
Fakultät Informatik, Institut für Künstliche Intelligenz, Professur Computational Logic

THEORETISCHE INFORMATIK UND LOGIK

10. Vorlesung: NP, Teil 2

Sebastian Rudolph

Folien:© Markus Krötzsch, https://iccl.inf.tu-dresden.de/web/TheoLog2017, CC BY 3.0 DE

TU Dresden, 15. Mai 2025

https://iccl.inf.tu-dresden.de/web/Computational_Logic
https://iccl.inf.tu-dresden.de/web/TheoLog2025
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

NP-vollständige Probleme

Polynomialzeit-Reduktion: P ≤p Q

NP-vollständige Probleme:

Probleme, die mindestens so schwer sind wie alle anderen Probleme in NP.

Cook und Levin hatten gezeigt:

Wortproblem Polyzeit-NTM ≤p SAT

Bisher haben wir gezeigt:

SAT ≤p CLIQUE ≤p Unabhängige Menge

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 2 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Probleme mit Gewichten und Zahlen

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 3 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Teilmengen-Summe

Teilmengen-Summe (subset sum)

Gegeben: Eine Menge von Gegenständen S = {a1, . . . , an}, wobei jedem Gegenstand
ai ein Wert v(ai) zugeordnet ist; eine gewünschte Zahl z

Frage: Gibt es eine Teilmenge T ⊆ S mit
∑

a∈T v(a) = z?

Anmerkung: Mehrere Gegenstände können gleiche Werte haben.

Satz: Teilmengen-Summe ist NP-vollständig.

Beweis:

(1) Teilmengen-Summe ∈ NP haben wir bereits festgestellt.

(2) NP-Schwere zeigen wir durch Reduktion SAT ≤p Teilmengen-Summe.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 4 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Teilmengen-Summe

Teilmengen-Summe (subset sum)

Gegeben: Eine Menge von Gegenständen S = {a1, . . . , an}, wobei jedem Gegenstand
ai ein Wert v(ai) zugeordnet ist; eine gewünschte Zahl z

Frage: Gibt es eine Teilmenge T ⊆ S mit
∑

a∈T v(a) = z?

Anmerkung: Mehrere Gegenstände können gleiche Werte haben.

Satz: Teilmengen-Summe ist NP-vollständig.

Beweis:

(1) Teilmengen-Summe ∈ NP haben wir bereits festgestellt.

(2) NP-Schwere zeigen wir durch Reduktion SAT ≤p Teilmengen-Summe.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 4 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Teilmengen-Summe

Teilmengen-Summe (subset sum)

Gegeben: Eine Menge von Gegenständen S = {a1, . . . , an}, wobei jedem Gegenstand
ai ein Wert v(ai) zugeordnet ist; eine gewünschte Zahl z

Frage: Gibt es eine Teilmenge T ⊆ S mit
∑

a∈T v(a) = z?

Anmerkung: Mehrere Gegenstände können gleiche Werte haben.

Satz: Teilmengen-Summe ist NP-vollständig.

Beweis:

(1) Teilmengen-Summe ∈ NP haben wir bereits festgestellt.

(2) NP-Schwere zeigen wir durch Reduktion SAT ≤p Teilmengen-Summe.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 4 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

(p1 ∨ p2 ∨ p3) ∧ (¬p1 ∨ ¬p4) ∧ (p4 ∨ p5 ∨ ¬p2 ∨ ¬p3)

p1 p2 p3 p4 p5 C1 C2 C3

v(t1) = 1 0 0 0 0 1 0 0
v(f1) = 1 0 0 0 0 0 1 0
v(t2) = 1 0 0 0 1 0 0
v(f2) = 1 0 0 0 0 0 1
v(t3) = 1 0 0 1 0 0
v(f3) = 1 0 0 0 0 1
v(t4) = 1 0 0 0 1
v(f4) = 1 0 0 1 0
v(t5) = 1 0 0 1
v(f5) = 1 0 0 0

v(m1,1) = 1 0 0
v(m1,2) = 1 0 0
v(m2,1) = 1 0
v(m3,1) = 1
v(m3,2) = 1
v(m3,3) = 1

z = 1 1 1 1 1 3 2 4

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 5 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

SAT ≤p Teilmengen-Summe

Gegeben: Formel F = (C1 ∧ · · · ∧ Ck) in KNF.
(o.B.d.A. mit maximal 9 Literalen pro Klausel)

Seien p1, . . . , pn die Variablen in F.
Für jedes pi definieren wir Gegenstände ti und fi:

v(ti) := a1 · · · anc1 · · · ck wobei

aj :=

1 i = j

0 i , j

cj :=

1 pi kommt in Cj vor

0 sonst

v(fi) := a1 · · · anc1 · · · ck wobei

aj :=

1 i = j

0 i , j

cj :=

1 ¬pi kommt in Cj vor

0 sonst

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 6 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

SAT ≤p Teilmengen-Summe

Gegeben: Formel F = (C1 ∧ · · · ∧ Ck) in KNF.
(o.B.d.A. mit maximal 9 Literalen pro Klausel)

Seien p1, . . . , pn die Variablen in F.
Für jedes pi definieren wir Gegenstände ti und fi:

v(ti) := a1 · · · anc1 · · · ck wobei

aj :=

1 i = j

0 i , j

cj :=

1 pi kommt in Cj vor

0 sonst

v(fi) := a1 · · · anc1 · · · ck wobei

aj :=

1 i = j

0 i , j

cj :=

1 ¬pi kommt in Cj vor

0 sonst

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 6 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

SAT ≤p Teilmengen-Summe

Gegeben: Formel F = (C1 ∧ · · · ∧ Ck) in KNF.
(o.B.d.A. mit maximal 9 Literalen pro Klausel)

Seien p1, . . . , pn die Variablen in F.
Für jedes pi definieren wir Gegenstände ti und fi:

v(ti) := a1 · · · anc1 · · · ck wobei

aj :=

1 i = j

0 i , j

cj :=

1 pi kommt in Cj vor

0 sonst

v(fi) := a1 · · · anc1 · · · ck wobei

aj :=

1 i = j

0 i , j

cj :=

1 ¬pi kommt in Cj vor

0 sonst

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 6 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

(p1 ∨ p2 ∨ p3) ∧ (¬p1 ∨ ¬p4) ∧ (p4 ∨ p5 ∨ ¬p2 ∨ ¬p3)

p1 p2 p3 p4 p5 C1 C2 C3

v(t1) = 1 0 0 0 0 1 0 0
v(f1) = 1 0 0 0 0 0 1 0
v(t2) = 1 0 0 0 1 0 0
v(f2) = 1 0 0 0 0 0 1
v(t3) = 1 0 0 1 0 0
v(f3) = 1 0 0 0 0 1
v(t4) = 1 0 0 0 1
v(f4) = 1 0 0 1 0
v(t5) = 1 0 0 1
v(f5) = 1 0 0 0

v(m1,1) = 1 0 0
v(m1,2) = 1 0 0
v(m2,1) = 1 0
v(m3,1) = 1
v(m3,2) = 1
v(m3,3) = 1

z = 1 1 1 1 1 3 2 4

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 7 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

SAT ≤p Teilmengen-Summe

Außerdem definieren wir für jede Klausel Ci genau r := |Ci| − 1 Gegenstände
mi,1, . . . , mi,r

mit v(mi,j) := ci · · · ck wobei cℓ :=

1 ℓ = i

0 ℓ , i

Definition von S: Damit ergibt sich die Menge

S :=
{

ti, fi
∣∣∣∣ 1 ≤ i ≤ n

}
∪

{
mi,j

∣∣∣∣ 1 ≤ i ≤ k, 1 ≤ j ≤ |Ci| − 1
}

Gesuchte Zahl: Wir bestimmten die gesuchte Zahl z wie folgt:

z := a1 · · · anc1 · · · ck wobei ai := 1 und ci := |Ci|

Behauptung: Es gibt T ⊆ S mit
∑

ai∈T v(ai) = z gdw. F erfüllbar ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 8 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

SAT ≤p Teilmengen-Summe

Außerdem definieren wir für jede Klausel Ci genau r := |Ci| − 1 Gegenstände
mi,1, . . . , mi,r

mit v(mi,j) := ci · · · ck wobei cℓ :=

1 ℓ = i

0 ℓ , i

Definition von S: Damit ergibt sich die Menge

S :=
{

ti, fi
∣∣∣∣ 1 ≤ i ≤ n

}
∪

{
mi,j

∣∣∣∣ 1 ≤ i ≤ k, 1 ≤ j ≤ |Ci| − 1
}

Gesuchte Zahl: Wir bestimmten die gesuchte Zahl z wie folgt:

z := a1 · · · anc1 · · · ck wobei ai := 1 und ci := |Ci|

Behauptung: Es gibt T ⊆ S mit
∑

ai∈T v(ai) = z gdw. F erfüllbar ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 8 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

SAT ≤p Teilmengen-Summe

Außerdem definieren wir für jede Klausel Ci genau r := |Ci| − 1 Gegenstände
mi,1, . . . , mi,r

mit v(mi,j) := ci · · · ck wobei cℓ :=

1 ℓ = i

0 ℓ , i

Definition von S: Damit ergibt sich die Menge

S :=
{

ti, fi
∣∣∣∣ 1 ≤ i ≤ n

}
∪

{
mi,j

∣∣∣∣ 1 ≤ i ≤ k, 1 ≤ j ≤ |Ci| − 1
}

Gesuchte Zahl: Wir bestimmten die gesuchte Zahl z wie folgt:

z := a1 · · · anc1 · · · ck wobei ai := 1 und ci := |Ci|

Behauptung: Es gibt T ⊆ S mit
∑

ai∈T v(ai) = z gdw. F erfüllbar ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 8 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

SAT ≤p Teilmengen-Summe

Außerdem definieren wir für jede Klausel Ci genau r := |Ci| − 1 Gegenstände
mi,1, . . . , mi,r

mit v(mi,j) := ci · · · ck wobei cℓ :=

1 ℓ = i

0 ℓ , i

Definition von S: Damit ergibt sich die Menge

S :=
{

ti, fi
∣∣∣∣ 1 ≤ i ≤ n

}
∪

{
mi,j

∣∣∣∣ 1 ≤ i ≤ k, 1 ≤ j ≤ |Ci| − 1
}

Gesuchte Zahl: Wir bestimmten die gesuchte Zahl z wie folgt:

z := a1 · · · anc1 · · · ck wobei ai := 1 und ci := |Ci|

Behauptung: Es gibt T ⊆ S mit
∑

ai∈T v(ai) = z gdw. F erfüllbar ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 8 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

(p1 ∨ p2 ∨ p3) ∧ (¬p1 ∨ ¬p4) ∧ (p4 ∨ p5 ∨ ¬p2 ∨ ¬p3)

p1 p2 p3 p4 p5 C1 C2 C3

v(t1) = 1 0 0 0 0 1 0 0
v(f1) = 1 0 0 0 0 0 1 0
v(t2) = 1 0 0 0 1 0 0
v(f2) = 1 0 0 0 0 0 1
v(t3) = 1 0 0 1 0 0
v(f3) = 1 0 0 0 0 1
v(t4) = 1 0 0 0 1
v(f4) = 1 0 0 1 0
v(t5) = 1 0 0 1
v(f5) = 1 0 0 0

v(m1,1) = 1 0 0
v(m1,2) = 1 0 0
v(m2,1) = 1 0
v(m3,1) = 1
v(m3,2) = 1
v(m3,3) = 1

z = 1 1 1 1 1 3 2 4

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 9 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

NP-Vollständigkeit von Teilmengen-Summe

Behauptung: Wenn F erfüllbar ist, dann gibt es T ⊆ S mit
∑

ai∈T v(ai) = z.

• Sei w eine erfüllende Belegung für F.

• Wir definieren:

T1 :=
{

ti
∣∣∣∣ w(pi) = 1, 1 ≤ i ≤ m

}
∪

{
fi
∣∣∣∣ w(pi) = 0, 1 ≤ i ≤ m

}

• Sei ri jeweils die Zahl der von w erfüllten Literale in Ci. (Offenbar ist ri ≥ 1 für alle i.)
Wir definieren:

T2 :=
{
mi,j
∣∣∣ 1 ≤ i ≤ k, 1 ≤ j ≤ |Ci| − ri

}
• Die gesuchte Menge von Gegenständen ist T := T1 ∪ T2.

• Damit folgt:
∑

s∈T v(s) = z.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 10 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

NP-Vollständigkeit von Teilmengen-Summe

Behauptung: Wenn F erfüllbar ist, dann gibt es T ⊆ S mit
∑

ai∈T v(ai) = z.

• Sei w eine erfüllende Belegung für F.

• Wir definieren:

T1 :=
{

ti
∣∣∣∣ w(pi) = 1, 1 ≤ i ≤ m

}
∪

{
fi
∣∣∣∣ w(pi) = 0, 1 ≤ i ≤ m

}

• Sei ri jeweils die Zahl der von w erfüllten Literale in Ci. (Offenbar ist ri ≥ 1 für alle i.)
Wir definieren:

T2 :=
{
mi,j
∣∣∣ 1 ≤ i ≤ k, 1 ≤ j ≤ |Ci| − ri

}
• Die gesuchte Menge von Gegenständen ist T := T1 ∪ T2.

• Damit folgt:
∑

s∈T v(s) = z.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 10 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

NP-Vollständigkeit von Teilmengen-Summe

Behauptung: Wenn F erfüllbar ist, dann gibt es T ⊆ S mit
∑

ai∈T v(ai) = z.

• Sei w eine erfüllende Belegung für F.

• Wir definieren:

T1 :=
{

ti
∣∣∣∣ w(pi) = 1, 1 ≤ i ≤ m

}
∪

{
fi
∣∣∣∣ w(pi) = 0, 1 ≤ i ≤ m

}

• Sei ri jeweils die Zahl der von w erfüllten Literale in Ci. (Offenbar ist ri ≥ 1 für alle i.)
Wir definieren:

T2 :=
{
mi,j
∣∣∣ 1 ≤ i ≤ k, 1 ≤ j ≤ |Ci| − ri

}
• Die gesuchte Menge von Gegenständen ist T := T1 ∪ T2.

• Damit folgt:
∑

s∈T v(s) = z.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 10 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

NP-Vollständigkeit von Teilmengen-Summe

Behauptung: Wenn F erfüllbar ist, dann gibt es T ⊆ S mit
∑

ai∈T v(ai) = z.

• Sei w eine erfüllende Belegung für F.

• Wir definieren:

T1 :=
{

ti
∣∣∣∣ w(pi) = 1, 1 ≤ i ≤ m

}
∪

{
fi
∣∣∣∣ w(pi) = 0, 1 ≤ i ≤ m

}

• Sei ri jeweils die Zahl der von w erfüllten Literale in Ci. (Offenbar ist ri ≥ 1 für alle i.)
Wir definieren:

T2 :=
{
mi,j
∣∣∣ 1 ≤ i ≤ k, 1 ≤ j ≤ |Ci| − ri

}

• Die gesuchte Menge von Gegenständen ist T := T1 ∪ T2.

• Damit folgt:
∑

s∈T v(s) = z.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 10 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

NP-Vollständigkeit von Teilmengen-Summe

Behauptung: Wenn F erfüllbar ist, dann gibt es T ⊆ S mit
∑

ai∈T v(ai) = z.

• Sei w eine erfüllende Belegung für F.

• Wir definieren:

T1 :=
{

ti
∣∣∣∣ w(pi) = 1, 1 ≤ i ≤ m

}
∪

{
fi
∣∣∣∣ w(pi) = 0, 1 ≤ i ≤ m

}

• Sei ri jeweils die Zahl der von w erfüllten Literale in Ci. (Offenbar ist ri ≥ 1 für alle i.)
Wir definieren:

T2 :=
{
mi,j
∣∣∣ 1 ≤ i ≤ k, 1 ≤ j ≤ |Ci| − ri

}
• Die gesuchte Menge von Gegenständen ist T := T1 ∪ T2.

• Damit folgt:
∑

s∈T v(s) = z.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 10 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

NP-Vollständigkeit von Teilmengen-Summe

Behauptung: Gibt es T ⊆ S mit
∑

ai∈T v(ai) = z, dann ist F erfüllbar.

Sei T ⊆ S die gesuchte Menge mit
∑

s∈T v(s) = z.

Wir definieren w(pi) =

1 falls ti ∈ T,

0 falls fi ∈ T.

Die Belegung w ist wohldefiniert, da für alle i gilt:

ti ∈ T oder fi ∈ T, aber nicht beides.

Außerdem muss für jede Klausel ein Literal auf 1 abgebildet werden, da die
entsprechenden Hilfszahlen mi,j ∈ S zusammen nicht die geforderte Zahl an Literalen
pro Klausel erreichen. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 11 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

NP-Vollständigkeit von Teilmengen-Summe

Behauptung: Gibt es T ⊆ S mit
∑

ai∈T v(ai) = z, dann ist F erfüllbar.

Sei T ⊆ S die gesuchte Menge mit
∑

s∈T v(s) = z.

Wir definieren w(pi) =

1 falls ti ∈ T,

0 falls fi ∈ T.

Die Belegung w ist wohldefiniert, da für alle i gilt:

ti ∈ T oder fi ∈ T, aber nicht beides.

Außerdem muss für jede Klausel ein Literal auf 1 abgebildet werden, da die
entsprechenden Hilfszahlen mi,j ∈ S zusammen nicht die geforderte Zahl an Literalen
pro Klausel erreichen. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 11 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

NP-Vollständigkeit von Teilmengen-Summe

Behauptung: Gibt es T ⊆ S mit
∑

ai∈T v(ai) = z, dann ist F erfüllbar.

Sei T ⊆ S die gesuchte Menge mit
∑

s∈T v(s) = z.

Wir definieren w(pi) =

1 falls ti ∈ T,

0 falls fi ∈ T.

Die Belegung w ist wohldefiniert, da für alle i gilt:

ti ∈ T oder fi ∈ T, aber nicht beides.

Außerdem muss für jede Klausel ein Literal auf 1 abgebildet werden, da die
entsprechenden Hilfszahlen mi,j ∈ S zusammen nicht die geforderte Zahl an Literalen
pro Klausel erreichen. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 11 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

NP-Vollständigkeit von Teilmengen-Summe

Behauptung: Gibt es T ⊆ S mit
∑

ai∈T v(ai) = z, dann ist F erfüllbar.

Sei T ⊆ S die gesuchte Menge mit
∑

s∈T v(s) = z.

Wir definieren w(pi) =

1 falls ti ∈ T,

0 falls fi ∈ T.

Die Belegung w ist wohldefiniert, da für alle i gilt:

ti ∈ T oder fi ∈ T, aber nicht beides.

Außerdem muss für jede Klausel ein Literal auf 1 abgebildet werden, da die
entsprechenden Hilfszahlen mi,j ∈ S zusammen nicht die geforderte Zahl an Literalen
pro Klausel erreichen. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 11 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Das Rucksack-Problem

Rucksack (Knapsack)

Gegeben: Eine Menge von Gegenständen G = {a1, . . . , an}, wobei jedem Gegenstand
ai ein Wert v(ai) und ein Gewicht g(ai) zugeordnet ist; außerdem ein Mindestwert w
und ein Gewichtslimit ℓ.

Frage: Gibt es eine Teilmenge T ⊆ G, so dass

•
∑

a∈T g(a) ≤ ℓ und

•
∑

a∈T v(a) ≥ w?

Satz: Rucksack ist NP-vollständig.

Beweis:

(1) Rucksack ∈ NP: Das Zertifikat ist T

(2) Rucksack ist NP-schwer:
durch Reduktion Teilmengen-Summe ≤p Rucksack

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 12 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Das Rucksack-Problem

Rucksack (Knapsack)

Gegeben: Eine Menge von Gegenständen G = {a1, . . . , an}, wobei jedem Gegenstand
ai ein Wert v(ai) und ein Gewicht g(ai) zugeordnet ist; außerdem ein Mindestwert w
und ein Gewichtslimit ℓ.

Frage: Gibt es eine Teilmenge T ⊆ G, so dass

•
∑

a∈T g(a) ≤ ℓ und

•
∑

a∈T v(a) ≥ w?

Satz: Rucksack ist NP-vollständig.

Beweis:

(1) Rucksack ∈ NP: Das Zertifikat ist T

(2) Rucksack ist NP-schwer:
durch Reduktion Teilmengen-Summe ≤p Rucksack

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 12 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Das Rucksack-Problem

Rucksack (Knapsack)

Gegeben: Eine Menge von Gegenständen G = {a1, . . . , an}, wobei jedem Gegenstand
ai ein Wert v(ai) und ein Gewicht g(ai) zugeordnet ist; außerdem ein Mindestwert w
und ein Gewichtslimit ℓ.

Frage: Gibt es eine Teilmenge T ⊆ G, so dass

•
∑

a∈T g(a) ≤ ℓ und

•
∑

a∈T v(a) ≥ w?

Satz: Rucksack ist NP-vollständig.

Beweis:

(1) Rucksack ∈ NP: Das Zertifikat ist T

(2) Rucksack ist NP-schwer:
durch Reduktion Teilmengen-Summe ≤p Rucksack

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 12 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Teilmengen-Summe ≤p Rucksack

Gegeben: Eine Instanz von Teilmengen-Summe
(Menge von Gegenständen S = {a1, . . . , an} mit Wert v(ai); gewünschte Zahl z)

Daraus konstruieren wir:

• G := {1, . . . , n}: Menge der Gegenstände

• Für alle i ∈ G setzen wir: v(i) = g(i) = v(ai)
• Zielwert w := z und Gewichtslimit ℓ := z

Offensichtlich ist diese Übersetzung polynomiell.

Damit gilt für jede Teilmenge T ⊆ G:

∑
i∈T

v(ai) = z gdw.

∑
i∈T v(i) ≥ w = z∑
i∈T g(i) ≤ ℓ = z

{ Die Reduktion ist korrekt. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 13 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Teilmengen-Summe ≤p Rucksack

Gegeben: Eine Instanz von Teilmengen-Summe
(Menge von Gegenständen S = {a1, . . . , an} mit Wert v(ai); gewünschte Zahl z)

Daraus konstruieren wir:

• G := {1, . . . , n}: Menge der Gegenstände

• Für alle i ∈ G setzen wir: v(i) = g(i) = v(ai)
• Zielwert w := z und Gewichtslimit ℓ := z

Offensichtlich ist diese Übersetzung polynomiell.

Damit gilt für jede Teilmenge T ⊆ G:

∑
i∈T

v(ai) = z gdw.

∑
i∈T v(i) ≥ w = z∑
i∈T g(i) ≤ ℓ = z

{ Die Reduktion ist korrekt. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 13 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Teilmengen-Summe ≤p Rucksack

Gegeben: Eine Instanz von Teilmengen-Summe
(Menge von Gegenständen S = {a1, . . . , an} mit Wert v(ai); gewünschte Zahl z)

Daraus konstruieren wir:

• G := {1, . . . , n}: Menge der Gegenstände

• Für alle i ∈ G setzen wir: v(i) = g(i) = v(ai)
• Zielwert w := z und Gewichtslimit ℓ := z

Offensichtlich ist diese Übersetzung polynomiell.

Damit gilt für jede Teilmenge T ⊆ G:

∑
i∈T

v(ai) = z gdw.

∑
i∈T v(i) ≥ w = z∑
i∈T g(i) ≤ ℓ = z

{ Die Reduktion ist korrekt. □

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 13 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: P & NP & Reduktionen

• SAT: Gegeben eine aussagenlogische Formel, ist diese erfüllbar?
• Rucksack: Gegeben eine Menge von Gegenständen G jeweils mit Wert und Gewicht, ein

Mindestwert w und ein Gewichtslimit ℓ, gibt es eine Teilmenge T ⊆ G, sodass die Gegenstände in
T mindestens Wert w erreichen, ohne Gewicht ℓ zu überschreiten?

• CLIQUE: Gegeben ein Graph G und eine Zahl k, hat G eine Clique (einen Teilgraphen, bei dem
alle Knoten miteinander verbunden sind) der Größe k?

Hinweis: Die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge ist
(
n
k

)
= n!

k!(n−k)! .

Quiz: Welche der folgenden Aussagen sind wahr? . . .

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 14 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Pseudopolynomielle Probleme

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 15 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Eine polynomielle Lösung für Rucksack

Mittels dynamischer Programmierung kann man Rucksack in der Zeit O(nℓ) lösen

Initialisierung:
Erzeuge eine (ℓ + 1) × (n + 1)-Matrix M

Setze M(g, 0) = M(0, i) = 0 für alle 1 ≤ g ≤ ℓ und 1 ≤ i ≤ n.

Berechnung: Für i = 0, 1, . . . , n − 1 berechne M(g, i + 1) als

M(g, i + 1) := max
(
M(g, i), M(g − g(i + 1), i) + v(i + 1)

)
(Falls g − g(i + 1) < 0, dann verwenden wir immer M(g, i).)

M(g, i) . . . „größter Gesamtwert unter den ersten i Gegenständen
bei Einhaltung des Gewichtslimits g“

Akzeptanz: Akzeptiere, falls M einen Eintrag ≥ w hat.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 16 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

Eingabe: G := {1, 2, 3, 4} mit

Werten: v(1) := 1 v(2) := 3 v(3) := 4 v(4) := 2
Gewichten: g(1) := 1 g(2) := 1 g(3) := 3 g(4) := 2

Gewichtslimit: ℓ := 5 Mindestwert: w := 7

Gewichts- max. Wert für ≤ i Gegenstände

limit g i = 0 i = 1 i = 2 i = 3 i = 4

0

0 0 0 0 0

1

0 1 3 3 3

2

0 1 4 4 4

3

0 1 4 4 5

4

0 1 4 7 7

5

0 1 4 8 8

Initialisiere M(g, 0) = M(0, i) = 0 für alle 1 ≤ g ≤ ℓ und 1 ≤ i ≤ n.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 17 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

Eingabe: G := {1, 2, 3, 4} mit

Werten: v(1) := 1 v(2) := 3 v(3) := 4 v(4) := 2
Gewichten: g(1) := 1 g(2) := 1 g(3) := 3 g(4) := 2

Gewichtslimit: ℓ := 5 Mindestwert: w := 7

Gewichts- max. Wert für ≤ i Gegenstände

limit g i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0

1 3 3 3

2 0

1 4 4 4

3 0

1 4 4 5

4 0

1 4 7 7

5 0

1 4 8 8

Initialisiere M(g, 0) = M(0, i) = 0 für alle 1 ≤ g ≤ ℓ und 1 ≤ i ≤ n.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 17 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Eine polynomielle Lösung für Rucksack

Mittels dynamischer Programmierung kann man Rucksack in der Zeit O(nℓ) lösen

Initialisierung:
Erzeuge eine (ℓ + 1) × (n + 1)-Matrix M

Setze M(g, 0) = M(0, i) = 0 für alle 1 ≤ g ≤ ℓ und 1 ≤ i ≤ n.

Berechnung: Für i = 0, 1, . . . , n − 1 berechne M(g, i + 1) als

M(g, i + 1) := max
(
M(g, i), M(g − g(i + 1), i) + v(i + 1)

)
(Falls g − g(i + 1) < 0, dann verwenden wir immer M(g, i).)

M(g, i) . . . „größter Gesamtwert unter den ersten i Gegenständen
bei Einhaltung des Gewichtslimits g“

Akzeptanz: Akzeptiere, falls M einen Eintrag ≥ w hat.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 18 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Eine polynomielle Lösung für Rucksack

Mittels dynamischer Programmierung kann man Rucksack in der Zeit O(nℓ) lösen

Initialisierung:
Erzeuge eine (ℓ + 1) × (n + 1)-Matrix M

Setze M(g, 0) = M(0, i) = 0 für alle 1 ≤ g ≤ ℓ und 1 ≤ i ≤ n.

Berechnung: Für i = 0, 1, . . . , n − 1 berechne M(g, i + 1) als

M(g, i + 1) := max
(
M(g, i), M(g − g(i + 1), i) + v(i + 1)

)
(Falls g − g(i + 1) < 0, dann verwenden wir immer M(g, i).)

M(g, i) . . . „größter Gesamtwert unter den ersten i Gegenständen
bei Einhaltung des Gewichtslimits g“

Akzeptanz: Akzeptiere, falls M einen Eintrag ≥ w hat.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 18 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

Eingabe: G := {1, 2, 3, 4} mit

Werten: v(1) := 1 v(2) := 3 v(3) := 4 v(4) := 2
Gewichten: g(1) := 1 g(2) := 1 g(3) := 3 g(4) := 2

Gewichtslimit: ℓ := 5 Mindestwert: w := 7

Gewichts- max. Wert für ≤ i Gegenstände

limit g i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0

1 3 3 3

2 0

1 4 4 4

3 0

1 4 4 5

4 0

1 4 7 7

5 0

1 4 8 8

M(g, i + 1) := max
(
M(g, i), M(g − g(i + 1), i) + v(i + 1)

)
Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 19 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

Eingabe: G := {1, 2, 3, 4} mit

Werten: v(1) := 1 v(2) := 3 v(3) := 4 v(4) := 2
Gewichten: g(1) := 1 g(2) := 1 g(3) := 3 g(4) := 2

Gewichtslimit: ℓ := 5 Mindestwert: w := 7

Gewichts- max. Wert für ≤ i Gegenstände

limit g i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0 1

3 3 3

2 0 1

4 4 4

3 0 1

4 4 5

4 0 1

4 7 7

5 0 1

4 8 8

M(g, i + 1) := max
(
M(g, i), M(g − g(i + 1), i) + v(i + 1)

)
Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 19 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

Eingabe: G := {1, 2, 3, 4} mit

Werten: v(1) := 1 v(2) := 3 v(3) := 4 v(4) := 2
Gewichten: g(1) := 1 g(2) := 1 g(3) := 3 g(4) := 2

Gewichtslimit: ℓ := 5 Mindestwert: w := 7

Gewichts- max. Wert für ≤ i Gegenstände

limit g i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0 1 3

3 3

2 0 1

4 4 4

3 0 1

4 4 5

4 0 1

4 7 7

5 0 1

4 8 8

M(g, i + 1) := max
(
M(g, i), M(g − g(i + 1), i) + v(i + 1)

)
Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 19 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

Eingabe: G := {1, 2, 3, 4} mit

Werten: v(1) := 1 v(2) := 3 v(3) := 4 v(4) := 2
Gewichten: g(1) := 1 g(2) := 1 g(3) := 3 g(4) := 2

Gewichtslimit: ℓ := 5 Mindestwert: w := 7

Gewichts- max. Wert für ≤ i Gegenstände

limit g i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0 1 3

3 3

2 0 1 4

4 4

3 0 1

4 4 5

4 0 1

4 7 7

5 0 1

4 8 8

M(g, i + 1) := max
(
M(g, i), M(g − g(i + 1), i) + v(i + 1)

)
Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 19 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

Eingabe: G := {1, 2, 3, 4} mit

Werten: v(1) := 1 v(2) := 3 v(3) := 4 v(4) := 2
Gewichten: g(1) := 1 g(2) := 1 g(3) := 3 g(4) := 2

Gewichtslimit: ℓ := 5 Mindestwert: w := 7

Gewichts- max. Wert für ≤ i Gegenstände

limit g i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0 1 3

3 3

2 0 1 4

4 4

3 0 1 4

4 5

4 0 1

4 7 7

5 0 1

4 8 8

M(g, i + 1) := max
(
M(g, i), M(g − g(i + 1), i) + v(i + 1)

)
Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 19 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

Eingabe: G := {1, 2, 3, 4} mit

Werten: v(1) := 1 v(2) := 3 v(3) := 4 v(4) := 2
Gewichten: g(1) := 1 g(2) := 1 g(3) := 3 g(4) := 2

Gewichtslimit: ℓ := 5 Mindestwert: w := 7

Gewichts- max. Wert für ≤ i Gegenstände

limit g i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0 1 3

3 3

2 0 1 4

4 4

3 0 1 4

4 5

4 0 1 4

7 7

5 0 1

4 8 8

M(g, i + 1) := max
(
M(g, i), M(g − g(i + 1), i) + v(i + 1)

)
Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 19 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

Eingabe: G := {1, 2, 3, 4} mit

Werten: v(1) := 1 v(2) := 3 v(3) := 4 v(4) := 2
Gewichten: g(1) := 1 g(2) := 1 g(3) := 3 g(4) := 2

Gewichtslimit: ℓ := 5 Mindestwert: w := 7

Gewichts- max. Wert für ≤ i Gegenstände

limit g i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0 1 3

3 3

2 0 1 4

4 4

3 0 1 4

4 5

4 0 1 4

7 7

5 0 1 4

8 8

M(g, i + 1) := max
(
M(g, i), M(g − g(i + 1), i) + v(i + 1)

)
Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 19 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel

Eingabe: G := {1, 2, 3, 4} mit

Werten: v(1) := 1 v(2) := 3 v(3) := 4 v(4) := 2
Gewichten: g(1) := 1 g(2) := 1 g(3) := 3 g(4) := 2

Gewichtslimit: ℓ := 5 Mindestwert: w := 7

Gewichts- max. Wert für ≤ i Gegenstände

limit g i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0 1 3 3 3

2 0 1 4 4 4

3 0 1 4 4 5

4 0 1 4 7 7

5 0 1 4 8 8

M(g, i + 1) := max
(
M(g, i), M(g − g(i + 1), i) + v(i + 1)

)
Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 19 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

P = NP?

Zusammenfassung:

• Rucksack ist NP-vollständig

• Rucksack ist mittels Dynamischer Programmierung in Zeit O(nℓ) lösbar

Rucksack (Knapsack)

Gegeben: Eine Menge von Gegenständen G = {a1, . . . , an}, wobei jedem Gegenstand
ai ein Wert v(ai) und ein Gewicht g(ai) zugeordnet ist; außerdem ein Mindestwert w
und ein Gewichtslimit ℓ.

Frage: Gibt es eine Teilmenge T ⊆ G, so dass

•
∑

a∈T g(a) ≤ ℓ und

•
∑

a∈T v(a) ≥ w?

Haben wir also gezeigt, dass P = NP?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 20 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

P = NP?

Zusammenfassung:

• Rucksack ist NP-vollständig

• Rucksack ist mittels Dynamischer Programmierung in Zeit O(nℓ) lösbar

Rucksack (Knapsack)

Gegeben: Eine Menge von Gegenständen G = {a1, . . . , an}, wobei jedem Gegenstand
ai ein Wert v(ai) und ein Gewicht g(ai) zugeordnet ist; außerdem ein Mindestwert w
und ein Gewichtslimit ℓ.

Frage: Gibt es eine Teilmenge T ⊆ G, so dass

•
∑

a∈T g(a) ≤ ℓ und

•
∑

a∈T v(a) ≥ w?

Haben wir also gezeigt, dass P = NP?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 20 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Pseudopolynomielle Probleme

Unser Algorithmus zeigt nicht Rucksack ∈ P!

• Die Eingabe von Rucksack hat die Länge O(n + log w + log ℓ).
• Die Zeit O(nℓ) ist daher nicht polynomiell bzgl. der Eingabelänge.

Ein Problem ist in pseudopolynomieller Zeit, wenn es durch eine DTM gelöst wird, die
polynomiell zeitbeschränkt ist bzgl. der Eingabelänge und des Betrages aller Zahlen in
der Eingabe.

Äquivalent: Ein Problem ist pseudopolynomiell, wenn es in PTime liegt, wenn man alle
Zahlen unär kodiert.

Beispiel: Rucksack ist pseudopolynomiell: Beschränkt man das Problem auf Instan-
zen mit ℓ ≤ p(n) für ein Polynom p, so erhält man ein Problem in P (wobei n die Zahl
der Gegenstände ist).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 21 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Pseudopolynomielle Probleme

Unser Algorithmus zeigt nicht Rucksack ∈ P!

• Die Eingabe von Rucksack hat die Länge O(n + log w + log ℓ).
• Die Zeit O(nℓ) ist daher nicht polynomiell bzgl. der Eingabelänge.

Ein Problem ist in pseudopolynomieller Zeit, wenn es durch eine DTM gelöst wird, die
polynomiell zeitbeschränkt ist bzgl. der Eingabelänge und des Betrages aller Zahlen in
der Eingabe.

Äquivalent: Ein Problem ist pseudopolynomiell, wenn es in PTime liegt, wenn man alle
Zahlen unär kodiert.

Beispiel: Rucksack ist pseudopolynomiell: Beschränkt man das Problem auf Instan-
zen mit ℓ ≤ p(n) für ein Polynom p, so erhält man ein Problem in P (wobei n die Zahl
der Gegenstände ist).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 21 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Pseudopolynomielle Probleme

Unser Algorithmus zeigt nicht Rucksack ∈ P!

• Die Eingabe von Rucksack hat die Länge O(n + log w + log ℓ).
• Die Zeit O(nℓ) ist daher nicht polynomiell bzgl. der Eingabelänge.

Ein Problem ist in pseudopolynomieller Zeit, wenn es durch eine DTM gelöst wird, die
polynomiell zeitbeschränkt ist bzgl. der Eingabelänge und des Betrages aller Zahlen in
der Eingabe.

Äquivalent: Ein Problem ist pseudopolynomiell, wenn es in PTime liegt, wenn man alle
Zahlen unär kodiert.

Beispiel: Rucksack ist pseudopolynomiell: Beschränkt man das Problem auf Instan-
zen mit ℓ ≤ p(n) für ein Polynom p, so erhält man ein Problem in P (wobei n die Zahl
der Gegenstände ist).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 21 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Starke NP-Vollständigkeit

Probleme, welche selbst dann noch NP-vollständig sind, wenn man alle Zahlen unär
kodiert, heißen stark NP-vollständig.

Beispiele:

• SAT ist stark NP-vollständig (keine Zahlen in der Eingabe)

• CLIQUE ist stark NP-vollständig

• . . .

Beispiele:

• Rucksack ist pseudopolynomiell

• Teilmengen-Summe ist pseudopolynomiell

Anmerkung: Die Reduktion SAT ≤p Teilmengen-Summe erzeugt eine polynomielle
Instanz, bei der die Beträge der Zahlen exponentiell groß sind.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 22 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Starke NP-Vollständigkeit

Probleme, welche selbst dann noch NP-vollständig sind, wenn man alle Zahlen unär
kodiert, heißen stark NP-vollständig.

Beispiele:

• SAT ist stark NP-vollständig (keine Zahlen in der Eingabe)

• CLIQUE ist stark NP-vollständig

• . . .

Beispiele:

• Rucksack ist pseudopolynomiell

• Teilmengen-Summe ist pseudopolynomiell

Anmerkung: Die Reduktion SAT ≤p Teilmengen-Summe erzeugt eine polynomielle
Instanz, bei der die Beträge der Zahlen exponentiell groß sind.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 22 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Starke NP-Vollständigkeit

Probleme, welche selbst dann noch NP-vollständig sind, wenn man alle Zahlen unär
kodiert, heißen stark NP-vollständig.

Beispiele:

• SAT ist stark NP-vollständig (keine Zahlen in der Eingabe)

• CLIQUE ist stark NP-vollständig

• . . .

Beispiele:

• Rucksack ist pseudopolynomiell

• Teilmengen-Summe ist pseudopolynomiell

Anmerkung: Die Reduktion SAT ≤p Teilmengen-Summe erzeugt eine polynomielle
Instanz, bei der die Beträge der Zahlen exponentiell groß sind.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 22 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Starke NP-Vollständigkeit

Probleme, welche selbst dann noch NP-vollständig sind, wenn man alle Zahlen unär
kodiert, heißen stark NP-vollständig.

Beispiele:

• SAT ist stark NP-vollständig (keine Zahlen in der Eingabe)

• CLIQUE ist stark NP-vollständig

• . . .

Beispiele:

• Rucksack ist pseudopolynomiell

• Teilmengen-Summe ist pseudopolynomiell

Anmerkung: Die Reduktion SAT ≤p Teilmengen-Summe erzeugt eine polynomielle
Instanz, bei der die Beträge der Zahlen exponentiell groß sind.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 22 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Fake-News erkennen (1)

Immer wieder gibt es Berichte darüber, dass irgendein neuartiges Berechnungsmodell
oder ausgefallene physikalische Anordnung NP-vollständige Probleme in polynomieller
Zeit lösen könne . . .

{ Meist lässt sich leicht sehen, wo der Fehler liegt.

Typische Kontrollfragen:

Ist das Problem pseudopolynomiell?
Wie sind Zahlenbeträge kodiert?

Beispiel: Molekulare Anordnungen zum Lösen von Teilmengen-Summe, wobei Zah-
len durch eine entsprechende Zahl an Molekülen kodiert werden.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 23 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Fake-News erkennen (1)

Immer wieder gibt es Berichte darüber, dass irgendein neuartiges Berechnungsmodell
oder ausgefallene physikalische Anordnung NP-vollständige Probleme in polynomieller
Zeit lösen könne . . .

{ Meist lässt sich leicht sehen, wo der Fehler liegt.

Typische Kontrollfragen:

Ist das Problem pseudopolynomiell?
Wie sind Zahlenbeträge kodiert?

Beispiel: Molekulare Anordnungen zum Lösen von Teilmengen-Summe, wobei Zah-
len durch eine entsprechende Zahl an Molekülen kodiert werden.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 23 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Fake-News erkennen (2)

Immer wieder gibt es Berichte darüber, dass irgendein neuartiges Berechnungsmodell
oder ausgefallene physikalische Anordnung NP-vollständige Probleme in polynomieller
Zeit lösen könne . . .

{ Meist lässt sich leicht sehen, wo der Fehler liegt.

Typische Kontrollfragen:

Wächst der neuartige Computer mit dem Problem?
Ist dieses Wachstum exponentiell?

Beispiel: DNS-Rechner lösen Optimierungsaufgaben, aber müssen alle (exponentiell
viele) möglichen Lösungen als DNS-Sequenz kodieren.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 24 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Fake-News erkennen (3)

Immer wieder gibt es Berichte darüber, dass irgendein neuartiges Berechnungsmodell
oder ausgefallene physikalische Anordnung NP-vollständige Probleme in polynomieller
Zeit lösen könne . . .

{ Meist lässt sich leicht sehen, wo der Fehler liegt.

Typische Kontrollfragen:

Wird das Problem wirklich gelöst oder handelt es sich eher um ein Approximationsver-
fahren?
Ist klar, was ein „Berechnungsschritt“ ist und ist deren Zahl wirklich polynomiell?

Beispiel: Ein Schaltkreis mit Rückkopplungen, welcher „in der Regel“ zu einer „guten“
Lösung eines NP-vollständigen Problems konvergiert, und das „nach kurzer Zeit.“

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 25 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

NP und andere Klassen

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 26 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

P vs. NP

Bis heute ist nicht bekannt, ob P , NP gilt oder nicht.

• Intuitiv gefragt: „Wenn es einfach ist, eine mögliche Lösung für ein Problem zu
prüfen, ist es dann auch einfach, eine zu finden?“

• Übertrieben: „Can creativity be automated?“ (Wigderson, 2006)

• Seit über 40 Jahren ungelöst

• Eines der größten offenen Probleme der Informatik und Mathematik unserer Zeit

• 1.000.000 USD Preisgeld für die Lösung
(„Millenium Problem“)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 27 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Mögliche Konsequenzen

Falls P = NP, dann gilt

• NP = coNP (warum?)

• und jedes nichttriviale Problem in P ist NP-vollständig (warum?)

Falls P , NP, dann gilt

• P , coNP (warum?)

• L , NP (warum?)

• P , PSpace (warum?)

• kein NP-vollständiges Problem ist in P (warum?)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 28 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Mögliche Konsequenzen

Falls P = NP, dann gilt

• NP = coNP (warum?)

• und jedes nichttriviale Problem in P ist NP-vollständig (warum?)

Falls P , NP, dann gilt

• P , coNP (warum?)

• L , NP (warum?)

• P , PSpace (warum?)

• kein NP-vollständiges Problem ist in P (warum?)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 28 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Noch schwerere Fragen

Selbst wenn P , NP bewiesen werden sollte, gäbe es noch viele offene Fragen . . .

NP = coNP? Falls es für die lösbaren Instanzen eines Problems kurze Zertifikate gibt,
gibt es dann immer auch kurze Zertifikate für die Unlösbarkeit von Instanzen?

• Die meisten Expert:innen glauben das nicht.

• Falls die Antwort „nein“ lautet, dann folgt P , NP.

P = NP ∩ coNP? Falls es für die Lösbarkeit und die Unlösbarkeit eines Problems kurze
Zertifikate gibt, ist das Problem dann effizient lösbar?

• Die meisten Expert:innen glauben das nicht.

• Falls die Antwort „nein“ lautet, dann folgt P , NP.

• Ist die Antwort „ja“ und zudem P , NP, so folgt NP , coNP.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 29 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Noch schwerere Fragen

Selbst wenn P , NP bewiesen werden sollte, gäbe es noch viele offene Fragen . . .

NP = coNP? Falls es für die lösbaren Instanzen eines Problems kurze Zertifikate gibt,
gibt es dann immer auch kurze Zertifikate für die Unlösbarkeit von Instanzen?

• Die meisten Expert:innen glauben das nicht.

• Falls die Antwort „nein“ lautet, dann folgt P , NP.

P = NP ∩ coNP? Falls es für die Lösbarkeit und die Unlösbarkeit eines Problems kurze
Zertifikate gibt, ist das Problem dann effizient lösbar?

• Die meisten Expert:innen glauben das nicht.

• Falls die Antwort „nein“ lautet, dann folgt P , NP.

• Ist die Antwort „ja“ und zudem P , NP, so folgt NP , coNP.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 29 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Noch schwerere Fragen

Selbst wenn P , NP bewiesen werden sollte, gäbe es noch viele offene Fragen . . .

NP = coNP? Falls es für die lösbaren Instanzen eines Problems kurze Zertifikate gibt,
gibt es dann immer auch kurze Zertifikate für die Unlösbarkeit von Instanzen?

• Die meisten Expert:innen glauben das nicht.

• Falls die Antwort „nein“ lautet, dann folgt P , NP.

P = NP ∩ coNP? Falls es für die Lösbarkeit und die Unlösbarkeit eines Problems kurze
Zertifikate gibt, ist das Problem dann effizient lösbar?

• Die meisten Expert:innen glauben das nicht.

• Falls die Antwort „nein“ lautet, dann folgt P , NP.

• Ist die Antwort „ja“ und zudem P , NP, so folgt NP , coNP.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 29 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Der Satz von Ladner

Drei mögliche Welten:

(1) P = NP: Jedes NP-vollständige Problem ist in P.

(2) P , NP: Kein NP-vollständiges Problem ist in P.
(2.a) Jedes NP-Problem, welches nicht NP-vollständig ist, liegt in P.
(2.b) Es gibt Probleme, die nicht NP-vollständig sind und dennoch nicht in P liegen.

Richard E. Ladner hat gezeigt, dass Fall (2.a) unmöglich ist:

Satz (Ladner): Falls P , NP, dann gibt es Probleme in NP, die weder NP-vollständig
sind noch in P liegen.

Diese Probleme heißen NP-intermediate – wenn P , NP gilt, dann sollte es viele davon
geben . . . aber wir kennen kaum Kandidaten:

• Faktorisierung (Faktor-7 und ähnliche).

• Ermitteln, ob zwei Graphen isomorph (gleich bis auf Umbenennung) sind.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 30 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Der Satz von Ladner

Drei mögliche Welten:

(1) P = NP: Jedes NP-vollständige Problem ist in P.

(2) P , NP: Kein NP-vollständiges Problem ist in P.
(2.a) Jedes NP-Problem, welches nicht NP-vollständig ist, liegt in P.
(2.b) Es gibt Probleme, die nicht NP-vollständig sind und dennoch nicht in P liegen.

Richard E. Ladner hat gezeigt, dass Fall (2.a) unmöglich ist:

Satz (Ladner): Falls P , NP, dann gibt es Probleme in NP, die weder NP-vollständig
sind noch in P liegen.

Diese Probleme heißen NP-intermediate

– wenn P , NP gilt, dann sollte es viele davon
geben . . . aber wir kennen kaum Kandidaten:

• Faktorisierung (Faktor-7 und ähnliche).

• Ermitteln, ob zwei Graphen isomorph (gleich bis auf Umbenennung) sind.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 30 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Der Satz von Ladner

Drei mögliche Welten:

(1) P = NP: Jedes NP-vollständige Problem ist in P.

(2) P , NP: Kein NP-vollständiges Problem ist in P.
(2.a) Jedes NP-Problem, welches nicht NP-vollständig ist, liegt in P.
(2.b) Es gibt Probleme, die nicht NP-vollständig sind und dennoch nicht in P liegen.

Richard E. Ladner hat gezeigt, dass Fall (2.a) unmöglich ist:

Satz (Ladner): Falls P , NP, dann gibt es Probleme in NP, die weder NP-vollständig
sind noch in P liegen.

Diese Probleme heißen NP-intermediate – wenn P , NP gilt, dann sollte es viele davon
geben . . . aber wir kennen kaum Kandidaten:

• Faktorisierung (Faktor-7 und ähnliche).

• Ermitteln, ob zwei Graphen isomorph (gleich bis auf Umbenennung) sind.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 30 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zusammenfassung und Ausblick

SAT ≤p Teilmengen-Summe ≤p Rucksack

Pseudopolynomielle Probleme werden einfacher, wenn man den Betrag der Zahlen in
der Eingabe polynomiell beschränkt.

Offene Fragen (geordnet von „leicht“ nach schwer): „L , NP?“, „P , PSpace?“,
„P , NP?“, „NP , coNP?“ „P , NP ∩ coNP?“

Es sollte eigentlich eine Menge Probleme geben, die weder in P liegen, noch
NP-vollständig sind.

Was erwartet uns als nächstes?

• NL

• Komplexität jenseits von NP

• Spiele

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 31 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

