, each state atom only has a finite number of successors for ≺. Indeed, infinitely many

successors would require infinitely many rule applications, and thus infinitely many atoms featuring

the same last argument as the state atom. We thus have an infinite tree with finite branching. It thus

features an infinite branch, which must contain infinitely many q𝑟 -atoms (as there are infinitely

many q𝑟 -atoms), by König’s lemma. □

To each state atom, we associate both a set of atoms and a configuration.

Definition 44 (Atoms associated with a state atom). Let 𝐹𝑘 be a fact set occuring in a chase derivation
from 𝐷𝜌 . The atoms associated with a state atom q(𝑥,𝑤) in 𝐹𝑘 is the largest subset of 𝐹𝑘 whose terms
are included in {𝑥,𝑤} ∪ 𝑋𝑖 and such that:

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



109:24 David Carral, Lukas Gerlach, Lucas Larroque, and Michaël Thomazo

• 𝑋𝑖 is the set of terms reachable or co-reachable through an 𝑅-path from 𝑥 not going through a
brake;
• 𝑤 can only appear in the last position of atoms.

Definition 45 (Configuration of a state atom). Let 𝐹𝑘 appearing in a restricted chase sequence for
⟨Σ, 𝐷𝜌⟩. The configuration associated with a state atom q(𝑥,𝑤), written conf(q(𝑥,𝑤)), is defined by
induction:
• if q(𝑥,𝑤) ∈ 𝐷𝜌 , conf(q(𝑥,𝑤)) = 𝜌

• otherwise, let 𝐴 be the unique state atom such that 𝐴 ≺ q(𝑥,𝑤). Let (𝑞′𝑏, 𝑑) be the element
of 𝛿 (𝑞, 𝑎) due to which the rule whose application generated q(𝑤, 𝑥) belongs to Σ𝑀 . We define
conf(q(𝑥,𝑤)) as the configuration obtained from conf(𝐴) where the content of the head cell of
conf(𝐴) is replaced by 𝑏, the head moves by 𝑑 and switches to state 𝑞′.

Note that the above definition implies that if 𝐴𝑝 is the parent of 𝐴, then conf(𝐴) is reachable in
one transition of𝑀 from conf(𝐴𝑝 ). Intuitively, the configuration of a state atom is encoded by the

atoms associated with it. However, the restricted derivation may not have derived all such atoms,

hence we consider a weaker notion, that we coin consistency.

Definition 46 (Consistency). A set of atoms 𝐴 associated with a state atom is consistent with the
configuration ⟨𝑛, 𝑡, 𝑝, 𝑞⟩ if:
• there exists 𝑥 and𝑤 such that q(𝑥,𝑤) is the only state atom in 𝐴, and conf(𝑥) is in state 𝑞;
• a(𝑥,𝑤) is the only letter predicate having 𝑥 as argument in 𝐴, and 𝑡 (𝑝) = 𝑎;
• if there is an 𝑅 path of length 𝑖 from 𝑥 to 𝑥 ′, and there is an atom a(𝑥 ′, 𝑥 ′′), then 𝑥 ′′ = 𝑤 ,
𝑝 + 𝑖 ≤ 𝑛 + 1 and 𝑡 (𝑝 + 𝑖) = 𝑎;
• there exists at most one atom End(𝑥 ′, 𝑥 ′′) in 𝐴, and if it exists then 𝑥 ′′ = 𝑤 and there is an
𝑅-path from 𝑥 to 𝑥 ′ of length 𝑖 , such that 𝑝 + 𝑖 = 𝑛 + 1;
• if there is an 𝑅 path of length 𝑖 from 𝑥 ′ to 𝑥 , and there is an atom a(𝑥 ′, 𝑥 ′′), then 𝑥 ′′ = 𝑤 ,
𝑝 − 𝑖 ≥ 1 and 𝑡 (𝑝 − 𝑖) = 𝑎.

As expected, the set of atoms associated wtih a state atom is consistent with its configuration,

and this allows us to prove Lemma 22.

Proposition 47. Let 𝐹𝑘 appearing in a restricted chase sequence for ⟨Σ, 𝐷𝜌⟩. For any state atom 𝐴 of
𝐹𝑘 , the set of atoms associated with 𝐴 is consistent with conf(𝐴).

Proof. We prove the result by induction. If 𝐴 is a state atom that does not have any parent,

then 𝐴 ∈ 𝐹0 = 𝐷𝜌 . The set of atoms associated with 𝐴 is 𝐷𝜌 , which is consistent with the initial

configuration of𝑀 on 𝜌 by definition, which is configuration of 𝐴;

Otherwise, let 𝐴 = 𝑞′ (𝑦′,𝑤) be a state atom of 𝐹𝑘 . We prove the result assuming that 𝐴 has been

created by the application of Rule 𝑅←¬𝑞𝑟 , mapping 𝑥 to 𝑥𝑝 ,𝑤 to𝑤 and 𝑦 to 𝑦𝑝 . 𝐴𝑝 , the parent of 𝐴, is

thus of the shape 𝑞(𝑥𝑝 ,𝑤) (other possible case would be 𝐴 being created by Rules 𝑅→¬𝑞𝑟 , 𝑅
←
𝑞𝑟

or 𝑅→𝑞𝑟 ,
which are treated similarly). It is easy to check that any term reachable from 𝑦′ by an 𝑅-path not

going through a brake is either created by the same rule application as 𝑦′, or has been created by

an application of Rule 𝑅CR mapping 𝑥 ′ to a term reachble by an 𝑅-path from 𝑦′ (and similarly for

terms co-reachable and Rule 𝑅CL ). Then:

• if there exists 𝑦′−1 such that R(𝑦′−1, 𝑦′,𝑤) ∈ 𝐹𝑘 , then 𝑦′−1 has been created by the application of

Rule 𝑅CL , in which case a(𝑦′−1,𝑤) is generated if the cell two positions on the left of the head

of conf(𝐴𝑝 ) contains an 𝑎, that is, if the cell one position on the left of the head of conf(𝐴)
contains an 𝑎; predecessors of 𝑦′ further away from 𝑦′ are treated by induction in a similar

way.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



Restricted Chase Termination: You Want More than Fairness 109:25

• there exists a 𝑦′+1 such that R(𝑦′, 𝑦′+1,𝑤) ∈ 𝐹𝑘 , as such an element is created by the application

of Rule 𝑅←¬𝑞𝑟 . The same application create the atom b(𝑦′+1,𝑤), which is consistent with the

fact that conf(𝐴𝑝 ) contains a 𝑏 in the first cell at the right of the head; cells further to the

right are treated similarly to cells to the left, which are necessarily created by Rule 𝑅CR .

• the only way to derive an atom of the shape End(𝑥 ′, 𝑥 ′′) is to apply Rule 𝑅End, which can

only be done after 𝑛 − 𝑝 rule applications of Rule 𝑅CR , yielding a path of length 𝑛 − 𝑝 + 2
from position 𝑝 − 1 of the current configuration, which fulfills the condition of Definition 46

(remember that the length of conf(𝐴) is incremented by 1 with respect to the length of

conf(𝐴𝑝 )).
□

Lemma 22. For every configuration 𝜌 , if the restricted chase does not terminate on ⟨Σ𝑀 , 𝐷𝜌⟩ then
there exists a run of𝑀 on 𝜌 which visits 𝑞𝑟 infinitely many times.

Proof. We consider the sequence of states atoms (𝐴𝑛)𝑛∈N provided by Lemma 21, and the

sequence (conf(𝐴𝑛))𝑛∈N.
• conf(𝐴0) is the starting configuration of𝑀 on 𝜀, and thus a run of𝑀 on that configuration;

• if (𝐴𝑛)𝑛∈N is not a run, there exists a smallest 𝑗 ∈ N such that (conf(𝐴𝑛))1≤𝑛≤ 𝑗 is not a run.
conf(𝐴 𝑗−1) is consistent with the set of atoms associated with 𝐴 𝑗−1 by Proposition 47. Hence

conf(𝐴 𝑗 ) is obtained by applying the transition correponding to the rule creating 𝐴 𝑗 , and

thus (conf(𝐴𝑛))1≤𝑛≤ 𝑗 is a run, which leads to a contradiction.

□

C Proofs for Section 5 (Rule set termination)
The following lemmas are used in later proofs of the section.

Lemma 48. For all databases 𝐷 , and every 𝐹 result of a chase sequence for ⟨Σ𝑀 , 𝐷⟩, if the atoms
F(𝑥, 𝑧,𝑤) and F(𝑦, 𝑧,𝑤) are both in 𝐹 and 𝑧 is a null, then 𝑥 = 𝑦.

Proof. This result follows from the fact that whenever an F-atom appears in the head of a rule,

it contains an existentially quantified variable in second position, and no two F-atoms contain this

variable in second position. Thus, if 𝑧 is a null and 𝑥 and 𝑦 are different, the atoms F(𝑥, 𝑧,𝑤) and
F(𝑦, 𝑧,𝑤) must have been generated by two rule applications, which both introduce 𝑧, which is

impossible. □

Lemma 49. For all databases 𝐷 , and every 𝐹 result of a chase sequence for ⟨Σ𝑀 , 𝐷⟩, for each null 𝑦
in semterms(𝐹 \ 𝐷), there are a unique𝑤 and a unique 𝑎 ∈ Γ ∪ {B} such that a(𝑦,𝑤) ∈ 𝐹 .
Proof. Whenever there is an existentially quantified variable 𝑥 in the head of a rule in Σ𝑀 \
{𝑅Brake}, it appears in a unique atom of the form a(𝑥,𝑤) in the same head. In addition, all the

atoms of the same form in heads of rules feature an existentially quantified variable in first position

(except for 𝑅Brake, which feature a brake). Thus, when the null 𝑦 is introduced in the chase, there is

a unique atom a(𝑦,𝑤) introduced along with it (hence implying existence), and no other rule can

introduce an atom of the same form (hence implying uniqueness). □

Lemma 28. For all database 𝐷 , and every 𝐹 result of a chase sequence for ⟨Σ𝑀 , 𝐷⟩, the graph
bowtie(𝐴) is a finite bow tie for all state atoms 𝐴 ∈ 𝐹 \ 𝐷 . In addition:
• The center of the bow tie is the atom generated along with 𝐴, by rule 𝑅←¬𝑞𝑟 , 𝑅

→
¬𝑞𝑟 , 𝑅

←
𝑞𝑟

or 𝑅→𝑞𝑟 ;
• all the atoms in the left part of the bow tie are generated by rule 𝑅CL ;
• all the atoms in the right part of the bow tie are generated by rule 𝑅CR , except possibly the end of
a maximal path, which may have been generated by rule 𝑅End.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



109:26 David Carral, Lukas Gerlach, Lucas Larroque, and Michaël Thomazo

Proof. First, notice that all the rules that generate R-atoms (over non-brake terms) generate

R-atoms containing at least one existentially quantified variable. Three cases occur:

• Rules𝑅←¬𝑞𝑟 ,𝑅
→
¬𝑞𝑟 ,𝑅

←
𝑞𝑟

and𝑅→𝑞𝑟 generate an R-atom R(𝑢, 𝑣,𝑤) where𝑢 and 𝑣 are both existentially

quantified.

• Rule 𝑅CL generates an R-atom R(𝑢, 𝑣,𝑤) where 𝑢 is existentially quantified and 𝑣 is a frontier

variable.

• Rules 𝑅CR and 𝑅End generate an R-atom R(𝑢, 𝑣,𝑤) where 𝑢 is a frontier variable and 𝑣 is

existentially quantified.

Thus, no connected component can contain two R-atoms that are generated using a rule among

rules 𝑅←¬𝑞𝑟 , 𝑅
→
¬𝑞𝑟 , 𝑅

←
𝑞𝑟

and 𝑅→𝑞𝑟 . Indeed, these rules create a new connected component, and to connect

two connected components, we need a rule generating an R-atom R(𝑢, 𝑣,𝑤) where 𝑢 and 𝑣 are both

frontier variables, which is not the case with this rule set. This also implies that (bowtie(𝐴), 𝐸𝑅) is
acyclic, even when seen as an undirected graph, for the same reason.

Thus, since 𝐴 = q(𝑥,𝑤) is generated by a rule among 𝑅←¬𝑞𝑟 , 𝑅
→
¬𝑞𝑟 , 𝑅

←
𝑞𝑟

and 𝑅→𝑞𝑟 along with an

R-atom, all the other atoms in the connected component of 𝑥 must have been generated by 𝑅CL , 𝑅CR
or 𝑅End. We assume here that 𝐴 was generated by rule 𝑅←¬𝑞𝑟 or 𝑅

←
𝑞𝑟
, as the other cases are symmetric.

Then, 𝐴 is generated along the atom R(𝑥,𝑦,𝑤), which will be the center of our bow tie, and atoms

CL (𝑥,𝑤) and CR (𝑦,𝑤).
We then consider the sets bowtie(𝐴)−𝑦𝑥 and bowtie(𝐴)−𝑥𝑦 as defined in Definition 27. First, as

mentioned before, the undirected graph induced by (bowtie(𝐴), 𝐸𝑅) is acyclic and connected, so

these sets form a partition of bowtie(𝐴). Thus, it only remains to show that the subgraphs induced

by bowtie(𝐴)−𝑦𝑥 on (bowtie(𝐴), 𝐸−
𝑅
) and by bowtie(𝐴)−𝑥𝑦 on (bowtie(𝐴), 𝐸𝑅) are trees. Again, since

both proofs are similar, we only prove it for the second graph.

A directed tree is an acyclic and connected graph such that each vertex has in-degree at most

one. Since (bowtie(𝐴), 𝐸𝑅) is acyclic, the subgraph induced by bowtie(𝐴)−𝑥𝑦 is acyclic too, and

as it is a connected component, it is connected. Thus, it only remains to show that each term in

bowtie(𝐴)−𝑥𝑦 has an in-degree of at most one. Our previous analysis of the rules entails that only a

term 𝑡 such that CL (𝑡,𝑤) ∈ 𝐹 can have an in-degree greater than one. Indeed, the only rule that can

increase the in-degree of an existing element is rule 𝑅CL , which requires this atom in its body. We

thus show that there is no 𝑡 in bowtie(𝐴)−𝑥𝑦 such that CL (𝑡,𝑤) ∈ 𝐹 .
Only two kinds of rules can generate CL-atoms (over non-brakes), which are transition rules (𝑅←¬𝑞𝑟 ,

𝑅→¬𝑞𝑟 , 𝑅
←
𝑞𝑟

and 𝑅→𝑞𝑟 ), and the rule 𝑅CL . All these rules generate atoms of the form CL (𝑢,𝑤) where 𝑢 is

existentially quantified. As stated before, in bowtie(𝐴), only the atom R(𝑥,𝑦,𝑤) has been generated

using a transition rule, and every other R-atom has been generated using 𝑅CL or 𝑅CR . Now, for a

contradiction, assume that 𝑡 is the first term of bowtie(𝐴)−𝑥𝑦 introduced during the chase such that

CL (𝑡,𝑤) ∈ 𝐹 . Since the trigger generating R(𝑥,𝑦,𝑤) only generates CL (𝑥,𝑤), and 𝑥 ∉ bowtie(𝐴)−𝑥𝑦 ,

the term 𝑡 has been generated by rule 𝑅CL . This means that there is a term 𝑢 ∈ bowtie(𝐴)−𝑥𝑦 such

that CL (𝑢,𝑤) ∈ 𝐹 before CL (𝑡,𝑤) is introduced, which contradicts our hypothesis. Note that 𝑢 does

have to be in bowtie(𝐴)−𝑥𝑦 , since otherwise, 𝑡 ∉ bowtie(𝐴)−𝑥𝑦 , as no rule can connect two disjoint

connected components.

Thus, there is no CL-atom over a term in bowtie(𝐴)−𝑥𝑦 , meaning that (bowtie(𝐴)−𝑥𝑦 , 𝐸𝑅) is a tree.
As mentioned before, an analog line of reasoning can be used to show that (bowtie(𝐴)−𝑦𝑥 , 𝐸−

𝑅
)

is also a tree, so bowtie(𝐴) is indeed a bow tie. Note also that since no CL-atom over a term in

bowtie(𝐴)−𝑥𝑦 , all the R-atoms of the right part of the bow tie must have been generated by rule 𝑅CR
or 𝑅End. However, rule 𝑅End generates a new null 𝑦 such that CR (𝑦,𝑤) ∉ 𝐹 (by the same description

as previously), and both rules 𝑅CR and 𝑅End require an atom of this form to extend a path. Thus, if

an R-atom is generated using rule 𝑅End, it is necessarily the end of a maximal path.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



Restricted Chase Termination: You Want More than Fairness 109:27

It remains to show that bowtie(𝐴) is finite: if 𝐹 is finite, then so is 𝐴 and therefore bowtie(𝐴).
Otherwise, note that all atoms in bowtie(𝐴) are associated with the same brake 𝑤 . Then, by

Lemma 43, bowtie(𝐴) must be finite. □

Recall that A = (𝐴𝑛) is the sequence of state atoms provided by Lemma 21.

Lemma 30. For all 𝑛 > 0, configs(𝐴𝑛) is finite, non-empty, and each of its elements homomorphically
embeds into 𝐷𝜌 for some configuration 𝜌 . Also, there is an injective function pred𝑛 from configs(𝐴𝑛+1)
to configs(𝐴𝑛) such that 𝑆 ∈ configs(𝐴𝑛+1) can be generated using only atoms in pred𝑛 (𝑆).

Proof. Non-emptiness and finiteness. Non-emptiness and finiteness of configs(𝐴𝑛) follow
from Lemma 28, since a finite bow tie has a finite non-zero amount of maximal paths.

The elements of configs(𝐴𝑛) embed into some𝐷𝜌 .We then consider an element 𝑆 of configs(𝐴𝑛),
and (𝑥1, . . . , 𝑥𝑛) the path associated with it. Also, let 𝐴𝑛 = 𝑞(𝑥,𝑤). First, since (𝑥1, . . . , 𝑥𝑛) is a path
in (bowtie(𝐴𝑛), 𝐸𝑅), for all 𝑖 , the atom R(𝑥𝑖 , 𝑥𝑖+1,𝑤) is in 𝑆 for all 𝑖 , and these are all the R-atoms

in 𝑆 by Lemma 28. Then, by Lemma 49, there is a unique atom ai (𝑥𝑖 ,𝑤) for all 𝑖 ≤ 𝑛. In addition,

since all the maximal paths in a bow tie go through its center, there is some 𝑝 such that 𝑥𝑝 = 𝑥 . We

thus define the configuration 𝜌 = ⟨𝑛, (𝑎𝑖 )𝑖≤𝑛, 𝑝, 𝑞⟩.
By mapping 𝑥𝑖 to 𝑐𝑖 for all 𝑖 , and𝑤 to𝑤1, we get that 𝑆 and 𝐷𝜌 are isomorphic, except for the

End-atoms. However, as per the last item of Lemma 28, the only position that can have End(𝑥𝑖 ,𝑤)
is the end of a maximal path (since this kind of atoms can only be generated by rule 𝑅End over

non-brakes). Thus, the only possible End-atom in 𝑆 is End(𝑥𝑛,𝑤), which has a counterpart in 𝐷𝜌 .

Thus, 𝑆 homomorphically embeds into 𝐷𝜌 .

Construction of pred𝑛 . We then construct the function pred𝑛 . Let 𝐴𝑛 = q(𝑥,𝑤) and 𝐴𝑛+1 =

q′ (𝑦,𝑤 ′). First notice that the rule that generates 𝐴𝑛+1 in the chase is among 𝑅←¬𝑞𝑟 , 𝑅
→
¬𝑞𝑟 , 𝑅

←
𝑞𝑟

and

𝑅→𝑞𝑟 . Then, there are some atoms F(𝑥, 𝑧,𝑤 ′), and R(𝑧,𝑦,𝑤 ′) or R(𝑦, 𝑧,𝑤 ′) depending on the direction

of the transition. We then assume that the transition is to the right, as the left case is analogous.

Consider a set 𝑆 ∈ configs(𝐴𝑛+1), (𝑦1, . . . , 𝑦𝑘 ) the associated path, and 𝜌 ′ = ⟨𝑘, (𝑏1, . . . , 𝑏𝑘 ), 𝑝′, 𝑞′⟩
the associated configuration, as defined earlier in the proof. Then, let pred𝑛 (𝑆) be one of the sets
in configs(𝐴𝑛) with associated path (𝑥1, . . . , 𝑥𝑚) and configuration 𝜌 = ⟨𝑚, (𝑎1, . . . , 𝑎𝑚), 𝑝, 𝑞⟩ such
that there is an integer 𝑙 such that

• for all 𝑖 < 𝑘 , we have F(𝑥𝑖+𝑙 , 𝑦𝑖 ,𝑤 ′) ∈ 𝐹 ;
• if End(𝑥𝑘 ,𝑤 ′) ∈ 𝑆 , then End(𝑦𝑘+𝑙−1) ∈ 𝐹 , and otherwise F(𝑥𝑘+𝑙 , 𝑦𝑘 ,𝑤 ′) ∈ 𝐹 ;
• for all 𝑖 ≠ 𝑝′ − 1, 𝑏𝑖 = 𝑎𝑖+𝑙 ;
• 𝑝′ + 𝑙 = 𝑝 + 1.

The function pred𝑛 is well-defined. By definition of 𝑆 and its associated path and configuration,

there must be some atoms R(𝑦𝑖 , 𝑦𝑖+1,𝑤 ′) and bi (𝑦𝑖 ,𝑤 ′) for all 𝑖 , with 𝑦 = 𝑦𝑝′ . By Lemma 28,

R(𝑦𝑝′−1, 𝑦𝑝′ ) has been generated by rule 𝑅→¬𝑞𝑟 or 𝑅
→
𝑞𝑟

along with 𝐴𝑛+1, and R(𝑥𝑘−1, 𝑥𝑘 ) may have

been generated by rule 𝑅End or 𝑅CR . Other than that, all the R-atoms in the path 𝑦1, . . . , 𝑦𝑘 have been

generated by rules 𝑅CL and 𝑅CR . We then show that there is a path 𝑥 ′
1
, . . . , 𝑥 ′

𝑘 ′ such that for all 𝑖 < 𝑘 ,

F(𝑥 ′𝑖 , 𝑦𝑖 ,𝑤) ∈ 𝐹 , for all 𝑖 ≠ 𝑝′ − 1, bi (𝑥 ′𝑖 ,𝑤) ∈ 𝐹 , and either End(𝑥 ′
𝑘−1,𝑤) ∈ 𝐹 (and 𝑘 ′ = 𝑘 − 1) or

F(𝑥 ′
𝑘
, 𝑦𝑘 ,𝑤) ∈ 𝐹 (and 𝑘 ′ = 𝑘), depending on whether End(𝑦𝑘 ,𝑤) ∈ 𝑆 or not.

First, since the atom𝐴𝑛+1 has been generated by rule 𝑅→¬𝑞𝑟 or 𝑅
→
𝑞𝑟
, there must be a term 𝑧 and some

atoms R(𝑥, 𝑧,𝑤), R(𝑦𝑝′−1, 𝑦,𝑤), F(𝑥,𝑦𝑝′−1,𝑤) and F(𝑧,𝑦,𝑤) in 𝐹 . Thus, let 𝑥 ′
𝑝′−1 = 𝑥 and 𝑥 ′

𝑝′ = 𝑧.

We will then extend this path in both directions to construct 𝑥 ′
1
, . . . , 𝑥 ′

𝑘 ′ .

If the path has been extended up to 𝑥 ′
𝑝′+𝑖 for some 𝑖 < 𝑘 − 1 − 𝑝′, we then extend it to 𝑥 ′

𝑝′+𝑖+1.

As mentioned before, the atom R(𝑦𝑝′+𝑖 , 𝑦𝑝′+𝑖+1,𝑤) has been generated by rule 𝑅CR (since 𝑝
′ + 𝑖 < 𝑘).

Thus, there must be some terms 𝑧, 𝑡 and atoms R(𝑧, 𝑡,𝑤), F(𝑧,𝑦𝑝′+𝑖 ,𝑤), F(𝑡, 𝑦𝑝′+𝑖+1,𝑤) and bi (𝑡,𝑤)
in 𝐹 . By Lemma 48, we then have 𝑧 = 𝑥 ′

𝑝′+𝑖 , since both F(𝑧,𝑦𝑝′+𝑖 ,𝑤) and F(𝑥 ′𝑝′+𝑖 , 𝑦𝑝′+𝑖 ,𝑤) are present

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



109:28 David Carral, Lukas Gerlach, Lucas Larroque, and Michaël Thomazo

in 𝐹 . We thus set 𝑡 = 𝑥 ′
𝑝′+𝑖+1. The same reasoning lets us extend the path to 𝑥 ′

𝑝′−𝑖−1 provided we

have extended it to 𝑥 ′
𝑝′−𝑖 , using the left copy rule instead of the right copy.

We now treat the case where 𝑖 = 𝑘 − 1 − 𝑝 . If End(𝑦𝑘 ,𝑤) ∉ 𝑆 , then R(𝑦𝑘−1, 𝑦𝑘 ,𝑤) has been
generated by rule 𝑅CR , so the same reasoning as before applies, and 𝑘 ′ = 𝑘 . Otherwise, R(𝑦𝑘−1, 𝑦𝑘 ,𝑤)
ha been introduced by rule 𝑅End, meaning that there are some term 𝑧 and atoms End(𝑧,𝑤) and
F(𝑧,𝑦𝑘−1) in 𝐹 . Thus, since both F(𝑧,𝑦𝑘−1) and F(𝑥 ′

𝑘−1, 𝑦𝑘−1) are in 𝐹 , by Lemma 48, 𝑧 = 𝑦𝑘−1, and
we have the atom End(𝑦𝑘−1,𝑤) in 𝐹 as promised, and 𝑘 ′ = 𝑘 − 1.

We thus have a path 𝑥 ′
1
, . . . , 𝑥 ′

𝑘
in bowtie(𝐴𝑛) as described before. However, this path does

not define an element of configs(𝐴𝑛), since it is not maximal. Thus, consider any maximal path

𝑥1, . . . , 𝑥𝑚 in bowtie(𝐴𝑛) that extends 𝑥 ′1, . . . , 𝑥 ′𝑘 , pred𝑛 (𝑆) the corresponding set in configs(𝐴𝑛),
⟨𝑚, (𝑎1, . . . , 𝑎𝑚), 𝑝, 𝑞⟩ the corresponding configuration, and let 𝑙 be the integer such that 𝑥𝑙+1 = 𝑥 ′

1
.

Then, by definition of (𝑥 ′
1
, . . . , 𝑥 ′

𝑘 ′ ), the first two points of the definition of pred𝑛 (𝑆) hold. Then,
since 𝐴𝑛 = q(𝑥 ′

𝑝′−1,𝑤), and 𝑥 ′𝑝′−1 = 𝑥𝑝′−1+𝑙 , we have 𝑝 = 𝑝′ − 1 + 𝑙 , so 𝑝 + 1 = 𝑝′ + 𝑙 . In addition,

since for all 𝑖 ≠ 𝑝′ − 1, bi (𝑥𝑖+𝑙 ,𝑤) ∈ 𝐹 , we have 𝑎𝑖+𝑙 = 𝑏𝑖 . Thus, there is indeed a set in configs(𝐴𝑛)
that fits the definition of pred𝑛 (𝑆). Note however that this path is not necessarily unique, but we

only need an injective function, so this is fine.

The set pred𝑛 (𝑆) is enough to generate 𝑆 . First note that all the rule applications described

earlier suffice to generate 𝑆 . It is then enough to notice that all the atoms in the support of the

mentioned triggers are present in pred𝑛 (𝑆), or generated during the application of the previous

triggers.

Injectivity of pred𝑛 .
Consider two sets 𝑆1 with associated path (𝑦1, . . . , 𝑦𝑘1 ) and configuration ⟨𝑘1, (𝑏1, . . . , 𝑏𝑘1 ), 𝑝1, 𝑞′⟩,

and 𝑆2 with associated path (𝑦′
1
, . . . , 𝑦′

𝑘2
) and configuration ⟨𝑘2, (𝑏′1, . . . , 𝑏′𝑘2 ), 𝑝2, 𝑞

′⟩, such that

pred𝑛 (𝑆1) = pred𝑛 (𝑆2) = 𝑆 ′, and 𝑆 ′ has path (𝑥1, . . . , 𝑥𝑚) and configuration ⟨𝑚, (𝑎1, . . . , 𝑎𝑚), 𝑝, 𝑞⟩.
Thus, there must be some 𝑙1 and 𝑙2 such that:

• for all 𝑖 , F(𝑥𝑖+𝑙1 , 𝑦𝑖 ,𝑤 ′) ∈ 𝐹 and F(𝑥𝑖+𝑙2 , 𝑦′𝑖 ,𝑤 ′) ∈ 𝐹 ;
• for all 𝑖 ≠ 𝑝1 − 1, 𝑏𝑖 = 𝑎𝑖+𝑙1 and for all 𝑖 ≠ 𝑝2 − 1, 𝑏′𝑖 = 𝑎𝑖+𝑙2 ;
• 𝑝1 + 𝑙1 = 𝑝 + 1 = 𝑝2 + 𝑙2.

Assume w.l.o.g. that 𝑙1 ≥ 𝑙2, and let 𝑑 = 𝑙1 − 𝑙2. We then get that 𝑝2 = 𝑝1 + 𝑑 , and 𝑏𝑖 = 𝑎𝑖+𝑙1 =

𝑎𝑖+𝑑+𝑙2 = 𝑏′
𝑖+𝑑 , for all 𝑖 ≠ 𝑝1. We then show that for all 𝑖 such that 1 ≤ 𝑖 ≤ 𝑘1 and 1 ≤ 𝑖 + 𝑑 ≤ 𝑘2,

we have 𝑦𝑖 = 𝑦′
𝑖+𝑑 . First, this is true for 𝑖 = 𝑝1, since 𝑦𝑝1 = 𝑦 = 𝑦′𝑝2 (where 𝐴𝑛+1 = q′ (𝑦,𝑤 ′)) and

𝑝2 = 𝑝1 + 𝑑 . This is also true for 𝑖 = 𝑝1 − 1, since by definition of a bow tie and Lemma 28, there is

only one term 𝑡 such that R(𝑡, 𝑦𝑝1 ,𝑤 ′) ∈ 𝐹 . We then extend this to all 𝑖 by induction.

Assume that 1 ≤ 𝑖 + 1 ≤ 𝑘1 and 1 ≤ 𝑖 + 1 + 𝑑 ≤ 𝑘2, and that 𝑦𝑖 = 𝑦′
𝑖+𝑑 for some 𝑖 ≥ 𝑝1

(the case where 𝑖 ≤ 𝑝1 − 1 is similar, using 𝑅CL instead of 𝑅CR ). We then show that 𝑦𝑖+1 = 𝑦′
𝑖+1+𝑑 .

Both the atoms R(𝑦𝑖 , 𝑦𝑖+1,𝑤 ′) and R(𝑦𝑖 , 𝑦′𝑖+1+𝑑 ,𝑤
′) have been generated using rule 𝑅CR . We then

show that the triggers generating these atoms are equal, so these atoms must be equal. The body

of rule 𝑅CR is {CR (𝑥 ′,𝑤 ′), F(𝑥, 𝑥 ′,𝑤 ′), R(𝑥,𝑦,𝑤), bi (𝑦,𝑤), Real(𝑥), Real(𝑥 ′), Real(𝑦)}. To generate

R(𝑦𝑖 , 𝑦𝑖+1,𝑤 ′), 𝑥 ′ must be mapped to 𝑦𝑖 (and𝑤
′
to himself). Then, by Lemma 48, each term 𝑣 can

only have one term 𝑢 such that F(𝑢, 𝑣,𝑤) ∈ 𝐹 , so 𝑥 is mapped to 𝑥𝑖+𝑙1 and 𝑦 to 𝑥𝑖+1+𝑙1 (and 𝑤 to

himself), since F(𝑥𝑖+𝑙1 , 𝑦𝑖 ,𝑤 ′) and F(𝑥𝑖+1+𝑙1 , 𝑦𝑖+1,𝑤 ′). However, we also have F(𝑥𝑖+𝑙1 , 𝑦′𝑖+𝑑 ,𝑤
′) and

F(𝑥𝑖+1+𝑙1 , 𝑦′𝑖+1+𝑑 ,𝑤
′), so the triggers generating R(𝑦𝑖 , 𝑦𝑖+1,𝑤 ′) and R(𝑦𝑖 (𝜌, ®𝑥), 𝑦′𝑖+1+𝑑 ,𝑤

′) are equal,
and 𝑦𝑖+1 = 𝑦′

𝑖+1+𝑑 .
Thus, 𝑙1 = 𝑙2 and 𝑘1 = 𝑘2. Indeed, if 𝑙1 > 𝑙2, then we can extend 𝑦1, . . . , 𝑦𝑘1 into a bigger path

𝑦′
1
, . . . , 𝑦′

𝑑
, 𝑦1, . . . , 𝑦𝑘1 , which contradicts its maximality. If 𝑘1 ≠ 𝑘2, then we can extend the shortest

path into the longest, also contradicting its maximality. Thus, both paths are equal, and 𝑆1 = 𝑆2.

From this we deduce that pred𝑛 is injective. □

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.



Restricted Chase Termination: You Want More than Fairness 109:29

Lemma 31. The restricted chase does not terminate on ⟨Σ𝑀 , 𝐷𝜌⟩.

Proof. First note that since for all 𝑛 ≥ 𝑁 , |configs(𝐴𝑛) | = |configs(𝐴𝑁 ) |, pred𝑛 is actually a

bijection, since it is injective between sets of equal sizes. It thus has an inverse pred−1𝑛 . Thus, for

all 𝑛 ∈ N, we define 𝑆𝑛+1 as pred−1𝑁+𝑛 (𝑆𝑛). Note that we picked 𝑆0 from configs(𝐴𝑁 ) and that 𝑆0
homomorphically embeds into 𝐷𝜌 .

We then inductively construct a sequence of derivations (D𝑛)𝑛∈N such that for all 𝑛 ∈ N, if 𝑆𝑛 is

over terms 𝑥1, . . . , 𝑥𝑘 ,𝑤 , then

• D𝑛+1 extends D𝑛 ;

• there is a homomorphism 𝜋𝑛 from 𝑆𝑛 to the result 𝑅𝑛 of D𝑛 ;

• if F(𝜋𝑛 (𝑥𝑖 ), 𝑦, 𝜋𝑛 (𝑤)) ∈ D𝑛 for some 𝑖 , then 𝑦 = 𝜋𝑛 (𝑤);
• Real(𝜋𝑛 (𝑤)) ∉ D𝑛

First, as stated in Lemma 30, 𝑆0 embeds in 𝐷𝜌 , so we let D0 = 𝐷𝜌 , which does fulfill all the

conditions above. Then, assume that we have constructed derivationD𝑛 as described. By Lemma 30

again, all the atoms in 𝑆𝑛+1 can be generated using only atoms in pred𝑛 (𝑆𝑛+1) = 𝑆𝑛 . We thus

extend the derivation D𝑛 into a derivation D′𝑛+1 with the triggers needed to generate the atoms in

𝑆𝑛+1, composed with 𝜋𝑛 . All these triggers are applicable since they all create atoms of the form

F(𝜋𝑛 (𝑥𝑖 ), 𝑦, 𝜋𝑛 (𝑤)) and Real(𝑦), which are not in the database by the third and forth item. The

homomorphism 𝜋𝑛+1 is then defined naturally (the triggers that generate 𝑆𝑛+1 from 𝑆𝑛 were used

here to generate new nulls, to which we can map nulls of 𝑆𝑛+1). Then, if 𝑆𝑛 contains an atom of

the form q𝑟 (𝑥,𝑤 ′), we add the trigger (𝑅Brake, {𝑤 → 𝜋𝑛 (𝑤)}) at the end of this new derivation, to

construct D𝑛+1. The first and second point then follow by design. The third point follows from the

fact that the triggers that were used to generate 𝑆𝑛+1 from 𝑆𝑛 do not generate other F-atoms, and

the last point from the fact that if q𝑟 (𝑥,𝑤 ′) ∈ 𝑆𝑛 , then 𝑆𝑛 and 𝑆𝑛+1 use different brakes.
We now show that the derivation D =

⋃
𝑛 D𝑛 is fair. First, by Lemma 21, there are infinitely

many q𝑟 -atoms in (𝐴𝑛)𝑛∈N, and thus infinitely many 𝑛 ∈ N such that 𝑆𝑛 contains a q𝑟 -atom. Then,

notice that whenever we encounter a q𝑟 -atom in D, we make the previous brake real, blocking any

rule application involving the atoms containing it. Thus, for any trigger that is applicable at some

step 𝑛, there is a step𝑚 at which the brake that appears in this trigger’s support gets real, making

this trigger obsolete. Thus, D is fair, and the restricted chase does not terminate on ⟨Σ𝑀 , 𝐷𝜌⟩. □

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 109. Publication date: May 2025.


	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Knowledge base termination
	5 Rule set termination
	6 An Alternative to Fairness to Simplify Restricted Chase Termination
	7 Open Problems
	Acknowledgments
	References
	A 11-complete Turing Machine Problems for Reductions
	A.1 Non-Recurrence on the Empty Word
	A.2 Reductions between Turing Machine Problems

	B Proofs for Section 4 (Knowledge base termination)
	C Proofs for Section 5 (Rule set termination)

