OWL

User Interface & Applications

Trust

Proof

Unifying Logic

Ontology: OWL

Rule: RIF

Query: SPARQL

RDFS

Data interchange: RDF

XML

URI/IRI

Crypto
Agenda

- Motivation
- Introduction Description Logics
- The Description Logic \mathcal{ALC}
- Extensions of \mathcal{ALC}
- Inference Problems
Agenda

- Motivation
- Introduction Description Logics
- The Description Logic \mathcal{ALC}
- Extensions of \mathcal{ALC}
- Inference Problems
Description Logics

- description logics (DLs) are one of the current KR paradigms
- have significantly influenced the standardization of Semantic Web languages
 - OWL is essentially based on DLs
- numerous reasoners

Quonto JFact FaCT++ RacerPro
Owlgres Pellet SHER snorocket
OWLIM Jena Oracle Prime QuOnto
Trowl HermiT condor CB
ELK konclude RScale
OWL Tools

good support by editors

- Protégé, http://protege.stanford.edu
- SWOOP, http://code.google.com/p/swoop/
Description Logics

- origin of DLs: semantic networks and frame-based systems
- downside of the former: only intuitive semantics - diverging interpretations
- DLs provide a formal semantics on logical grounds
- can be seen as decidable fragments of first-order logic (FOL), closely related to modal logics
- significant portion of DL-related research devoted to clarifying the computational effort of reasoning tasks in terms of their worst-case complexity
- despite high complexities, even for expressive DLs exist optimized reasoning algorithms with good average case behavior
Agenda

- Motivation
- Introduction Description Logics
- The Description Logic ALC
- Extensions of ALC
- Inference Problems
DL building blocks

- **individuals:** birte, cs63.800, sebastian, etc.
 ~ constants in FOL, resources in RDF

- **concept names:** Person, Course, Student, etc.
 ~ unary predicates in FOL, classes in RDF

- **role names:** hasFather, attends, worksWith, etc.
 ~ binary predicates in FOL, properties in RDF
 – can be subdivided into abstract and concrete roles (object und data properties)

the set of all individual, concept and role names is called **signature** or **vocabulary**
Constituents of a DL Knowledge Base

- **TBox** \mathcal{T}: information about concepts and their taxonomic dependencies
- **ABox** \mathcal{A}: information about individuals, their concept and role memberships

In more expressive DLs also:
- **RBox** \mathcal{R}: information about roles and their mutual dependencies
Agenda

- Motivation
- Introduction Description Logics
- The Description Logic \mathcal{ALC}
- Extensions of \mathcal{ALC}
- Inference Problems
Complex Concepts

\(\mathcal{ALC} \), Attribute Language with Complement, is the simplest DL that is Boolean closed

we define (complex) \(\mathcal{ALC} \) concepts as follows:

- every concept name is a concept,
- \(\top \) and \(\bot \) are concepts,
- for concepts \(C \) and \(D \), \(\neg C \), \(C \sqcap D \), and \(C \sqcup D \) are concepts,
- for a role \(r \) and a concept \(C \), \(\exists r.C \) and \(\forall r.C \) are concepts

Example: \(\text{Student} \sqcap \forall \text{attendsCourse}\text{.MasterCourse} \)

Intuitively: describes the concept comprising all students that attend only master courses
Concept Constructors vs. OWL

- \top corresponds to owl:Thing
- \bot corresponds to owl:Nothing
- \cap corresponds to $\text{owl:intersectionOf}$
- \cup corresponds to owl:unionOf
- \neg corresponds to owl:complementOf
- \forall corresponds to owl:allValuesFrom
- \exists corresponds to $\text{owl:someValuesFrom}$
Concept Axioms

For concepts C, D, a general concept inclusion (GCI) axiom has the form

$$C \sqsubseteq D$$

- $C \equiv D$ is an abbreviation for $C \sqsubseteq D$ and $D \sqsubseteq C$
- a TBox (terminological Box) consists of a set of GCIs
ABox

an \textit{ALC} ABox assertion can be of one of the following forms

- $C(a)$, called concept assertion
- $r(a, b)$, called role assertion

an ABox consists of a set of ABox assertions
The Description Logic \mathcal{ALC}

- \mathcal{ALC} is a syntactic variant of the modal logic \mathcal{K}
- semantics defined in a model-theoretic way, that is, via interpretations
- can be expressed in first-order predicate logic
- a DL interpretation \mathcal{I} consists of a domain $\Delta^\mathcal{I}$ and a function $\cdot^\mathcal{I}$, that maps
 - individual names a to domain elements $a^\mathcal{I} \in \Delta^\mathcal{I}$
 - concept names C to sets of domain elements $C^\mathcal{I} \subseteq \Delta^\mathcal{I}$
 - role names r to sets of pairs of domain elements $r^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{I}$
Schematic Representation of an Interpretation

individual names
...a...

concept names
...C...

role names
...r...

TU Dresden Foundations of Semantic Web Technologies
Interpretation of Complex Concepts

The interpretation of complex concepts is defined inductively:

<table>
<thead>
<tr>
<th>Name</th>
<th>Syntax</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>top</td>
<td>⊤</td>
<td>Δ^I</td>
</tr>
<tr>
<td>bottom</td>
<td>⊥</td>
<td>\emptyset</td>
</tr>
<tr>
<td>negation</td>
<td>$\neg C$</td>
<td>$\Delta^I \setminus C^I$</td>
</tr>
<tr>
<td>conjunction</td>
<td>$C \sqcap D$</td>
<td>$C^I \cap D^I$</td>
</tr>
<tr>
<td>disjunction</td>
<td>$C \sqcup D$</td>
<td>$C^I \cup D^I$</td>
</tr>
<tr>
<td>universal quantifier</td>
<td>$\forall r. C$</td>
<td>${x \in \Delta^I \mid (x, y) \in r^I \text{ implies } y \in C^I}$</td>
</tr>
<tr>
<td>existential quantifier</td>
<td>$\exists r. C$</td>
<td>${x \in \Delta^I \mid \text{there is some } y \in \Delta^I, \text{ such that } (x, y) \in r^I \text{ and } y \in C^I}$</td>
</tr>
</tbody>
</table>
Interpretation of Axioms

interpretation can be extended to axioms:

<table>
<thead>
<tr>
<th>name</th>
<th>syntax</th>
<th>semantic</th>
<th>notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>inclusion</td>
<td>$C \sqsubseteq D$</td>
<td>holds if $C^\mathcal{I} \subseteq D^\mathcal{I}$</td>
<td>$\mathcal{I} \models C \sqsubseteq D$</td>
</tr>
<tr>
<td>equivalence</td>
<td>$C \equiv D$</td>
<td>holds if $C^\mathcal{I} = D^\mathcal{I}$</td>
<td>$\mathcal{I} \models C \equiv D$</td>
</tr>
<tr>
<td>concept assertion</td>
<td>$C(a)$</td>
<td>holds if $a^\mathcal{I} \in C^\mathcal{I}$</td>
<td>$\mathcal{I} \models C(a)$</td>
</tr>
<tr>
<td>role assertion</td>
<td>$r(a, b)$</td>
<td>holds if $(a^\mathcal{I}, b^\mathcal{I}) \in r^\mathcal{I}$</td>
<td>$\mathcal{I} \models r(a, b)$</td>
</tr>
</tbody>
</table>
Logical Entailment in Knowledge Bases

- Let \mathcal{I} be an interpretation, \mathcal{T} a TBox, \mathcal{A} an Abox and $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ a knowledge base.
- \mathcal{I} is a model for \mathcal{T}, if $\mathcal{I} \models ax$ for every axiom ax in \mathcal{T}, written $\mathcal{I} \models \mathcal{T}$.
- \mathcal{I} is a model for \mathcal{A}, if $\mathcal{I} \models ax$ for every assertion ax in \mathcal{A}, written $\mathcal{I} \models \mathcal{A}$.
- \mathcal{I} is a model for \mathcal{K}, if $\mathcal{I} \models \mathcal{T}$ and $\mathcal{I} \models \mathcal{A}$.
- An axiom ax follows from \mathcal{K}, written $\mathcal{K} \models ax$, if every model \mathcal{I} of \mathcal{K} is also a model of ax.

TU Dresden Foundations of Semantic Web Technologies
Semantics via Translation into FOL

translation of TBox axioms into first-order predicate logics through the mapping π with C, D complex classes, r a role and A an atomic class:

$$\pi(C \sqsubseteq D) = \forall x.(\pi_x(C) \rightarrow \pi_x(D)) \quad \pi(C \equiv D) = \forall x.(\pi_x(C) \leftrightarrow \pi_x(D))$$
Semantics via Translation into FOL

translation of TBox axioms into first-order predicate logics through the mapping \(\pi \) with \(C, D \) complex classes, \(r \) a role and \(A \) an atomic class:

\[
\begin{align*}
\pi(C \sqsubseteq D) &= \forall x. (\pi_x(C) \rightarrow \pi_x(D)) \\
\pi(C \equiv D) &= \forall x. (\pi_x(C) \leftrightarrow \pi_x(D)) \\
\pi_x(A) &= A(x) \\
\pi_x(\neg C) &= \neg \pi_x(C) \\
\pi_x(C \cap D) &= \pi_x(C) \land \pi_x(D) \\
\pi_x(C \cup D) &= \pi_x(C) \lor \pi_x(D) \\
\pi_x(\forall r. C) &= \forall y. (r(x, y) \rightarrow \pi_y(C)) \\
\pi_x(\exists r. C) &= \exists y. (r(x, y) \land \pi_y(C))
\end{align*}
\]
Semantics via Translation into FOL

translation of TBox axioms into first-order predicate logics through the mapping \(\pi \) with \(C, D \) complex classes, \(r \) a role and \(A \) an atomic class:

\[
\begin{align*}
\pi(C \sqsubseteq D) &= \forall x. (\pi_x(C) \rightarrow \pi_x(D)) \\
\pi(C \equiv D) &= \forall x. (\pi_x(C) \leftrightarrow \pi_x(D)) \\
\pi_x(A) &= A(x) \\
\pi_x(\neg C) &= \neg \pi_x(C) \\
\pi_x(C \sqcap D) &= \pi_x(C) \land \pi_x(D) \\
\pi_x(C \sqcup D) &= \pi_x(C) \lor \pi_x(D) \\
\pi_x(\forall r. C) &= \forall y. (r(x, y) \rightarrow \pi_y(C)) \\
\pi_x(\exists r. C) &= \exists y. (r(x, y) \land \pi_y(C)) \\
\pi_y(A) &= A(y) \\
\pi_y(\neg C) &= \neg \pi_y(C) \\
\pi_y(C \sqcap D) &= \pi_y(C) \land \pi_y(D) \\
\pi_y(C \sqcup D) &= \pi_y(C) \lor \pi_y(D) \\
\pi_y(\forall r. C) &= \forall x. (r(y, x) \rightarrow \pi_x(C)) \\
\pi_y(\exists r. C) &= \exists x. (r(y, x) \land \pi_x(C))
\end{align*}
\]
Semantics via Translation into FOL

- translation only requires two variables

\[\rightarrow \text{ } ALC \text{ is a fragment of FOL with two variables } L_2 \]

\[\rightarrow \text{ } \text{satisfiability checking of sets of } ALC \text{ axioms is decidable} \]
Agenda

• Motivation
• Introduction Description Logics
• The Description Logic ALC
• Extensions of ALC
• Inference Problems
Inverse Roles

- A role can be
 - A role name r
 - An inverse role r^-

- The semantics of inverse roles is defined as follows:

 \[(r^-)^I = \{(y, x) \mid (x, y) \in r^I\}\]

- The extension of \mathcal{ALC} by inverse roles is denoted as \mathcal{ALCI}

- Corresponds to owl:inverseOf
Parts of a Knowledge Base

TBox \mathcal{T}: information about concepts and their taxonomic dependencies

ABox \mathcal{A}: information about individuals, their concepts and role connections

in more expressive DLs also:

RBox \mathcal{R}: information about roles and their mutual dependencies
Role Axioms

- For \(r, s \) roles, a role inclusion axiom – RIA has the form \(r \sqsubseteq s \).
- \(r \equiv s \) is the abbreviation for \(r \sqsubseteq s \) and \(s \sqsubseteq r \).
- An RBox (role box) or role hierarchy consists of a set of role axioms.
- \(r \sqsubseteq s \) holds in an interpretation \(\mathcal{I} \) if \(r^\mathcal{I} \subseteq s^\mathcal{I} \), written \(\mathcal{I} \models r \sqsubseteq s \).
- The extension of ALC by role hierarchies is denoted with ALC\(H \), if we also have inverse roles: ALC\(HI \).
- Corresponds to owl:subPropertyOf.
An Example Knowledge Base

RBox \mathcal{R}

- own \sqsubseteq careFor

TBox \mathcal{T}

- Healthy \sqsubseteq \neg Dead
- Cat \sqsubseteq Dead \sqcup Alive
- HappyCatOwner \sqsubseteq \existsowns.Cat \cap \forallcaresFor.Healthy

ABox \mathcal{A}

- HappyCatOwner (schrödinger)
An Example Knowledge Base

RBox \mathcal{R}

\[
\text{own} \sqsubseteq \text{careFor}
\]

“If somebody owns something, they care for it.”

TBox \mathcal{T}

\[
\begin{align*}
\text{Healthy} & \sqsubseteq \neg \text{Dead} \\
\text{Cat} & \sqsubseteq \text{Dead} \sqcup \text{Alive}
\end{align*}
\]

“Healthy beings are not dead.”

“Every cat is dead or alive.”

\[
\text{HappyCatOwner} \sqsubseteq \exists \text{owns}.\text{Cat} \sqcap \forall \text{caresFor}.\text{Healthy}
\]

“A happy cat owner owns a cat and everything he cares for is healthy.”

ABox \mathcal{A}

\[
\text{HappyCatOwner} \ (\text{schrödinger})
\]

“Schrödinger is a happy cat owner.”
Role Transitivity

- for r a role, a
 transitivity axiom has the form $\text{Trans}(r)$

- $\text{Trans}(r)$ holds in an interpretation \mathcal{I} if $r^\mathcal{I}$ is a transitive relation, i.e.,
 $(x, y) \in r^\mathcal{I}$ and $(y, z) \in r^\mathcal{I}$ imply $(x, z) \in r^\mathcal{I}$, written $\mathcal{I} \models \text{Trans}(r)$

- the extension of \mathcal{ALC} by transitivity axioms is denoted by \mathcal{S} (after the modal logic S_5)

- corresponds to $\text{owl:TransitiveProperty}$
Role Functionality

- for r a role, a **functionality axiom** has the form $\text{Func}(r)$
- $\text{Func}(r)$ holds in an interpretation \mathcal{I} if $(x, y_1) \in r^\mathcal{I}$ and $(x, y_2) \in r^\mathcal{I}$ imply $y_1 = y_2$, written $\mathcal{I} \models \text{Func}(r)$
- translation into FOL requires equality (=)
- the extension of \mathcal{ALC} by functionality axioms is denoted by \mathcal{ALCF}
- corresponds to $\text{owl:FunctionalProperty}$
Simple and Non-Simple Roles

- given a role hierarchy \mathcal{R}, we let $\sqsubseteq^\mathcal{R}$ denote the reflexive and transitive closure w.r.t. \sqsubseteq
- for a role hierarchy \mathcal{R}, we can distinguish the roles in \mathcal{R} into simple and non-simple roles
- a role r is non-simple w.r.t. \mathcal{R}, if there is a role t such that $\text{Trans}(t) \in \mathcal{R}$ and $t \sqsubseteq^\mathcal{R} r$ holds
- all other roles are are simple
- Example: $\mathcal{R} = \{u \sqsubseteq t, \ t \sqsubseteq s, \ s \sqsubseteq r, \ q \sqsubseteq r, \ \text{Trans}(t)\}$

non-simple: t, s, r

simple: q, u
Simple and Non-Simple Roles

- given a role hierarchy \(\mathcal{R} \), we let \(\sqsubseteq_{\mathcal{R}} \) denote the reflexive and transitive closure w.r.t. \(\sqsubseteq \)
- for a role hierarchy \(\mathcal{R} \), we can distinguish the roles in \(\mathcal{R} \) into simple and non-simple roles
- a role \(r \) is non-simple w.r.t. \(\mathcal{R} \), if there is a role \(t \) such that \(\text{Trans}(t) \in \mathcal{R} \) and \(t \sqsubseteq_{\mathcal{R}} r \) holds
- all other roles are simple
- Example: \(\mathcal{R} = \{ u \sqsubseteq t, \ t \sqsubseteq s, \ s \sqsubseteq r, \ q \sqsubseteq r, \ \text{Trans}(t) \} \)

\begin{align*}
&\text{non-simple: } t
\end{align*}
Simple and Non-Simple Roles

- Given a role hierarchy \mathcal{R}, we let $\sqsubseteq_{\mathcal{R}}$ denote the reflexive and transitive closure w.r.t. \sqsubseteq.
- For a role hierarchy \mathcal{R}, we can distinguish the roles in \mathcal{R} into simple and non-simple roles.
- A role r is non-simple w.r.t. \mathcal{R}, if there is a role t such that $\text{Trans}(t) \in \mathcal{R}$ and $t \sqsubseteq_{\mathcal{R}} r$ holds.
- All other roles are simple.
- Example: $\mathcal{R} = \{ u \sqsubseteq t, \ t \sqsubseteq s, \ s \sqsubseteq r, \ q \sqsubseteq r, \ \text{Trans}(t) \}$

non-simple: t, s
Simple and Non-Simple Roles

- given a role hierarchy \mathcal{R}, we let $\sqsubseteq_\mathcal{R}$ denote the reflexive and transitive closure w.r.t. \sqsubseteq
- for a role hierarchy \mathcal{R}, we can distinguish the roles in \mathcal{R} into simple and non-simple roles
- a role r is non-simple w.r.t. \mathcal{R}, if there is a role t such that $\text{Trans}(t) \in \mathcal{R}$ and $t \sqsubseteq_\mathcal{R} r$ holds
- all other roles are are simple
- Example: $\mathcal{R} = \{u \sqsubseteq t, \ t \sqsubseteq s, \ s \sqsubseteq r, \ q \sqsubseteq r, \ \text{Trans}(t)\}$

non-simple: t, s, r

TU Dresden

Foundations of Semantic Web Technologies
Simple and Non-Simple Roles

- given a role hierarchy \mathcal{R}, we let $\subseteq_{\mathcal{R}}$ denote the reflexive and transitive closure w.r.t. \subseteq
- for a role hierarchy \mathcal{R}, we can distinguish the roles in \mathcal{R} into simple and non-simple roles
- a role r is non-simple w.r.t. \mathcal{R}, if there is a role t such that $\text{Trans}(t) \in \mathcal{R}$ and $t \subseteq_{\mathcal{R}} r$ holds
- all other roles are are simple
- Example: $\mathcal{R} = \{u \subseteq t, \quad t \subseteq s, \quad s \subseteq r, \quad q \subseteq r, \quad \text{Trans}(t)\}$

non-simple: t, s, r simple: q, u

TU Dresden
Foundations of Semantic Web Technologies
(Unqualified) Number Restrictions

- for a simple role s and a natural number n, $\leq n s$, $\geq n s$ and $= n s$ are concepts
- the semantics is defined by:

 $$(\leq n s)^{\mathcal{I}} = \{ x \in \Delta^{\mathcal{I}} \mid \# \{ y \in \Delta^{\mathcal{I}} \mid (x, y) \in s^{\mathcal{I}} \} \leq n \}$$
 $$(\geq n s)^{\mathcal{I}} = \{ x \in \Delta^{\mathcal{I}} \mid \# \{ y \in \Delta^{\mathcal{I}} \mid (x, y) \in s^{\mathcal{I}} \} \geq n \}$$
 $$(= n s)^{\mathcal{I}} = \{ x \in \Delta^{\mathcal{I}} \mid \# \{ y \in \Delta^{\mathcal{I}} \mid (x, y) \in s^{\mathcal{I}} \} = n \}$$

- the extension of \mathcal{ALC} by (unqualified) number restrictions is denoted by \mathcal{ALCN}
- correspond to $\text{owl:maxCardinality}$, $\text{owl:minCardinality}$, and owl:cardinality
- restriction to simple roles ensures decidability e.g. for checking knowledge base satisfiability
- definition of TBox requires an RBox being already defined
(Unqualified) Number Restrictions in FOL

- translation into FOL requires equality or counting quantifiers
- translation defined as follows (likewise for π_y):
 \[
 \pi_x(\leq n s) = \exists^n y. (s(x, y)) \\
 \pi_x(\geq n s) = \exists^n y. (s(x, y)) \\
 \pi_x(= n s) = \exists^n y. (s(x, y)) \land \exists^n y. (s(x, y))
 \]
- the following equivalences hold:
 \[
 \neg(\leq n s) = \geq n + 1 s \\
 \neg(\geq 0 s) = \bot \\
 \leq 0 s = \forall s. \bot \\
 \top \sqsubseteq \leq 1 s = \text{Func}(s)
 \]
Nominals or Closed Classes

- defines a class by complete enumeration of its instances
- for a_1, \ldots, a_n individuals, $\{a_1, \ldots, a_n\}$ is a concept
- semantics defined as follows:

 \[\text{DL: } (\{a_1, \ldots, a_n\})^I = \{a_1^I, \ldots, a_n^I\} \]
 \[\text{FOL: } \pi_x(\{a_1, \ldots, a_n\}) = (x = a_1 \lor \ldots \lor x = a_n) \]

- extension of ALC by nominals denoted as $ALCO$
- corresponds to owl:oneOf
Nominals for Encoding Further OWL Constructors

- `owl:hasValue` "forces" role to a certain individual

```
<owl:Class rdf:ID="Woman">
  <owl:equivalentClass>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hasGender"/>
      <owl:hasValue rdf:resource="#female"/>
    </owl:Restriction>
  </owl:equivalentClass>
</owl:Class>
```

- in description logic:

```
Woman ≡ ∃hasGender.{female}
```
Further Kinds of ABox Assertions

an ABox assertion can have one of the following forms

- $C(a)$ (concept assertion)
- $r(a, b)$ (role assertion)
- $\neg r(a, b)$ (negative role assertion)
- $a \approx b$ (equality assertion)
- $a \not\approx b$ (inequality assertion)
Further Kinds of ABox Assertions

an ABox assertion can have one of the following forms

- $C(a)$ (concept assertion)
- $r(a, b)$ (role assertion)
- $\neg r(a, b)$ (negative role assertion)
- $a \approx b$ (equality assertion)
- $a \not\approx b$ (inequality assertion)
Internalization of ABox Assertions

if nominals are supported, every knowledge base with an ABox can be transformed into an equivalent KB without ABox:

\[C(a) = \{a\} \sqsubseteq C \]
\[r(a, b) = \{a\} \sqsubseteq \exists r.\{b\} \]
\[\neg r(a, b) = \{a\} \sqsubseteq \forall r.(\neg \{b\}) \]
\[a \approx b = \{a\} \equiv \{b\} \]
\[a \not\approx b = \{a\} \sqsubseteq \neg \{b\} \]
Overview Nomenclature

\(ALC \) Attribute Language with Complement

 \(S \) \(ALC \) + role transitivity

 \(H \) subroles

 \(O \) closed classes

 \(I \) inverse roles

 \(N \) (unqualified) number restrictions

 \((D) \) datatypes

 \(F \) functional roles

OWL DL is \(SHOIN(D) \) and OWL Lite is \(SHIF(D) \)
Different Terms in DLs and in OWL

<table>
<thead>
<tr>
<th>OWL</th>
<th>DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>class</td>
<td>concept</td>
</tr>
<tr>
<td>property</td>
<td>role</td>
</tr>
<tr>
<td>object property</td>
<td>abstract role</td>
</tr>
<tr>
<td>data property</td>
<td>concrete role</td>
</tr>
<tr>
<td>oneOf</td>
<td>nominal</td>
</tr>
<tr>
<td>ontology</td>
<td>knowledge base</td>
</tr>
<tr>
<td>–</td>
<td>TBox, RBox, ABox</td>
</tr>
</tbody>
</table>
Example: A More Complex Knowledge Base

\[
\begin{align*}
\text{Human} & \sqsubseteq \text{Animal} \sqcap \text{Biped} \\
\text{Man} & \equiv \text{Human} \sqcap \text{Male} \\
\text{Male} & \sqsubseteq \lnot \text{Female} \\
\{\text{President Obama}\} & \equiv \{\text{Barack Obama}\} \\
\{\text{john}\} & \sqsubseteq \lnot \{\text{peter}\} \\
\text{hasDaughter} & \sqsubseteq \text{hasChild} \\
\text{hasChild} & \equiv \text{hasParent}^{-} \\
\text{cost} & \equiv \text{price} \\
\text{Trans(ancestor)} & \\
\text{Func(hasMother)} & \\
\text{Func(hasSSN}^{-}) & \end{align*}
\]
Open versus Closed World Assumption

OWA Open World Assumption
 – the existence of further individuals is possible, if they are not explicitly excluded
 – OWL uses the OWA

CWA Closed World Assumption
 – it is assumed that the knowledge base contains all individuals and facts
Open versus Closed World Assumption

OWA Open World Assumption
 – the existence of further individuals is possible, if they are not
 explicitly excluded
 – OWL uses the OWA

CWA Closed World Assumption
 – it is assumed that the knowledge base contains all individuals and
 facts

Are all of Bill’s children male? no idea, if we assume not to know everything about Bill if we know everything then all of Bill’s children are male

child(bill, bob) Man(bob) |=? (∀ child.Man)(bill)

(⩽ 1 child)(bill) |=? (∀ child.Man)(bill)

TU Dresden Foundations of Semantic Web Technologies
Open versus Closed World Assumption

OWA Open World Assumption
- the existence of further individuals is possible, if they are not explicitly excluded
- OWL uses the OWA

CWA Closed World Assumption
- it is assumed that the knowledge base contains all individuals and facts

<table>
<thead>
<tr>
<th>Are all of Bill’s children male?</th>
<th>no idea, if we assume not to know everything about Bill</th>
<th>if we know everything then all of Bill’s children are male</th>
</tr>
</thead>
<tbody>
<tr>
<td>child(bill, bob) Man(bob)</td>
<td>$\models ? (\forall \text{child.Man})(\text{bill})$</td>
<td>DL answers don’t know</td>
</tr>
<tr>
<td>$(\leq 1 \ \text{child})(\text{bill})$</td>
<td>$\models ? (\forall \text{child.Man})(\text{bill})$</td>
<td>Prolog</td>
</tr>
</tbody>
</table>

TU Dresden Foundations of Semantic Web Technologies
Open versus Closed World Assumption

OWA Open World Assumption
– the existence of further individuals is possible, if they are not explicitly excluded
– OWL uses the OWA

CWA Closed World Assumption
– it is assumed that the knowledge base contains all individuals and facts

Are all of Bill’s children male?

| child(bill, bob) Man(bob) | |=? (∀ child.Man)(bill) | DL answers don’t know | Prolog yes |
|--------------------------|------------------------|-----------------------|----------------------|
| (≤ 1 child)(bill) | |=? (∀ child.Man)(bill) | DL answers don’t know | Prolog yes |
Open versus Closed World Assumption

OWA Open World Assumption
– the existence of further individuals is possible, if they are not explicitly excluded
– OWL uses the OWA

CWA Closed World Assumption
– it is assumed that the knowledge base contains all individuals and facts

<table>
<thead>
<tr>
<th>Are all of Bill’s children male?</th>
<th>no idea, if we assume not to know everything about Bill</th>
<th>if we know everything then all of Bill’s children are male</th>
</tr>
</thead>
<tbody>
<tr>
<td>child(bill, bob)</td>
<td>\leq? $(\forall \text{child}.\text{Man})(\text{bill})$</td>
<td>DL answers don’t know</td>
</tr>
</tbody>
</table>

$(\leq 1 \text{child})(\text{bill}) | \leq? (\forall \text{child}.\text{Man})(\text{bill}) | \text{yes}$
Open versus Closed World Assumption

OWA
- Open World Assumption
 - the existence of further individuals is possible, if they are not explicitly excluded
 - OWL uses the OWA

CWA
- Closed World Assumption
 - it is assumed that the knowledge base contains all individuals and facts

<table>
<thead>
<tr>
<th>Are all of Bill’s children male?</th>
<th>no idea, if we assume not to know everything about Bill</th>
<th>if we know everything then all of Bill’s children are male</th>
</tr>
</thead>
<tbody>
<tr>
<td>child(bill, bob) Man(bob)</td>
<td>(\models (\forall \text{child} . \text{Man})(\text{bill}))</td>
<td>DL answers don’t know [Prolog \text{ yes}]</td>
</tr>
<tr>
<td>(\leq 1 \text{ child})(\text{bill}))</td>
<td>(\models (\forall \text{child} . \text{Man})(\text{bill}))</td>
<td>yes [yes]</td>
</tr>
</tbody>
</table>

TU Dresden Foundations of Semantic Web Technologies
Agenda

• Motivation
• Introduction Description Logics
• The Description Logic \mathcal{ALC}
• Extensions of \mathcal{ALC}
• Inference Problems
Important Inference Problems for a Knowledge Base \mathcal{K}

- global consistency of the knowledge base: $\mathcal{K} \models ? \text{ false? } \mathcal{K} \models ? \top \sqsubseteq \bot$?
 - Is the knowledge base “plausible”?
- class consistency: $\mathcal{K} \models ? \ C \sqsubseteq \bot$?
 - Is the class C necessarily empty?
- class inclusion (subsumption): $\mathcal{K} \models ? \ C \sqsubseteq D$?
 - taxonomic structure of the knowledge base
- class equivalence: $\mathcal{K} \models ? \ C \equiv D$?
 - Do two classes comprise the same individual sets?
- class disjointness: $\mathcal{K} \models ? \ C \cap D \sqsubseteq \bot$?
 - Are two classes disjoint?
- class membership: $\mathcal{K} \models ? \ C(a)$?
 - Is the individual a contained in class C?
- instance retrieval: find all x with $\mathcal{K} \models C(x)$
 - Find all (known!) members of the class C.

TU Dresden Foundations of Semantic Web Technologies
Decidability of OWL DL

- decidability means that there is a terminating algorithm for all the aforementioned inference problems
- OWL DL is a fragment of FOL, thus FOL inference procedures could be used in principle (Resolution, Tableaux)
 - but these are not guaranteed to terminate!
- problem: find algorithms that are guaranteed to terminate
- no “naive” solutions for this
OWL 2: Outlook

- OWL 2 extends the fragments introduced here by further constructors
- OWL 2 also defines simpler fragments (PTime for standard inferencing problems)
- diverse tools for automated inferencing
- editors support creation of ontologies / knowledge bases