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Abstract. Formal Concept Analysis (FCA) is an approach to creating a concep-
tual hierarchy in which a concept lattice is generated from a formal context. That
is, a triple consisting of a set of objects, G, a set of attributes, M , and an incidence
relation I on G×M . A concept is then modelled as a pair consisting of a set of
objects (the extent), and a set of shared attributes (the intent). Implications in FCA
describe how one set of attributes follows from another. The semantics of these
implications closely resemble that of logical consequence in classical logic. In
that sense, it describes a monotonic conditional. The contributions of this paper
are two-fold. First, we introduce a non-monotonic conditional between sets of
attributes, which assumes a preference over the set of objects. We show that this
conditional gives rise to a consequence relation that is consistent with the postu-
lates for non-monotonicty proposed by Kraus, Lehmann, and Magidor (commonly
referred to as the KLM postulates). We argue that our contribution establishes a
strong characterisation of non-monotonicity in FCA. To our knowledge, this is a
novel view of FCA as a formalism which supports non-monotonic reasoning. We
then extend the influence of KLM in FCA by introducing the notion of typical
concepts through a restriction placed on what constitutes an acceptable preference
over the objects. Typical concepts represent concepts where the intent aligns with
expectations from the extent, allowing for an exception-tolerant view of concepts.
To this end, we show that the set of all typical concepts is a meet semi-lattice of the
original concept lattice. This notion of typical concepts is a further introduction
of KLM-style typicality into FCA, and is foundational towards developing an
algebraic structure representing a concept lattice of prototypical concepts.

Keywords: Formal Concept Analysis · Non-monotonic reasoning · Rational
consequence relations · Defeasible reasoning

1 Introduction

Formal Concept Analysis (FCA) is a lattice-theoretic approach to representing and
reasoning about concepts and hierarchies in data. The view of concepts adopted in FCA
has clear philosophical underpinnings, describing a concept as a pair representing the
dualism between extension, what a concept refers to, and intension, what a concept
means [8,9,19]. As such, the setting of FCA works with data in the form of a formal
context, describing a relationship between objects and attributes.
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An important component of FCA involves discovering implications in the data
which describe a complete correspondence between sets of attributes [19]. A concern
might be that complete correspondence is too strict a requirement, and implications
may fail to capture relationships that, while useful, are only partial correspondences
between attribute sets. To illustrate this point, we introduce a variation of the customary
example of penguins, where we look at species of animals and some of their attributes
(see Example 1 for a more detailed description) [10,13]. In our example we have three
objects which have the attribute bird: duck, robin, and penguin. Of these, duck and
robin also have the attribute flies, and obviously penguin does not. Consequently, the
implication bird→ flies is not valid in our context. One may argue that this behaviour
is completely correct. Clearly, not all birds fly. A compelling response is that birds that
do not fly are exceptions to the rule, and that the ability to express that birds usually do
fly is useful.

Association rules offer an existing approach to address this concern. These rules
introduce a notion of confidence, which quantifies the proportion of data that conforms
to a given rule, if the confidence is above a user-defined threshold are then accepted [8].
While association rules are capable of capturing partial relationships, this approach may
be considered somewhat blunt, relying on something analogous to majority rules. The
reliance on a threshold for rule acceptance limits the expressivity of these rules.

We propose an alternate approach which adopts the view that we can define a
preference relation over the objects in our data. While we are – at present – agnostic
about the origin of this preference relation, from an applied perspective it might represent
an external sentiment that one object is more typical than another. Partial implications
between attribute sets can then be captured through the idea that the correspondence
holds for preferred objects [10,13].

Once we have a preference relation over the set of objects, and if we regard the
relation as representative of the typicality of objects, we can introduce a notion of a
typical concept. The motivation for typical concepts, and what they mean, rests on the
notion that, given some set of attributes, we want a coherent way to derive a concept
which has the attributes we typically expect. Continuing with the example from before,
we might expect that, while the intent of the “bird concept” derived from the attribute
bird does not include the attribute flies, it may be useful to have a notion of a typical
concept which includes the attributes of prototypical birds.

The remainder of the paper is structured as follows: Section 2 provides an account of
some basic notions in FCA. Then, Section 3 provides an introduction to classical notions
of consequence, non-monotonic reasoning, and an intuition for how these translate to
FCA. We introduce the announced extensions to FCA in Section 4 and discuss the
semantics and properties of the consequence relation they allow. In Section 5 we develop
the notion of typical concepts, derived from the preferential view of objects. In Section 6
we discuss some attempts to bring KLM-style defeasibility into other logical systems.
We also discuss existing work within FCA which proposes to introduce more expressive
notions of concepts.



2 Formal Concept Analysis

Two fundamental notions in FCA are formal context and formal concept. A formal
context has a set-theoretic definition, where three sets of objects, attributes, and a binary
relation are defined. However, in reasonably sized instances it can be represented as a
cross-table, where rows represent the objects, and columns are the attributes. Naturally,
the presence of an ‘×’ at a position in the table indicates that the respective object has
the attribute from the respective column.

Definition 1. A formal context is a triple (G,M, I) where G refers to a finite, non-empty
set of objects, M to a finite, non-empty set of attributes, and I ⊆ G×M is an incidence
relation. For (g,m) ∈ I , we say object g has attribute m, otherwise g does not have
attribute m.

Example 1. Figure 1 shows a cross-table representation of a formal context, describing
different animal species and some of their attributes.

northern southern flies antarctic bird
orca × × ×
duck × × × ×
robin × × × ×

penguin × × ×

Fig. 1: A context of animal species and some of their attributes. For example, Orcas are
found in the northern hemisphere, southern hemisphere, and the antarctic.

In the build-up to defining formal concepts, one introduces two operators which define an
order-reversing Galois connection between the power sets P(G) and P(M). These two
operators, which share the same notation, describe the derivation from a set of objects to
the shared attributes, and vice versa [8,9].

Definition 2. In a formal context, K = (G,M, I), the derivation operator (·)′ is defined
for sets A ⊆ G and B ⊆ M as:

A′ := {m ∈ M | ∀g ∈ A, (g,m) ∈ I}
B′ := {g ∈ G | ∀m ∈ B, (g,m) ∈ I}

For a set A ⊆ G of objects (resp. attributes), A′ is just a set of attributes (resp. objects),
and so A′′ would be a set of objects (resp. attributes). The double application of deriva-
tion operators is in fact a closure operator, meaning it is extensive, idempotent, and
monotonic.

Concepts are represented as a pairs of sets of objects and attributes; as one might
expect, these sets are not arbitrary. In fact, they completely determine one another.
Conventionally, we might denote a concept as (A,B) with A ⊆ G,B ⊆ M . This may
be a useful notation to express the demarcation between the extent and intent, but it is
not strictly necessary, for, (A,A′) and (B′, B) would refer to the same concept.



Definition 3. Let K = (G,M, I) be a formal context. A pair (A,B), where A ⊆ G and
B ⊆ M , is a formal concept iff A′ = B and B′ = A.

In fact, given an arbitrary set of objects, A ⊆ G, one can entirely describe a concept by
(A′′, A′) – the same principle holds for sets of attributes [9]. If we refer back to Exam-
ple 1, starting from two sets of objects and attributes, respectively, {duck, penguin}
and {antarctic}, we find the following concepts:(

{duck,penguin}′′, {duck,penguin}′
)
=

(
{duck,robin,penguin}, {southern,bird}

)(
{antarctic}′, {antarctic}′′

)
=

(
{penguin,orca}, {southern,antarctic}

)
These two concepts suggest that one can introduce a partial ordering ≤ to concepts

(induced by the subset relationship on their extents), establishing the notion of sub- and
super-concepts. Equipped with this ordering, the set of all concepts of a formal context K,
denoted by B(K), forms a complete lattice B(K) := (B(K),≤), referred to as a concept
lattice [8,9]. Figure 4 provides an example of a concept lattice. Attributes connected to a
concept from above (inclusive) are part of that concept’s intent, while objects connected
from below (inclusive) are in the extent. For a set of concepts, {(At, Bt) | t ∈ T} ⊆
B(K), the supremum (smallest super-concept), and infimum (greatest sub-concept) are
given by ∨

t∈T

(At, Bt) :=
(
(
⋃
t∈T

At)
′′,

⋂
t∈T

Bt

)
as well as∧

t∈T

(At, Bt) :=
(⋂
t∈T

At, (
⋃
t∈T

Bt)
′′).

2.1 Implications

A significant aspect of FCA involves implications between sets of attributes. These
express the notion that certain attributes indicate the presence of others, in all objects of
a formal context [8,19].

Definition 4. Let K = (G,M, I) be a formal context. An implication over M is an
expression of the form A → B with A,B ⊆ M . We say that the implication is respected
by another set C ⊆ M , iff A ̸⊆ C or B ⊆ C. K respects the implication, written
K |= A → B, iff for every g ∈ G, g′ respects A → B.

It is useful to note that a formal context K = (G,M, I) respects an implication A → B
over M exactly if B ⊆ A′′, which, in turn, is equivalent to A′ ⊆ B′.

3 Logical Consequence and Nonmonotonic Reasoning

3.1 Logical Consequence

A classical notion of logical consequence describes the circumstances under which one
sentence is said to follow (logically) from another [6]. In a model-theoretic view, it is
given as follows.



Definition 5. For two sentences α, β in the language L, we say that β is a logical
consequence of α, expressed as α ⊨ β, iff for every valuation u ∈ U where u ⊩ α then
also u ⊩ β.

This definition can easily be generalised to the notion of entailment: given a set of facts
it would be useful to know what else we can know, or, what is entailed [10].

Definition 6. Given a set of sentences KB, another sentence α is entailed by KB iff for
every valuation u ∈ U with u ⊩ KB also u ⊩ α holds. This is expressed as KB |= α.

A consequence operator, Cn, provides a general way to derive all sentences that should
follow from a set of sentences KB, under some notion of logical consequence [10]. Using
classical entailment from Definition 6, we could have Cn(KB) := {α | KB |= α} [5,10].
A Tarskian consequence operator satisfies the following properties (which describe a
closure operator).

Monotonocity: if Γ ⊆ Γ ′ then Cn(Γ ) ⊆ Cn(Γ ′) (1)
Idempotence: Cn(Γ ) = Cn(Cn(Γ )) (2)
Inclusion: Γ ⊆ Cn(Γ ) (3)

3.2 Consequence Relations

A more abstract notion of consequence is a consequence relation. This is a set of
pairs, {(Γ1, γ1), . . . , (Γn, γn), . . .}, where it is typical to allow Γi to represent a set of
formulae, and γi to represent a single formula in the language. The inclusion of a pair
(Γi, γi) in the consequence relation—denoted as Γi ⊢ γi—means that γi can be inferred
from Γi [7,10].

Consequence relations may be characterised by the properties they satisfy and,
as such, correspond to a certain kind of reasoning—an example of this is found in
Definition 7 [7]. Conversely, an algorithmic description of a kind of reasoning may in
turn give rise to a consequence relation, the properties of which provide strong intuition
for the implicit pattern of reasoning.

3.3 Non-monotonic Reasoning

Non-monotonic reasoning is concerned with developing formal reasoning process in
which a conclusion drawn under a premise can be withdrawn under the addition of an-
other premise [13]. The justifications for why we may want to reason non-monotonically
are easy to accept – it is quite obvious that when humans reason we do so under the
implicit assumption that, upon receiving new information we can change our mind.
Without this assumption, navigating life would be very difficult; we would hesitate to
come to any conclusion out of fear it may be the wrong one. Moreover, we frequently
make statements for which we know exist exceptions, under the assumption that upon
encountering an exception it would be treated as such [16].

In the setting of propositional logic, the problem is often introduced in the following
way [10,13,21]: we want to accept that "penguins are birds", "birds usually fly" and
"penguins do not fly". However, when we translate this into classical logic with the



propositions penguin → bird, bird → fly and penguin → ¬fly, we are forced to
conclude ¬penguin. With respect to the attribute logic of FCA, we find a similar issue.
Consider the context in Example 1. We do not have {bird} → {flies} as a valid
implication, since penguins are an object with bird but not flies. This illustrates the
final point made in the last paragraph – that monotonicity prevents us from making
statements with known exceptions.

In the realm of concepts, we encounter another instance of this problem: the concept
determined by bird is not a sub-concept of the concept determined by flies. Again,
we lack the expressivity for the idea that typical birds are flying animals. In Section 4
and Section 5 we propose a solution to this lack of expressivity drawing inspiration from
[12,13].

3.4 Rational Consequence Relations

The style of non-monotonic reasoning we aim to develop in FCA is that of rational con-
sequence relations. A rational consequence relation, |∼R, is based on preferential logics,
where an order (or ranking) over valuations conveys the notion that certain valuations are
preferred to others [12,14,20]. The semantics describe a notion of consequence where, if
α, β are formulae in the language then β is a rational consequence of α, α |∼R β, iff β
is true in all the most preferred models of α.

The KLM postulates, introduced in [12,14], with the inclusion of Rational Mono-
tonicity are a set of inference rules that characterise a rational consequence relation.

Definition 7. A consequence relation, |∼, constitutes a rational consequence relation iff
it satisfies Reflexivity, Left Logical Equivalence (LLE), Right Weakening (RW), Cut, And,
Or, Cautious Monotonicity and Rational Monotonicity.

Reflexivity A |∼ A Reflexivity is a somewhat basic notion of any notion of
consequence; it essentially prevents a self-defeating pattern of reasoning where given
something, you conclude as a consequence not that thing.

Left Logical Equivalence (LLE) |=A≡B,A|∼C
B|∼C LLE enforces the notion that two

things that are equivalent (under a coherent notion of equivalence) should have the exact
same consequences.

Right Weakening (RW) |=A→B,C|∼A
C|∼B RW states that the consequence of a classical

implication, which has a defeasible consequence as a premise, can itself be derived from
the original defeasible implication.

Cut A∧B|∼C,A|∼B
A|∼C Cut allows us to use existing defeasible consequences in the

premise of a new defeasible implication. However, the new implication is subject to
failure should the defeasible conclusion in its premise be retracted.

Or A|∼C,B|∼C
A∨B|∼C Or is that given distinct premises with a common defeasible conse-

quence, we should be able to draw this conclusion from the disjunction of the premises –
that is, we need not explicitly know which one is true.



And A|∼B,A|∼C
A|∼B∧C And tells us that two consequences can be concluded at the same

time.

Cautious Monotonicity (CM) A|∼B,A|∼C
A∧B|∼C CM ensures that adding a defeasible

consequence that could already have been derived from our premises should never in-
validate another defeasible consequence that could be derived from our original premises.

Rational Monotonicity (RM) A|∼B,A̸|∼¬C
A∧C|∼B RM expresses the notion, similar to

conflicts in Default Logic, that only when a premise that was expected to be false is
added, should we retract a rational consequence. In another sense, we can assume that
when new information that does not explicitly contradict existing knowledge, we can
retain existing conclusions [14,10].

4 Introducing Nonmonotonicity in FCA

4.1 Extended Formal Context

As a precursor to the non-monotonic conditionals in Subsection 4.3, we introduce the
notion of an extended formal context.

Definition 8. Let K = (G,M, I) be a formal context. An extended formal context
simply adds a partial order over G. We denote this as a quadruple, K⪯ = (G,M, I,⪯).

The partial ordering is intended to convey a preference relation between objects. That
is, for two objects, g, h ∈ G, if g ⪯ h, then we say that g is more preferred, or more
typical, in comparison to h. For example, robin ⪯ penguin tells us a robin is “more
typical” than a penguin in our context.

4.2 Minimisation

The preference relation between objects provided by an extended formal context enables
us to define how the derivation operators might behave when restricted to only care about
minimal objects. We formalise this notion as a minimised derivation.

Definition 9. Let K⪯ = (G,M, I,⪯) be an extended formal context, and let B ⊆ M .
Then the minimised derivation, B′, of B, is the set

B′ := {g ∈ B′ | ∄h ∈ B′ such that h ≺ g}

As a reminder, for a set of attributes, B ⊆ M , B′ provides us with all the objects which
have all attributes of B. Following this, B′′ extends B by including all other attributes
which are shared by those objects which share attributes B.

If B′ describes the process of going from a set of attributes to the minimal objects
which share B, a reasonable question might concern the procedure for returning to a
“closed” set of attributes: presumably, the set of attributes common to those objects
described by B′. This is, in fact, just the composition of Definition 9 and Definition 2,
taking the form (B′)′ - henceforth referred to as a minimised-return operation.



Theorem 1. Let K⪯ = (G,M, I,⪯) be an extended formal context, the minimised-
return operator, (·′)′, applied to a set of attributes is nonmonotonic, extensive, and
idempotent.

Proof. If the minimised-return operator were monotonic, for the sets A,B ⊆ M , A ⊆ B
would imply (A′)′ ⊆ (B′)′. Refer back to the formal context in Example 1 extended with
the partial order robin ⪯ penguin. Let A := {bird} and B := {bird,antarctic}.
Clearly, A ⊆ B, however, application of the minimised-return operator gives (A′)′ =

{bird, flies, southern, northern} and (B′)′ = {bird,antarctic,southern},
and so (A′)′ ̸⊆ (B′)′.

To show that the minimised-return operator is extensive, it should hold that for a set
A ⊆ M , A ⊆ (A′)′. We already know that in the classical case, A ⊆ A′′. So, for all
objects g ∈ A′, it is the case that A ⊆ g′. It is also clear that the minimised derivation of
a set of attributes is a subset of the classical derivation – that is, A′ ⊆ A′. This means
that for all objects h ∈ A′, A ⊆ h′. It should then be straightforward to see that A is a
subset of the set given by

⋂
{g′ | g ∈ A′}, which is equivalent to A ⊆ (A′)′.

The final task is to show that the minimised-return operator is idempotent. Given a
set A ⊆ M , let C := (A′)′. It is enough to show that A′ = C ′. C is the set of attributes
such that all objects, g ∈ A′, have C in their intent. It is also clear, since all objects in A′

have A in their intent, that A ⊆ C. Then, for h ∈ C ′ it follows that h has attributes C,
and thus A, in its intent. Since h is minimal w.r.t. C, and g ∈ C ′, it cannot be the case
that g ⪯ h. Conversely, since g is minimal w.r.t. A, and h ∈ A′, it cannot be that h ⪯ g.
Then, since both g and h are elements of A′ and C ′, and are arbitrary, the sets A′ and C ′

refer to the same objects. Then, applying a derivation to the same sets would of course
yield the same result, and so the minimised-return operator is idempotent. ⊓⊔

4.3 Non-monotonic Conditional through Minimisation

From the discussion in Subsection 2.1 it is clear that the semantics of classical im-
plications in FCA can be defined through applications of closure operators on sets of
attributes. With the introduction of the minimised-return operator, one might expect to
find a different notion of consequence.

The minimised-return operator still refers to the same kind of process as the closure-
operator, going from a set of attributes to a set of objects, and then back to a set of
attributes. The similarity enable us to define a semantics which is only a minor departure
from the original implication. For now we will use non-monotonic conditional to refer
to the minimised-derivation based implications, and denote this by⇝.

Definition 10. Let K⪯ = (G,M, I,⪯) be an extended formal context, with A,B ⊆ M .
K⪯ respects a non-monotonic conditional K⪯ |= A ⇝ B iff B ⊆ (A′)′ which is
equivalent to A′ ⊆ B′.

Although we have yet to prove the characterisation, the non-monotonic conditional
from above describes a notion of consequence with strong semblance to the preferential
consequence relations discussed in Subsection 3.4.



warrior demigod hero
Jason × ×

Achilles × × ×
Minos ×

Fig. 2: Extended formal context of figures in Greek mythology

Example 2. Let the cross table below represent an extended formal context, where the
partial order over objects is: Achilles ⪯ Jason, Minos.

In Greek mythology there is a strong correspondence between figures who are heroes,
and demigods. So much so that there is debate as to whether hero and demigod actually
have distinct meanings. Thus, with some creative licence, we may wish to express the
notion that hero usually implies demigod. The classical implication, of course, fails
to express this - as Jason is a counter-example. Instead, we express this notion as the
non-monotonic conditional hero⇝ demigod.

In our definition of classical implications, see Definition 4, we first introduced →
as an object-level operator, saying that a set C ⊆ M respects an implication A → B
iff A ̸⊆ C or B ⊆ C (we can think of C as an object intent). However, most of the
time when we talk about implications in FCA, we really refer to the meta level notion
analogous to entailment that K |= A → B.

For non-monotonic conditionals it makes even less sense to speak about the object
level, we are interested in what our ordering allows us to conclude – and the ordering is
explicitly on the meta-level. Consequently, whenever we speak about a non-monotonic
conditional, we are speaking about the implication over the entire formal context.

4.4 Non-monotonic Conditionals and the KLM Postulates

We now present an argument that the consequence relation given by the non-monotonic
conditional described in the previous sub-section satisfies all the KLM postulates re-
quired to be a characterisation of rational consequence relations. We should remind
ourselves that the postulates are usually described in a truth-theoretic language, such as
propositional logic. A consequence being that some initial work needs to be translated
into the attribute-logic formalism considered here.

For Reflexivity and RW, the translation is obvious and doesn’t require additional
intuition. All that is required for LLE is to describe what a notion of equivalence between
sets of attributes means. To this end, we say that in a formal context two attribute sets
are equivalent, A ≡ B, iff A′ = B′. Cut says that if α ∧ β |∼ γ and α |∼ β then α |∼ γ.
The conjunction of two formulae in a truth-theoretic logic requires satisfaction of each
formula. In attribute logic, the equivalent notion is given by the union of two attribute
sets, satisfied by objects with all attributes from both sets. The conjunction in CM and
And is re-phrased in the same way.

It is not immediately clear what RM might mean, as it is uncommon to talk about
implications with a negation. We use the following definitions to make this notion
explicit.



Definition 11. Let K = (G,M, I) be a formal context and A → ¬B an implication
over M . We say that a set C ⊆ M respects the implication A → ¬B iff A ̸⊆ C or
B ̸⊆ C. K respects the implication, K |= A → ¬B, iff for every object g, g′ respects
A → ¬B. Equivalently, A′ ∩B′ = ∅.

Definition 12. An extended formal context, K⪯, respects the non-monotonic conditional
A ⇝ ¬B iff, for every object g in A′, B ̸⊆ g′. Equivalently, K⪯ |= A ⇝ ¬B iff
A′ ∩B′ = ∅.

The intuition is that one set of attributes corresponds to the absence of another if
there are no objects which have both sets in their intent. On the object level of a formal
context, for an object g ∈ G, if g ̸|= A → B then g |= A → ¬B. We do not, however,
have that if K ̸|= A → B then K |= A → ¬B. Translating the intuition of A → ¬B to
A⇝ ¬B is straightforward. The non-monotonic conditional, A⇝ ¬B, concerns only
objects g ∈ A′, which, by definition of the minimised derivation operator, must have A
in their intent. Consequently, we need only show that g does not have B in its intent.

We have yet to address the Or postulate. The difficulty here is that attribute logic
does not have (nor is it intuitive to introduce) a notion of disjunction [15]. As such, we
recognise a departure from the KLM framework, and omit the Or postulate entirely.
Consequence relations that satisfy only Reflexivity, LLE, RW, Cut, and CM are consid-
ered cumulative consequence relations [13]. However, while we do not haveOr, we
show that we still have Rational Monotonicity, and continue to regard our relation as a
characterisation of rational consequence*. 4

Theorem 2. The consequence relation derived from⇝ satisfies Reflexivity, Left Log-
ical Equivalence, Right Weakening, Cut, And, Cautious Monotonicity, and Rational
Monotonicity, and thus, constitutes a rational consequence relation*. 5

This gives us a notion of non-monotonic consequence that corresponds to what we
may think logical non-monotonic reasoning should look like, as described by rational
consequence. We are able to use intermediary results as the basis for more conclusions
through the use of Cut and CM [10,21]. RM is a useful property in the sense that it
reduces the work one has to do - unless we have some consequence that is contradictory
to what we expect, we can retain existing conclusions. The notion of consequence also
preserves classical implications in FCA, and so it is strictly more expressive than regular
implications in FCA [21].

Now is a good place to remind ourselves of what we gain from introducing non-
monotonic conditionals to FCA. If we accept rational consequence relations as a good
account of non-monotonic reasoning, and that we can impose a preference relation
on objects in a formal context, non-monotonic conditionals provide FCA with the
expressivity to reason about what may be the typical case.

4 The absence of the Or postulate is indicated by an asterisk
5 The proofs for the non-monotonic conditional satisfying the KLM-postulates* can be found in

the Arxiv submission with a matching title



5 Typical Concepts

The partial ordering over objects was introduced as a means to developing a non-
monotonic consequence relation. We now show how this ordering, under some constraint,
gives rise to a notion of typical concepts.

5.1 Naive Typical Concepts

Definition 13. Let K⪯ = (G,M, I,⪯) be an extended formal context. Then, for a set
A ⊆ M , we define a typical concept as a concept of the form((

A′)′′ , (A′)′) .

The set of all typical concepts of an extended formal context is denoted T(K⪯).

In this case, the intent of a typical concept is the set of attributes common to the
minimal objects which have A in their intent. The extent is then all objects which
have this extended set of attributes. Referring back to Example 1, we add the partial
order duck ⪯ penguin and robin ⪯ penguin, expressing the sentiment that ducks
and robins are more typical than penguins, but incomparable to orcas. Given only the
attribute bird, ({duck,robin}, {northern,southern,flies,bird}) is the derived
typical concept. Without this notion of a typical concept, the derived concept would be
({duck,robin,penguin}, {southern,bird}). Of course, both of these concepts exist
in the classical concept lattice; however, typical concepts provide an instrument to, given
only the condition of bird, to arrive at a concept which we might consider a more natural
characterisation of things that are birds. We should remind ourselves that, while this
example is picked to match real-world expectations, we should think of “expectations”
as being an expression of the preference relation on objects.

Perhaps un-intuitively, this formulation allows for a typical concept to contain non-
typical objects in its extent, as long as they share all the attributes of their typical
counterparts. We should recognise, however, that they do not contribute to describing the
intent, they just happen to be consistent with it. Although we ascribe specific meaning
to A′, it can be considered to be an arbitrary set of objects. Then, per Definition 3, an
arbitrary typical concept, ((X ′)′′, (X ′)′) where X ⊆ M , is always equivalent to some
formal concept. As such, we can define a map from the set of concepts to the set of
typical concepts.

Definition 14. Let K⪯ = (G,M, I,⪯) be an extended formal context,then B(K⪯)
denote the set of concepts of K⪯, and T(K⪯) denote the set of typical concepts of K⪯.
We define a map:

φ : B(K) 7→ T(K⪯)

For a concept (A,B) ∈ B(K⪯), φ is defined as:

φ(A,B) := ((B′)′′, (B′)′)
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Fig. 3: Classical concept lattices, with the typical concepts derived from the respective
ordering marked as grey

The mapping function inherits idempotency from the minimised-return operator. For
a typical concept (A,B) ∈ T(K⪯), there must exist some set C ⊆ M such that
(C ′)′ = B. It follows that ((C ′)′

′
)′ = (C ′)′ = B. Consequently, φ(A,B) = (A,B), or,

typical concepts map to themselves. Differently put, φ(A,B) = φ(φ(A,B)). We also
note that by the extensive property of minimized-derivation, for any concept (A,B),
we have (B′)′ ⊇ B and therefore φ(A,B) = ((B′)′′, (B′)′) ≤ (A,B). That is, φ is
anti-extensive.

Theorem 3. In an extended formal context, K⪯ = (G,M, I,⪯), let (A,B) ∈ B(K⪯),
then (A,B) ∈ T(K⪯) iff (B′)′′ = A.

Proof. Let K⪯ = (G,M, I,⪯) be an extended formal context with a concept, (A,B) ∈
B(K⪯). Suppose (A,B) were a typical concept, then there exists a set C ⊆ M such
that A = (C ′)′′ and B = (C ′)′, per the definition of a typical concept. Through the
properties of the minimised-return operator in Theorem 1 we have that C ′ = (C ′)′

′,

equivalently, C ′ = B′. Then, obviously, (C ′)′′ = (B′)′′. ⊓⊔

A next point of departure might be to investigate the structure the set of typical concepts.
Certainly, we have that T(K⪯) ⊆ B(K⪯). Then in particular, we want to investigate
whether the subset of “typical” objects forms a sub-lattice, if we can form a sub-lattice of
only those “typical” concepts, we are able to use all the same algebraic tools to analyze
the data in our context “prototypically”, as opposed to the classical analysis which
relies on strict implications and concepts. Using the same approach to ordering typical
concepts as we did for formal concepts (see Section 2), two examples make it clear
that the current formulation unfortunately does not guarantee that the pair (T(K⪯),≤),
henceforth denoted T(K⪯), will form any type of lattice. Figure 3a is the concept lattice
of some formal context, K. If one were to extend K with the partial order c ⪯ b and a,d
⪯ c, the resultant set of typical concepts would be the four concepts marked with grey



nodes. We pay special attention to the concepts

C1 :=
(
(X ′)′′, (X ′)′

)
=

(
(a)′′, (a)′

)
=

(
{a,b,c}, {X}

)
C2 :=

(
(Y ′)′′, (Y ′)′

)
=

(
(d)′′, (d)′

)
=

(
{b,c,d}, {Y}

)
The greatest common sub-concept of these two concepts is given by

C1 ∧ C2 =
(
{a,b,c} ∩ {b,c,d}, ({X} ∪ {Y})′′}

)
=

(
{b,c}, {X,Y}

)
However, from Theorem 3, it is clear that this is not a typical concept, as ({X,Y}′)′′ =
{c} ̸= {b,c}. This result tells us that the subset of typical concepts is not closed under
meets. If we shift attention to Figure 3b, it becomes clear that it is not closed under joins
either, nor does it guarantee a lattice with respect to the concept-lattice ordering. For the
typical concepts

C1 :=
(
(X ′)′′, (X ′)′

)
=

(
(a)′′, (a)′

)
=

(
{a,b}, {X}

)
C2 :=

(
({Y, Z}′)′′, ({Y,Z}′)′

)
=

(
(b,c)′′, (b,c)′

)
=

(
{b,c}, {Y,Z}

)
the least common super-concept is given by

C1 ∨ C2 =
(
({a,c} ∪ {b,c})′′, {X,Z} ∩ {Y,Z}}

)
=

(
{b,c}, {Z}

)
.

For C1 ∨ C2, the closure of the minimised-derivation of the intent, (Z′)′′ = {a,c}, does
not equal the concept extent. So, we do not have that typical concepts are closed under
joins. To make matters worse, the top element of the lattice is the concept ({a,b,c,d}, ∅),
but not a typical concept, as (∅′)′′ = (a)′′ = {a,c}, and so we do not have a lattice
structure of typical concepts. In fact, we do not even have an upper bound to the set of
typical concepts in Figure 3b.

5.2 Restriction on the Partial Order

One cause of the aforementioned problem lies in the fact that we allow non-minimal
objects to be included in typical concepts. This allows for rankings where non-minimal
objects, which should be in the meet or join of two concepts, are lost. As a solution
to this, we may restrict the partial orders to prevent non-minimal objects from being
included in typical concepts.

Definition 15. Let K⪯ = (G,M, I,⪯) be an extended formal context. A valid partial
order over objects is one which for all A ⊆ M , A′ = (A′)′′.

Consider a set of attributes X ⊆ M and then take Y ⊆ M to be the set of all attributes
common to the minimal objects which satisfy X – of course, Y would be the set X with
additional attributes. The restriction to orders ⪯ that are valid ensures that any object
that has all the attributes in Y must itself be minimal w.r.t. X . Put differently, Y serves
as a total characterisation of the minimal objects satisfying attributes X , if an object
matches this characterisation, then it should have been one of these minimal objects.
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Fig. 4: The concept lattice for Example 1. Given the preference order duck ⪯ penguin
and robin ⪯ penguin, the dark grey concepts show the structure of typical concepts

If we accept this restriction on the partial order, the set of typical concepts preserves
meets, that is, the greatest common sub-concept of two typical concepts is itself a typical
concept. Before this is shown, Definition 13, Definition 14, and Theorem 3 might be
amended to reflect that the closure of a set A′, where A ⊆ M , is superfluous.

Theorem 4. For an extended formal context, K⪯ = (G,M, I,⪯), with a restriction
on the partial-order such that for any A ⊆ M , A′ = (A′)′′, the greatest common sub-
concept of two typical concepts is itself a typical concept. Hence, the subset of typical
concepts form a ∧-subsemilattice of the concept lattice.

Proof. We note that it is a sufficient condition to show that A′ ∩ B′ = C ′ for some
C ⊆ M . We claim that we can choose C = (A′)′ ∪ (B′)′. Note

A′ ∩B′ = (A′)′′ ∩ (B′)′′ = ((A′)′ ∪ (B′)′)′,

where the first equality follows from our assumed condition, and the second from our
preliminary lemma for Galois connections. Then A′ ∩B′ = ((A′)′ ∪ (B′)′)′. Note that

A′ ∩B′ = {g ∈ A′ ∩B′ | ∄h ∈ A′ ∩B′ such that h < g}.

Therefore, if g ∈ A′ ∩B′, since g is a minimal member of A′ and of B′ there is no h in
A′ or in B′ with h < g by definition and so g ∈ A′ ∩B′. Therefore A′ ∩B′ ⊆ A′ ∩B′,

and clearly A′ ∩B′ ⊆ A′ ∩ B′. If the intersection has no elements A′ ∩ B′ = ∅ = ∅.

Hence A′ ∩B′ = A′ ∩B′ = ((A′)′ ∪ (B′)′)′ and we are done. ⊓⊔

It is also worth noting here that the bottom element of the concept lattice is always a
typical concept since φ(⊥) ≤ ⊥, by anti-extensivity, and so φ(⊥) = ⊥. This result
allows us to begin characterizing the algebraic structure of those concepts considered
“typical” in an extended formal context. However, there is still much structure that this
restriction on the order does not account for. In particular, we do not have that T(K⪯)
preserves least common super-concepts – Figure 3b is an example of a concept lattice



whose order satisfies the condition in Definition 15, but does not have a ⊤-concept.
That being said, we are still able to preserve some structure using a somewhat intuitive
restriction on the order in our extended formal context.

6 Related Work

There is a large corpus of work on developing KLM-style notions of non-monotonic
reasoning outside of the standard of propositional logic. [4], and more extensively
[18], introduce KLM-style defeasible reasoning to datalog, which can be considered a
fragment of first-order logic used for database queries. [2,1] are recent efforts to introduce
a notion of defeasible subsumption to description logics (DL) that follows the KLM
properties. Remaining in the realm of DL, [17] is a general characterisation of to KLM
in DL ALC. [3] investigates the KLM framework in the context of defeasible modalities,
introducing new modal operators for defeasible necessity and distinct possibility.

With respect to work that extends our view of concepts in FCA, [11] introduces
Rough Concept Analysis, a merging of rough set theory and FCA that uses equivalence
classes on objects to define upper and lower-bound approximations of concepts. [22]
investigates an expansion which enables “rough concepts” to be defined not only by
objects.

7 Conclusions and Future Work

By extending a formal context with a preference relation on the objects we have intro-
duced a non-monotonic variant of implication between attribute sets which characterise
a rational consequence relation*. This strictly increases the expressivity of the attribute
logic of FCA by creating a notion of non-monotonicity that corresponds to the KLM
view of how a logical non-monotonic system should behave. In terms of FCA, we have
introduced a way of discovering and representing relationships between attribute sets
that tolerates exceptions, and is capable of representing what our data (formal context)
shows in the typical case.

With a slight restriction on what constitutes a valid preference relation over objects,
we presented a formalisation of typical concepts which has its foundations in a KLM-
style typicality. We were able to show that with this notion we could create a structure
of typical concepts that at least preserved the sub-concept relation, and as such is a
meet-subsemilattice of the original concept lattice.

To our knowledge, the introduction of KLM-style typicality, and preferences over a
formal context as a whole, presents a novel view on, and non-trivial extension to FCA.

This work represents the initial investigation of introducing KLM-style typicality
into FCA. As such, we believe there is a considerable amount that remains to be looked
at. Addressing concerns of existing work, we aim to find an approach to defining typical
concepts which is closed under joins (super-concepts), essentially meaning that the
structure of the set of typical concepts would be a sub-lattice of the original concept
lattice. To this end, we could neatly “reduce” a concept lattice to its typical counterpart.
In another branch of this work, we would like to investigate the relationship between
the set of all non-monotonic conditionals and the typical concept lattice; determining if
something analogous to a canonical basis can be found.
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