

Fakultät Informatik, Institut für Theoretische Informatik, Professur Wissensbasierte Systeme

Prof. Dr. Markus Krötzsch

Dr. Stephan Mennicke

Übungen zur Lehrveranstaltung

Theoretische Informatik und Logik

Sommersemester 2024

10. Übungsblatt

Woche vom 1. bis 7. Juli

Die folgenden Aufgaben werden nicht in den Übungen besprochen und dienen der Selbstkontrolle.

Aufgabe U

Welche der folgenden Aussagen sind wahr? Begründen Sie Ihre Antwort.

- a) Zwei prädikatenlogische Formel
nFund Gsind äquivalent, wenn die Formel
 $F \leftrightarrow G$ allgemeingültig ist.
- b) Jede erfüllbare Formel der Prädikatenlogik erster Stufe hat ein endliches Modell.
- c) Jede erfüllbare Formel der Prädikatenlogik erster Stufe hat ein abzählbares Modell.
- d) Jede Skolemformel hat höchstens eine Herbrand-Interpretation.
- e) Jede Skolemformel hat mindestens ein Herbrand-Modell.

Aufgabe V

Zeigen Sie, dass man das Resolutionsverfahren der Prädikatenlogik erster Stufe auch zum Nachweis von semantischen Konsequenzen nutzen kann, indem Sie die Äquivalenz der folgenden Aussagen nachweisen:

- a) $\Gamma \models F$.
- b) $\Gamma \cup \{\neg F\}$ ist unerfüllbar.
- c) $\bigwedge \Gamma \to F$ ist all gemeingültig.
- d) $\Lambda \Gamma \wedge \neg F$ ist unerfüllbar.

Hierbei sei $\Lambda \Gamma = \gamma_1 \wedge \cdots \wedge \gamma_n$ für $\Gamma = \{\gamma_1, \dots, \gamma_n\}$.

Aufgabe 1

Bestimmen Sie jeweils einen allgemeinsten Unifikator für die folgenden Unifikationsprobleme,

oder begründen Sie, warum kein allgemeinster Unifikator existiert. Verwenden Sie hierfür den Algorithmus aus der Vorlesung. Dabei sind x, y Variablen und a, b Konstanten.

- a) $\{ f(x) = g(x, y), y = f(a) \}$
- b) $\{ f(g(x,y)) = f(g(a,h(b))) \}$
- c) $\{ f(x,y) = x, y = g(x) \}$
- d) $\{ f(g(x), y) \stackrel{.}{=} f(g(x), a), g(x) \stackrel{.}{=} g(h(a)) \}$

Aufgabe 2

Sei p ein k-stelliges Prädikatssymbol und seien $s_1, \ldots, s_k, t_1, \ldots, t_k$ Terme. Ferner sei θ eine Substitution. Hierbei bezeichne $\exists [F]$ und $\forall [F]$ jeweils den Existenz- bzw. Allabschluss über alle in F syntaktisch vorkommenden Variablen. Welche der folgenden Aussagen sind richtig? Begründen Sie jeweils Ihre Antwort.

(a) Falls $p(t_1, ..., t_k)$ und $p(s_1, ..., s_k)$ unifizierbar sind, so ist folgende Formel der Prädikatenlogik mit Gleichheit allgemeingültig:

$$\exists [(s_1 \approx t_1) \land \ldots \land (s_k \approx t_k)]$$

- (b) Falls $\exists [(s_1 \approx t_1) \land \ldots \land (s_k \approx t_k)]$ erfüllbar ist, so sind $p(t_1, \ldots, t_k)$ und $p(s_1, \ldots, s_k)$ unifizierbar.
- (c) Ist θ ein Unifikator für $p(t_1, \ldots, t_k)$ und $p(s_1, \ldots, s_k)$, so ist folgende Formel der Prädikatenlogik mit Gleichheit allgemeingültig:

$$\forall \left[(s_1\theta \approx t_1\theta) \land \ldots \land (s_k\theta \approx t_k\theta) \right]$$

- (d) Ist $\forall [(s_1\theta \approx t_1\theta) \land ... \land (s_k\theta \approx t_k\theta)]$ allgemeingültig, so ist θ ein Unifikator für $p(t_1,...,t_k)$ und $p(s_1,...,s_k)$.
- (e) Ist $\theta = \{x_1 \mapsto u_1, \dots, x_n \mapsto u_n\}$ ein Unifikator für $p(t_1, \dots, t_k)$ und $p(s_1, \dots, s_k)$, so ist folgende Formel der Prädikatenlogik mit Gleichheit allgemeingültig:

$$\forall \left[\left((x_1 \approx u_1) \land \dots \land (x_n \approx u_n) \right) \rightarrow \left((s_1 \approx t_1) \land \dots \land (s_k \approx t_k) \right) \right]$$

(f) Ist $\theta = \{x_1 \mapsto u_1, \dots, x_n \mapsto u_n\}$ ein allgemeinster Unifikator für $p(t_1, \dots, t_k)$ und $p(s_1, \dots, s_k)$, so ist folgende Formel der Prädikatenlogik mit Gleichheit allgemeingültig:

$$\forall \left[\left((s_1 \approx t_1) \land \ldots \land (s_k \approx t_k) \right) \rightarrow \left((x_1 \approx u_1) \land \ldots \land (x_n \approx u_n) \right) \right]$$

Aufgabe 3

Zeigen Sie mittels prädikatenlogischer Resolution folgende Aussagen:

- a) Die Aussage "Der Professor ist glücklich, wenn alle seine Studenten Logik mögen" hat als Folgerung "Der Professor ist glücklich, wenn er keine Studenten hat".
- b) In Aufgabe T von Übungsblatt 9 folgt die letzte Aussage (iv) aus den ersten drei (i-iii):

- (i) Jeder Drache ist glücklich, wenn alle seine Drachen-Kinder fliegen können.
- (ii) Grüne Drachen können fliegen.
- (ii) Ein Drache ist grün, wenn er Kind mindestens eines grünen Drachen ist.
- (iv) Alle grünen Drachen sind glücklich.

Zur Vereinfachung darf hier angenommen werden, dass alle Individuen Drachen sind.

Aufgabe 4

Gegeben sind die folgenden Formeln in Skolemform.

$$F = \forall x, y, z.p(x, f(y), g(z, x)),$$

$$G = \forall x, y.(p(a, f(a, x, y)) \lor q(b)),$$

wobei a und b Konstanten sind.

- a) Geben Sie die zugehörigen Herbrand-Universen Δ_F und Δ_G an.
- b) Geben Sie je ein Herbrand-Modell an oder begründen Sie, warum kein solches existiert.