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NP-vollstdndige Probleme

Polynomialzeit-Reduktion: P <, Q

NP-vollstandige Probleme:

Probleme, die mindestens so schwer sind wie alle anderen Probleme in NP.

Cook und Levin hatten gezeigt:

Wortproblem Polyzeit-NTM <, SAT
Bisher haben wir gezeigt:

SAT <, CLIQUE <, Unabhangige Menge

Sp
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Probleme mit Gewichten und Zahlen
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Teilmengen-Summe

Teilmengen-Summe (subset sum)

Gegeben: Eine Menge von Gegenstanden S = {ay,...,a,}, wobei jedem Gegenstand
a; ein Wert v(a;) zugeordnet ist; eine gewlinschte Zahl z

Frage: Gibt es eine Teilmenge 7T C S mit 3,y v(a) = z?

Anmerkung: Mehrere Gegenstande kdnnen gleiche Werte haben.
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Teilmengen-Summe

Teilmengen-Summe (subset sum)

Gegeben: Eine Menge von Gegenstanden S = {ay,...,a,}, wobei jedem Gegenstand
a; ein Wert v(a;) zugeordnet ist; eine gewlinschte Zahl z

Frage: Gibt es eine Teilmenge 7T C S mit 3,y v(a) = z?

Anmerkung: Mehrere Gegenstande kdnnen gleiche Werte haben.

Satz: Teilmengen-Summe ist NP-vollstéandig.

Beweis:
(1) Teilmengen-Summe < NP haben wir bereits festgestellt.

(2) NP-Schwere zeigen wir durch Reduktion SAT <, Teilmengen-Summe.
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SAT <, Teilmengen-Summe

Gegeben: Formel F = (C; A --- A Cy) in KNF
(0.B.d.A. mit maximal 9 Literalen pro Klausel)
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SAT <, Teilmengen-Summe

Gegeben: Formel F = (C; A --- A Cy) in KNF
(0.B.d.A. mit maximal 9 Literalen pro Klausel)

Seien py, ..., p, die Variablen in F.

Far jedes p; definieren wir Gegenstande r; und f;:

1
aj =
j
0
w(t;) :==ay---aycr--- ¢ wobei
1
=

i=j
i#+]
pi kommt in C; vor

sonst
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SAT <, Teilmengen-Summe
Gegeben: Formel F = (C; A --- A Cy) in KNF
(0.B.d.A. mit maximal 9 Literalen pro Klausel)

Seien py, ..., p, die Variablen in F.
Far jedes p; definieren wir Gegenstande r; und f;:

1 i=j
aj = . .
0 i#j
v(t;) i=ay -+ ancy --- ¢, wobei
1 p; kommtin C; vor
¢ =
! 0 sonst
1 i=j
g = .,
0 i#j
v(f))i=ay---aucy -+ cy  wobei
1 —p; kommtin C; vor
Cj =

0 sonst
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SAT <, Teilmengen-Summe

AuBerdem definieren wir fir jede Klausel C; genau r := |C;| — 1 Gegenstande

miy,...,Miy

1 =i

mit  v(m;;):=c;---c, wobei ¢ :=
/ ‘ ' {0 C#i
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SAT <, Teilmengen-Summe

AuBerdem definieren wir fir jede Klausel C; genau r := |C;| — 1 Gegenstande
miy,...,Miy

1 =i

mit  v(m;;):=c;---c, wobei ¢ :=
’ ‘ ' {0 C#i

Definition von S: Damit ergibt sich die Menge

S::{t,-,f,»'lSiSn}U{m[J'lSisk, 1sjs|c[|—1}
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SAT <, Teilmengen-Summe

AuBerdem definieren wir fir jede Klausel C; genau r := |C;| — 1 Gegenstande

miy,...,Miy

. ) 1 =i
mit  v(m;;) :==c;---cx  wobei ¢, =
0 C+#i
Definition von S: Damit ergibt sich die Menge
S::{t,-,f,»'lSiSn}U{m[J'lSisk, lsjslcil—l}

Gesuchte Zahl: Wir bestimmten die gesuchte Zahl z wie folgt:

z:=a;---aycy---cwobeia; :=1undc; :=|Cj
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SAT <, Teilmengen-Summe

AuBerdem definieren wir fir jede Klausel C; genau r := |C;| — 1 Gegenstande

miy,...,Miy

1 =i

mit  v(m;;):=c;---c, wobei ¢ :=
’ ‘ ' {0 C#i

Definition von S: Damit ergibt sich die Menge
S::{t,-,f,»'lSiSn}U{m[J'lSisk, lsjslcil—l}
Gesuchte Zahl: Wir bestimmten die gesuchte Zahl z wie folgt:
z:=day---a,cy---cy wobeia; :=1undc; :=|Cj|
Behauptung: Es gibt 7 C S mit 3, .y v(a;) = z gdw. F erflillbar ist.
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NP-Vollstandigkeit von Teilmengen-Summe

Behauptung: Wenn F erfillbar ist, dann gibt es 7 C S mit 3, .7 v(a;) = z.
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NP-Vollstandigkeit von Teilmengen-Summe

Behauptung: Wenn F erfillbar ist, dann gibt es 7 C S mit 3, .7 v(a;) = z.

® Sei w eine erflillende Belegung fir F.
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NP-Vollstandigkeit von Teilmengen-Summe

Behauptung: Wenn F erflllbar ist, dann gibt es 7 C § mit 3, .7 v(a;) = z.

® Sei w eine erflillende Belegung fir F.

e Wir definieren:

T :={ti|W(Pi)=1, ISiSm}U{fi'w(pi)=®, ISiSm}
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NP-Vollstandigkeit von Teilmengen-Summe

Behauptung: Wenn F erflllbar ist, dann gibt es 7 C § mit 3, .7 v(a;) = z.

® Sei w eine erflllende Belegung fir F.

e \Wir definieren:

T :={ti'W(Pi)=1, ISiSm}U{fi'w(pi)=®, ISiSm}

® Sei r; jeweils die Zahl der von w erfillten Literale in C;. (Offenbar ist r; > 1 fur alle i.)
Wir definieren:
Ty :={my|1<i<k 1<j<|Cl-r)
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NP-Vollstandigkeit von Teilmengen-Summe

Behauptung: Wenn F erflllbar ist, dann gibt es 7 C § mit 3, .7 v(a;) = z.

® Sei w eine erflllende Belegung fir F.

Wir definieren:

1= {u|wpp =1, 1 <i<mfu{fi [wio =0, 1<i<m)
® Sei r; jeweils die Zahl der von w erfillten Literale in C;. (Offenbar ist r; > 1 fur alle i.)
Wir definieren:

Ty :={my|1<i<k 1<j<|Cl-r)

® Die gesuchte Menge von Gegenstandenist T := T, U T».

® Damit folgt: X ;7 v(s) = z.
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NP-Vollstandigkeit von Teilmengen-Summe

Behauptung: Gibt es 7' C S mit 3, .y v(a;) = z, dann ist F erflllbar.
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NP-Vollstandigkeit von Teilmengen-Summe

Behauptung: Gibt es 7' C S mit 3, .y v(a;) = z, dann ist F erflllbar.

Sei T C S die gesuchte Menge mit Y7 v(s) = z.
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NP-Vollstandigkeit von Teilmengen-Summe

Behauptung: Gibt es 7 C S mit 3, .y v(a;) = z, dann ist F erflllbar.

Sei T C S die gesuchte Menge mit Y7 v(s) = z.

1 fallst;eT,

Wir definieren w(p;) =
®: {0 fallsf; e T.

Die Belegung w ist wohldefiniert, da fur alle i gilt:

t; € T oder f; € T, aber nicht beides.
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NP-Vollstandigkeit von Teilmengen-Summe

Behauptung: Gibt es 7 C S mit 3, .y v(a;) = z, dann ist F erflllbar.

Sei T C S die gesuchte Menge mit Y ;.7 v(s) = z.

1 fallst;eT,

Wir definieren w(p;) =
®: {0 fallsf; e T.

Die Belegung w ist wohldefiniert, da fur alle i gilt:
t; € T oder f; € T, aber nicht beides.

AuBerdem muss fir jede Klausel ein Literal auf 1 abgebildet werden, da die
entsprechenden Hilfszahlen m; ; € S zusammen nicht die geforderte Zahl an Literalen
pro Klausel erreichen. O

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 11 von 31


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Das Rucksack-Problem

Rucksack (Knapsack)

Gegeben: Eine Menge von Gegenstéanden G = {ay,...,a,}, wobei jedem Gegenstand
a; ein Wert v(a;) und ein Gewicht g(a;) zugeordnet ist; auBerdem ein Mindestwert w
und ein Gewichtslimit .
Frage: Gibt es eine Teilmenge T C G, so dass

® Yeergla) < und

® Yuervia) 2 w?
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Das Rucksack-Problem

Rucksack (Knapsack)

Gegeben: Eine Menge von Gegenstéanden G = {ay,...,a,}, wobei jedem Gegenstand
a; ein Wert v(a;) und ein Gewicht g(a;) zugeordnet ist; auBerdem ein Mindestwert w
und ein Gewichtslimit .
Frage: Gibt es eine Teilmenge T C G, so dass

® Yeergla) < und

® Yuervia) 2 w?

Satz: Rucksack ist NP-vollstandig.
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Das Rucksack-Problem

Rucksack (Knapsack)

Gegeben: Eine Menge von Gegenstanden G = {ay,...,a,}, wobei jedem Gegenstand
a; ein Wert v(a;) und ein Gewicht g(a;) zugeordnet ist; auBerdem ein Mindestwert w
und ein Gewichtslimit .
Frage: Gibt es eine Teilmenge T C G, so dass

® Yaerg(a) <€ und

® Yuervia) 2 w?

Satz: Rucksack ist NP-vollstandig.

Beweis:
(1) Rucksack € NP: Das Zertifikat ist T’

(2) Rucksack ist NP-schwer:
durch Reduktion Teilmengen-Summe <, Rucksack
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Teilmengen-Summe <, Rucksack

Gegeben: Eine Instanz von Teilmengen-Summe
(Menge von Gegensténden S = {ay, ..., a,} mit Wert v(a;); gewilinschte Zahl z)
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Teilmengen-Summe <, Rucksack

Gegeben: Eine Instanz von Teilmengen-Summe

(Menge von Gegensténden S = {ay, ..., a,} mit Wert v(a;); gewilinschte Zahl z)

Daraus konstruieren wir:
® G:={1,...,n}: Menge der Gegenstéande
® Firalle i € G setzen wir: v(i) = g(i) = v(a;)
e Zielwert w := z und Gewichtslimit £ := z

Offensichtlich ist diese Ubersetzung polynomiell.
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Teilmengen-Summe <, Rucksack

Gegeben: Eine Instanz von Teilmengen-Summe
(Menge von Gegensténden S = {ay, ..., a,} mit Wert v(a;); gewilinschte Zahl z)

Daraus konstruieren wir:
® G:={1,...,n}: Menge der Gegenstéande
® Firalle i € G setzen wir: v(i) = g(i) = v(a;)
e Zielwert w := z und Gewichtslimit £ := z

Offensichtlich ist diese Ubersetzung polynomiell.

Damit gilt fir jede Teilmenge T C G:

Dierv@ 2w =z
Z v(a;)) =z gdw.
ieT Dier8d <l =z
~> Die Reduktion ist korreki. O
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Quiz: P & NP & Reduktionen

® SAT: Gegeben eine aussagenlogische Formel, ist diese erfillbar?

® Rucksack: Gegeben eine Menge von Gegenstanden G jeweils mit Wert und Gewicht, ein
Mindestwert w und ein Gewichtslimit ¢, gibt es eine Teilmenge T C G, sodass die Gegenstande in
T mindestens Wert w erreichen, ohne Gewicht ¢ zu Uberschreiten?

® CLIQUE: Gegeben ein Graph G und eine Zahl k, hat G eine Clique (einen Teilgraphen, bei dem
alle Knoten miteinander verbunden sind) der GréBe k?

Hinweis: Die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge ist (:) = #lk),

Quiz: Welche der folgenden Aussagen sind wahr? ...
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Pseudopolynomielle Probleme
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Eine polynomielle Losung fur Rucksack

Mittels dynamischer Programmierung kann man Rucksack in der Zeit O(n{) 16sen

Initialisierung:
Erzeuge eine (€ + 1) X (n + 1)-Matrix M

Setze M(g,0) = M(0,i) =0 firallel <g<<fund1<i<n.
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Beispiel

Eingabe: G :={1,2,3,4} mit

Werten: vi):=1 v(2):=3 v(3):=4 v4d):=2
Gewichten: g(l):=1 g2):=1 gB3):=3 g4):=2
Gewichtslimit: ¢:=5 Mindestwert: w:=7
Gewichts- max. Wert flr < i Gegenstéande
limit g i=0|i=1]i=2|i=3|i=4

0

1

2

3

4

5

Initialisiere M(g,0) = M(0,i) =0flrallel <g<fund1<i<n.
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Beispiel

Eingabe: G :={1,2,3,4} mit

Werten: vi):=1 v(2):=3 v(3):=4 v4d):=2
Gewichten: g(l):=1 g2):=1 gB3):=3 g4):=2
Gewichtslimit: ¢:=5 Mindestwert: w:=7
Gewichts- max. Wert flr < i Gegenstéande
limit g i=0|i=1]i=2|i=3|i=4
0 0 0 0 0 0
1 0
2 0
3 0
4 0
5 0

Initialisiere M(g,0) = M(0,i) =0flrallel <g<fund1<i<n.
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Eine polynomielle Losung fur Rucksack

Mittels dynamischer Programmierung kann man Rucksack in der Zeit O(n{) 16sen

Initialisierung:
Erzeuge eine (€ + 1) X (n + 1)-Matrix M

Setze M(g,0) = M(0,i) =0 firallel <g<<fund1<i<n.
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Eine polynomielle Losung fur Rucksack

Mittels dynamischer Programmierung kann man Rucksack in der Zeit O(n{) 16sen
Initialisierung:
Erzeuge eine (€ + 1) X (n + 1)-Matrix M

Setze M(g,0) = M(0,i) =0 firallel <g<<fund1<i<n.

Berechnung: Firi=0,1,...,n— 1 berechne M(g,i+ 1) als
M(g,i+ 1) := max (M(g,i),M(g — g+ 1),i) +v(i + 1))
(Falls g — g(i + 1) < 0, dann verwenden wir immer M(g, i).)

M(g,i) ...,gréBter Gesamtwert unter den ersten i Gegensténden
bei Einhaltung des Gewichtslimits g*

Akzeptanz: Akzeptiere, falls M einen Eintrag > w hat.
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Beispiel

Eingabe: G :={1,2,3,4} mit

Werten: vi):=1 v(2):=3 v(3):=4 v4d):=2
Gewichten: g(l):=1 g2):=1 gB3):=3 g@):=2
Gewichtslimit: ¢£:=5 Mindestwert: w:=7
Gewichts- max. Wert fur < i Gegensténde
limit ¢ i=0|i=1|i=2|i=3]i=4
0 0 0 0 0 0
1 0
2 0
3 0
4 0
5 0

M(g,i+1):=max (M(g,i),M(g—g(i+1),i)+v(i+1))
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Beispiel

Eingabe: G :={1,2,3,4} mit

Werten: vi):=1 v(2):=3 v(3):=4 v4d):=2
Gewichten: g(l):=1 g2):=1 gB3):=3 g@):=2
Gewichtslimit: ¢£:=5 Mindestwert: w:=7
Gewichts- max. Wert fur < i Gegensténde
limit ¢ i=0|i=1|i=2|i=3]i=4
0 0 0 0 0 0
1 0 1
2 0 1
3 0 1
4 0 1
5 0 1

M(g,i+1):=max (M(g,i),M(g—g(i+1),i)+v(i+1))
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Beispiel

Eingabe: G :={1,2,3,4} mit

Werten: vi):=1 v(2):=3 v(3):=4 v4d):=2
Gewichten: g(l):=1 g2):=1 gB3):=3 g@):=2
Gewichtslimit: ¢£:=5 Mindestwert: w:=7

Gewichts- max. Wert fur < i Gegensténde

limit ¢ i=0|i=1|i=2|i=3]i=4

0 0 0 0 0 0

1 0 1 3 3 3

2 0 1 4 4 4

3 0 1 4 4 5

4 0 1 4 7 7

5 0 1 4 8 8

M(g,i+1):=max (M(g,i),M(g—g(i+1),i)+v(i+1))
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P = NP?

Zusammenfassung:
® Rucksack ist NP-vollstandig
* Rucksack ist mittels Dynamischer Programmierung in Zeit O(n¢) l6sbar

Rucksack (Knapsack)

Gegeben: Eine Menge von Gegenstéanden G = {ay,...,a,}, wobei jedem Gegenstand
a; ein Wert v(a;) und ein Gewicht g(a;) zugeordnet ist; auBerdem ein Mindestwert w
und ein Gewichtslimit £.

Frage: Gibt es eine Teilmenge T C G, so dass

° ZaeT g(a) <¢und

° ZaET V(a) > w?
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P = NP?

Zusammenfassung:
® Rucksack ist NP-vollstandig
* Rucksack ist mittels Dynamischer Programmierung in Zeit O(n¢) l6sbar

Rucksack (Knapsack)

Gegeben: Eine Menge von Gegenstéanden G = {ay,...,a,}, wobei jedem Gegenstand
a; ein Wert v(a;) und ein Gewicht g(a;) zugeordnet ist; auBerdem ein Mindestwert w
und ein Gewichtslimit £.

Frage: Gibt es eine Teilmenge T C G, so dass

° ZaeT g(a) <¢und

° ZaET V(a) > w?

Haben wir also gezeigt, dass P = NP?
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Pseudopolynomielle Probleme

Unser Algorithmus zeigt nicht Rucksack € P!
® Die Eingabe von Rucksack hat die Lange O(n + logw + log ¢).

® Die Zeit O(n¢) ist daher nicht polynomiell bzgl. der Eingabelange.
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Pseudopolynomielle Probleme

Unser Algorithmus zeigt nicht Rucksack € P!
® Die Eingabe von Rucksack hat die Lange O(n + logw + log ¢).
® Die Zeit O(n¢) ist daher nicht polynomiell bzgl. der Eingabelange.

Ein Problem ist in pseudopolynomieller Zeit, wenn es durch eine DTM gelést wird, die
polynomiell zeitbeschrankt ist bzgl. der Eingabelange und des Betrages aller Zahlen in
der Eingabe.

Aquivalent: Ein Problem ist pseudopolynomiell, wenn es in PTime liegt, wenn man alle
Zahlen unér kodiert.
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Pseudopolynomielle Probleme

Unser Algorithmus zeigt nicht Rucksack € P!
® Die Eingabe von Rucksack hat die Lange O(n + logw + log ¢).
® Die Zeit O(n¢) ist daher nicht polynomiell bzgl. der Eingabelange.

Ein Problem ist in pseudopolynomieller Zeit, wenn es durch eine DTM gelést wird, die
polynomiell zeitbeschrankt ist bzgl. der Eingabelange und des Betrages aller Zahlen in
der Eingabe.

Aquivalent: Ein Problem ist pseudopolynomiell, wenn es in PTime liegt, wenn man alle
Zahlen unér kodiert.

Beispiel: Rucksack ist pseudopolynomiell: Beschrankt man das Problem auf Instan-
zen mit ¢ < p(n) far ein Polynom p, so erhalt man ein Problem in P (wobei n die Zahl
der Gegenstande ist).
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Starke NP-Vollstandigkeit

Probleme, welche selbst dann noch NP-vollstédndig sind, wenn man alle Zahlen unér
kodiert, heiBen stark NP-vollstandig.
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Starke NP-Vollstandigkeit

Probleme, welche selbst dann noch NP-vollstédndig sind, wenn man alle Zahlen unér
kodiert, heiBen stark NP-vollstandig.

Beispiele:
® SAT ist stark NP-vollstandig (keine Zahlen in der Eingabe)
® CLIQUE ist stark NP-vollstandig
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Starke NP-Vollstandigkeit

Probleme, welche selbst dann noch NP-vollstédndig sind, wenn man alle Zahlen unér
kodiert, heiBen stark NP-vollstandig.

Beispiele:
® SAT ist stark NP-vollstandig (keine Zahlen in der Eingabe)
® CLIQUE ist stark NP-vollstandig

Beispiele:
® Rucksack ist pseudopolynomiell
* Teilmengen-Summe ist pseudopolynomiell
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Starke NP-Vollstandigkeit

Probleme, welche selbst dann noch NP-vollstédndig sind, wenn man alle Zahlen unér
kodiert, heiBen stark NP-vollstandig.

Beispiele:
® SAT ist stark NP-vollstandig (keine Zahlen in der Eingabe)
® CLIQUE ist stark NP-vollstandig

Beispiele:
® Rucksack ist pseudopolynomiell
* Teilmengen-Summe ist pseudopolynomiell

Anmerkung: Die Reduktion SAT <, Teilmengen-Summe erzeugt eine polynomielle
Instanz, bei der die Betrage der Zahlen exponentiell grof3 sind.
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Fake-News erkennen (1)

Immer wieder gibt es Berichte darlber, dass irgendein neuartiges Berechnungsmodell
oder ausgefallene physikalische Anordnung NP-vollstdndige Probleme in polynomieller

Zeit |6sen kénne . ..
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Fake-News erkennen (1)

Immer wieder gibt es Berichte darlber, dass irgendein neuartiges Berechnungsmodell
oder ausgefallene physikalische Anordnung NP-vollstandige Probleme in polynomieller

Zeit I6sen konne ...
~» Meist lasst sich leicht sehen, wo der Fehler liegt.

Typische Kontrollfragen:

Ist das Problem pseudopolynomiell?
Wie sind Zahlenbetrage kodiert?

Beispiel: Molekulare Anordnungen zum Ldsen von Teilmengen-Summe, wobei Zah-
len durch eine entsprechende Zahl an Molekilen kodiert werden.
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Fake-News erkennen (2)

Immer wieder gibt es Berichte darlber, dass irgendein neuartiges Berechnungsmodell
oder ausgefallene physikalische Anordnung NP-vollstandige Probleme in polynomieller

Zeit I6sen konne ...
~» Meist lasst sich leicht sehen, wo der Fehler liegt.

Typische Kontrollfragen:

Wachst der neuartige Computer mit dem Problem?
Ist dieses Wachstum exponentiell?

Beispiel: DNS-Rechner ldsen Optimierungsaufgaben, aber missen alle (exponentiell
viele) moglichen Lésungen als DNS-Sequenz kodieren.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 10 Folie 24 von 31


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Fake-News erkennen (3)

Immer wieder gibt es Berichte darlber, dass irgendein neuartiges Berechnungsmodell
oder ausgefallene physikalische Anordnung NP-vollstandige Probleme in polynomieller

Zeit I6sen konne ...
~» Meist lasst sich leicht sehen, wo der Fehler liegt.

Typische Kontrollfragen:

Wird das Problem wirklich gelést oder handelt es sich eher um ein Approximationsver-

fahren?
Ist klar, was ein ,Berechnungsschritt* ist und ist deren Zahl wirklich polynomiell?

Beispiel: Ein Schaltkreis mit Rickkopplungen, welcher ,in der Regel” zu einer ,guten®
Lésung eines NP-vollstandigen Problems konvergiert, und das ,nach kurzer Zeit.”
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NP und andere Klassen
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P vs. NP

Bis heute ist nicht bekannt, ob P # NP gilt oder nicht.

* |ntuitiv gefragt: ,Wenn es einfach ist, eine mégliche Lésung fur ein Problem zu
prifen, ist es dann auch einfach, eine zu finden?*

Ubertrieben: ,Can creativity be automated? (Wigderson, 2006)

Seit Uber 40 Jahren ungeldst

Eines der gréBten offenen Probleme der Informatik und Mathematik unserer Zeit

1.000.000 USD Preisgeld fir die Lésung
(,Millenium Problem®)
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Mogliche Konsequenzen

Falls P = NP, dann gilt
® NP = coNP (warum?)

® und jedes nichttriviale Problem in P ist NP-vollstandig (warum?)
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Mdégliche Konsequenzen

Falls P = NP, dann gilt
® NP = coNP (warum?)
® und jedes nichttriviale Problem in P ist NP-vollstandig (warum?)

Falls P # NP, dann gilt
® P coNP (warum?)
e | # NP (warum?)
® P # PSpace (warum?)
® kein NP-vollstandiges Problem ist in P (warum?)
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Noch schwerere Fragen

Selbst wenn P = NP bewiesen werden sollte, gabe es noch viele offene Fragen ...
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Noch schwerere Fragen

Selbst wenn P = NP bewiesen werden sollte, gabe es noch viele offene Fragen ...

NP = coNP? Falls es fir die I6sbaren Instanzen eines Problems kurze Zertifikate gibt,
gibt es dann immer auch kurze Zertifikate fur die Unlésbarkeit von Instanzen?

® Die meisten Expert:innen glauben das nicht.
® Falls die Antwort ,nein” lautet, dann folgt P # NP.
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Noch schwerere Fragen

Selbst wenn P = NP bewiesen werden sollte, gabe es noch viele offene Fragen ...

NP = coNP? Falls es fir die I6sbaren Instanzen eines Problems kurze Zertifikate gibt,
gibt es dann immer auch kurze Zertifikate fur die Unlésbarkeit von Instanzen?

® Die meisten Expert:innen glauben das nicht.

® Falls die Antwort ,nein” lautet, dann folgt P # NP.

P = NP N coNP? Falls es fiir die Losbarkeit und die Unldsbarkeit eines Problems kurze
Zertifikate gibt, ist das Problem dann effizient I[6sbar?

* Die meisten Expert:innen glauben das nicht.
® Falls die Antwort ,nein” lautet, dann folgt P # NP.
® |st die Antwort ,ja“ und zudem P # NP, so folgt NP # coNP.
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Der Satz von Ladner

Drei mégliche Welten:
(1) P = NP: Jedes NP-vollstandige Problem ist in P.

(2) P # NP: Kein NP-vollstandiges Problem ist in P.

(2.a) Jedes NP-Problem, welches nicht NP-vollstandig ist, liegt in P.
(2.b) Es gibt Probleme, die nicht NP-vollstédndig sind und dennoch nicht in P liegen.
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Der Satz von Ladner

Drei mégliche Welten:
(1) P = NP: Jedes NP-vollstandige Problem ist in P.

(2) P # NP: Kein NP-vollstandiges Problem ist in P.

(2.a) Jedes NP-Problem, welches nicht NP-vollstandig ist, liegt in P.
(2.b) Es gibt Probleme, die nicht NP-vollstédndig sind und dennoch nicht in P liegen.

Richard E. Ladner hat gezeigt, dass Fall (2.a) unmdglich ist:

Satz (Ladner): Falls P # NP, dann gibt es Probleme in NP, die weder NP-vollstandig
sind noch in P liegen.

Diese Probleme hei3en NP-intermediate
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Der Satz von Ladner

Drei mégliche Welten:
(1) P = NP: Jedes NP-vollstandige Problem ist in P.

(2) P # NP: Kein NP-vollstandiges Problem ist in P.

(2.a) Jedes NP-Problem, welches nicht NP-vollstandig ist, liegt in P.
(2.b) Es gibt Probleme, die nicht NP-vollstédndig sind und dennoch nicht in P liegen.

Richard E. Ladner hat gezeigt, dass Fall (2.a) unmdglich ist:

Satz (Ladner): Falls P # NP, dann gibt es Probleme in NP, die weder NP-vollstandig
sind noch in P liegen.

Diese Probleme hei3en NP-intermediate —wenn P # NP gilt, dann sollte es viele davon
geben ... aber wir kennen kaum Kandidaten:

e Faktorisierung (Faktor-7 und &hnliche).
® Ermitteln, ob zwei Graphen isomorph (gleich bis auf Umbenennung) sind.
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Zusammenfassung und Ausblick
SAT <, Teilmengen-Summe <, Rucksack

Pseudopolynomielle Probleme werden einfacher, wenn man den Betrag der Zahlen in
der Eingabe polynomiell beschrankt.

Offene Fragen (geordnet von ,leicht nach schwer): ,L # NP?“, ,P # PSpace?",
P # NP?“, NP # coNP?“ P # NP n coNP?*

Es sollte eigentlich eine Menge Probleme geben, die weder in P liegen, noch
NP-vollsténdig sind.

Was erwartet uns als nachstes?
e NL

e Komplexitat jenseits von NP

® Spiele
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