Review: Time Hierarchy Theorems

Time Hierarchy Theorem 12.12 If $f, g : \mathbb{N} \to \mathbb{N}$ are such that f is time-constructible, and $g : \log g \in o(f)$, then

$$\text{DTime}_*(g) \subseteq \text{DTime}_*(f)$$

Nondeterministic Time Hierarchy Theorem 12.14 If $f, g : \mathbb{N} \to \mathbb{N}$ are such that f is time-constructible, and $g(n+1) \in o(f(n))$, then

$$\text{NTime}_*(g) \subseteq \text{NTime}_*(f)$$

In particular, we find that $P \neq \text{ExpTime}$ and $NP \neq \text{NExpTime}$:

$$L \subseteq NL \subseteq P \subseteq NP \subseteq \text{PSpace} \subseteq \text{ExpTime} \subseteq \text{NExpTime} \subseteq \text{ExpSpace}$$
For space, we can always assume a single working tape:
- Tape reduction leads to a constant-factor increase in space
- Constant factors can be eliminated by space compression

Therefore, $\text{DSpace}_1(f) = \text{DSpace}_1(f)$.

Space turns out to be easier to separate – we get:

Space Hierarchy Theorem 13.1: If $f, g : \mathbb{N} \to \mathbb{N}$ are such that f is space-constructible, and $g \in o(f)$, then $\text{DSpace}(g) \subseteq \text{DSpace}(f)$

Challenge: TMs can run forever even within bounded space.

Proof (continued): It remains to show that D implements diagonalisation:

$L(D) \in \text{DSpace}(f)$:
- f is space-constructible, so both the marking of tape symbols and the initialisation of the counter are possible in $\text{DSpace}(f)$
- The simulation is performed so that the marked $O(f)$-space is not left

There is w such that $(M, w) \in L(D)$ iff $(M, w) \notin L(M)$:
- As for time, we argue that some w is long enough to ensure that f is sufficiently larger than g, so D’s simulation can finish.
- The countdown measures $2^{f(n)}$ steps. The number of possible distinct configurations of M on w is $|Q| \cdot n \cdot g(n) \cdot |\Gamma|^{|\Gamma|} \leq 2^{O(f(n) + \log g(n))}$, and due to $f(n) \geq \log n$ and $g \in o(f)$, this number is smaller than $2^{f(n)}$ for large enough n.
- If M has d tape symbols, then D can encode each in $\log d$ space, and due to M’s space bound D’s simulation needs at most $\log d \cdot g(n) \in o(f(n))$ cells.

Therefore, there is w for which D simulates M long enough to obtain (and flip) its output, or to detect that it is not terminating (and to accept, flipping again). □
The Gap Theorem

Why Constructibility?

The hierarchy theorems require that resource limits are given by constructible functions. Do we really need this?

Yes. The following theorem shows why (for time):

Special Gap Theorem 13.5: There is a computable function $f : \mathbb{N} \to \mathbb{N}$ such that $\text{DTime}(f(n)) = \text{DTime}(2^{f(n)})$.

This has been shown independently by Boris Trakhtenbrot (1964) and Allan Borodin (1972).

Reminder: For this we continue to use the strict definition of $\text{DTime}(f)$ where no constant factors are included (no hidden $O(f)$). This simplifies proofs; the factors are easy to add back.

Proving the Gap Theorem

Proof idea: We divide time into exponentially long intervals of the form:

- $[0, n]$,
- $[n + 1, 2^n]$,
- $[2^n + 1, 2^{2^n}]$,
- ...

(for some appropriate starting value n)

We are looking for gaps of time where no TM halts, since:

- for every finite set of TMs,
- and every finite set of inputs to these TMs,
- there is some interval of the above form $[m + 1, 2^m]$ such none of the TMs halts in between $m + 1$ and 2^m steps on any of the inputs.

The task of f is to find the start m of such a gap for a suitable set of TMs and words.

Gaps in Time

We consider an (effectively computable) enumeration of all Turing machines:

M_0, M_1, M_2, \ldots

Definition 13.6: For arbitrary numbers $i, a, b \in \mathbb{N}$ with $a \leq b$, we say that $\text{Gap}(a, b)$ is true if:

- Given any TM M_j with $0 \leq j \leq i$,
- and any input string w for M_j of length $|w| = i$,
- M_j on input w will halt in less than a steps, in more than b steps, or not at all.

Lemma 13.7: Given $i, a, b \geq 0$ with $a \leq b$, it is decidable if $\text{Gap}(a, b)$ holds.

Proof: We just need to ensure that none of the finitely many TMs M_0, \ldots, M_i will halt after a to b steps on any of the finitely many inputs of length i. This can be checked by simulating TM runs for at most b steps. □
We can now define the value \(f(n) \) of \(f \) for some \(n \geq 0 \):

Let \(\text{in}(n) \) denote the number of runs of TMs \(M_0, \ldots, M_i \) on words of length \(n \), i.e.,

\[
\text{in}(n) = |\Sigma_1^n| + \cdots + |\Sigma_i^n|
\]

where \(\Sigma_i \) is the input alphabet of \(M_i \).

We recursively define a series of numbers \(k_0, k_1, k_2, \ldots \) by setting \(k_0 = 2n \) and \(k_{i+1} = 2^k \) for \(i \geq 0 \), and we consider the following list of intervals:

\[
[k_0 + 1, k_1], [k_1 + 1, k_2], \ldots, [k_{\text{in}(n)} + 1, k_{\text{in}(n)+1}]
\]

\[
[2n + 1, 2^{2n}], [2^{2n} + 1, 2^{2^2}], \ldots, [2^{2^n} + 1, 2^{2^{2^n}}]
\]

Let \(f(n) \) be the least number \(k_i \) with \(0 \leq i \leq \text{in}(n) \) such that \(\text{Gap}_k(k_i + 1, k_{i+1}) \) is true.

We first establish some basic properties of our definition of \(f \):

Claim: The function \(f \) is well-defined.

Proof: For finding \(f(n) \), we consider \(\text{in}(n) + 1 \) intervals. Since there are only \(\text{in}(n) \) runs of TMs \(M_0, \ldots, M_i \), at least one interval remains a “gap” where no TM run halts.

Claim: The function \(f \) is computable.

Proof: We can compute \(\text{in}(n) \) and \(k_i \) for any \(i \), and we can decide \(\text{Gap}_k(k_i + 1, k_{i+1}) \).

Papadimitriou: “notice the fantastically fast growth, as well as the decidedly unnatural definition of this function.”

Let us now complete the proof of the theorem:

Claim: \(\text{DTIME}(f(n)) = \text{DTIME}(2^{f(n)}) \).

Consider any \(L \in \text{DTIME}(2^{f(n)}) \).

Then there is an \(2^{f(n)} \)-time bounded TM \(M \) with \(L = L(M) \).

For any input \(w \) with \(|w| \geq j \):

- The definition of \(f(|w|) \) took the run of \(M \) on \(w \) into account
- \(M \) on \(w \) halts after less than \(f(|w|) \) steps, or not until after \(2^{f(n)} \) steps (maybe never)
- Since \(M \) runs in time \(2^{f(n)} \), it must halt in \(\text{DTIME}(f(n)) \) on \(w \)

For the finitely many inputs \(w \) with \(|w| < j \):

- We can augment the state space of \(M \) to run a finite automaton to decide these cases
- This will work in \(\text{DTIME}(f(n)) \)

Therefore we have \(L \in \text{DTIME}(f(n)) \).

Finishing the Proof

We can now complete the proof of the theorem:

Claim: \(\text{DTIME}(f(n)) = \text{DTIME}(2^{f(n)}) \).

Consider any \(L \in \text{DTIME}(2^{f(n)}) \).

Then there is an \(2^{f(n)} \)-time bounded TM \(M \) with \(L = L(M) \).

For any input \(w \) with \(|w| \geq j \):

- The definition of \(f(|w|) \) took the run of \(M \) on \(w \) into account
- \(M \) on \(w \) halts after less than \(f(|w|) \) steps, or not until after \(2^{f(n)} \) steps (maybe never)
- Since \(M \) runs in time \(2^{f(n)} \), it must halt in \(\text{DTIME}(f(n)) \) on \(w \)

For the finitely many inputs \(w \) with \(|w| < j \):

- We can augment the state space of \(M \) to run a finite automaton to decide these cases
- This will work in \(\text{DTIME}(f(n)) \)

Therefore we have \(L \in \text{DTIME}(f(n)) \).

Discussion: The case \(|w| < j\)

Borodin says: It is meaningful to state complexity results if they hold for “almost every” input (i.e., for all but a finite number)

Papadimitriou says: These words can be handled since we can check the length and then recognise the word in less than \(2j \) steps

Really?

- If we do these \(< 2j \) steps before running \(M \), the modified TM runs in \(\text{DTIME}(f(n) + 2j) \)
- This does not show \(L \in \text{DTIME}(f(n)) \)

A more detailed argument:

- Make the intervals larger: \([k_i + 1, 2^{k_i+2^n} + 2n]\), that is \(k_{i+1} = 2^{k_i+2^n} + 2n \).
- Select \(f(n) \) to be \(k_i + 2n + 1 \) if the least gap starts at \(k_i + 1 \).

The same pigeon hole argument as before ensures that an empty interval is found.

But now the \(f(n) \) time bounded machine \(M \) from the proof will be sure to stop after \(f(n) - 2n - 1 \) steps, so a shift of \(2j \leq 2n \) to account for the finitely many cases will not make it use more than \(f(n) \) steps either
Discussion: Generalising the Gap Theorem

• Our proof uses the function \(n \mapsto 2^n \) to define intervals
• Any other computable function could be used without affecting the argument

This leads to a generalised Gap Theorem:

Gap Theorem 13.8: For every computable function \(g : \mathbb{N} \rightarrow \mathbb{N} \) with \(g(n) \geq n \), there is a computable function \(f : \mathbb{N} \rightarrow \mathbb{N} \) such that \(\text{DTime}(f(n)) = \text{DTime}(g(f(n))) \).

Example 13.9: There is a function \(f \) such that

\[
\text{DTime}(f(n)) = \text{DTime}\left(2^{2^{2^{\ldots^{2}}}}\text{ times}\right)
\]

Moreover, the Gap Theorem can also be shown for space (and for other resources) in a similar fashion (space is a bit easier since the case of short words \(|w| < j\) is easy to handle in very little space).

What have we learned?

• More time (or space) does not always increase computational power
• However, this only works for extremely fast-growing, very unnatural functions

"Fortunately, the gap phenomenon cannot happen for time bounds \(r \) that anyone would ever be interested in\(^1\)

Main insight: better stick to constructible functions

Summary and Outlook

Hierarchy theorems tell us that more time/space leads to more power:

\[
L \subset NL \subset P \subset NP \subset \text{PSpace} \subset \text{ExpTime} \subset \text{NExpTime} \subset \text{ExpSpace}
\]

However, they don’t help us in comparing different resources and machine types (P vs. NP, or PSpace vs. ExpTime)

With non-constructible functions as time/space bounds, arbitrary (constructible or not) boosts in resources do not lead to more power

What’s next?

• The inner structure of NP revisited
• Computing with oracles (reprise)
• The limits of diagonalisation, proved by diagonalisation
