Exercise Sheet 2
Undecidability and Rice’s Theorem

David Carral

October 23, 2019
Exercise 1. Using an oracle that decides the halting problem, construct a decider for the language $\{\langle M, w \rangle | M$ is a TM that accepts $w \}$.

Definition. An *Oracle Turing Machine* (OTM) is a TM M with a special tape, called the *oracle tape*, and distinguished states $q_?$, q_{yes}, and q_{no}. For a language O, the *oracle machine* M^O can, in addition to the normal TM operations, do the following: Whenever M^O reaches $q_?$, its next state is q_{yes} if the content of the oracle tape is in O, and q_{no} otherwise.

Solution.

- Let $H = \{\langle M, w \rangle | M$ is a TM that halts on input $w \}$.
- We define an oracle machine N^H that, on input $\langle M, w \rangle$, does the following:
 - Construct the TM M', which is obtained by extending M in the following manner:
 - Add a fresh state q_∞ to M'.
 - For every tape symbol a, add $\langle q_\infty, a \rangle \mapsto \langle q_\infty, a, R \rangle$ to the transition function of M'.
 - For every non-accepting state q and every tape symbol a such that $\delta(q, a)$ is undefined, add $\langle q, a \rangle \mapsto \langle q_\infty, a, R \rangle$ to the transition function of M'_∞.
 - Use the oracle tape of N^H to determine whether M' halts with input w. If that is the case, output *accept*; otherwise, *reject*.
Exercise 2. A *useless state* in a Turing machine is one that is never entered on any input string. Consider the problem of determining whether a Turing machine has any useless states. Show that this language is undecidable.

Solution.

- Suppose for a contradiction that there is a TM \mathcal{U} such that $L(\mathcal{U}) = \{\langle M \rangle \mid M \text{ contains some useless state}\}$.
- Using \mathcal{U}, we construct a TM \mathcal{E} that solves the empty word problem (which is undecidable).
- On input $\langle M \rangle$, the TM \mathcal{E} performs the following computation:
 - Write down the encoding of a TM M' that (1) deletes the content in the input string, (2) places the head at the beginning of the tape, and (3) executes M. Note that, M accepts the empty word iff $L(M') = \Sigma^*$ iff $L(M') \neq \emptyset$.
 - Produce the encoding of a TM M'' which results from pruning all useless states in M'. Note that, we can construct this TM using \mathcal{U}.
 - *Accept* iff M'' contains some final state.

Remark. We assume that once a TM goes into a final state it halts and accepts.
Exercise 3. Show the following: “If a language L is Turing-recognisable and \overline{L} is many-one reducible to L, then L is decidable.”

Remark. $\overline{L} = \{w \mid w \notin L\}$

Definition. Consider some languages P and Q defined over the alphabet Σ. Then, P is many-one reducible to Q if there exists a total computable function $f : \Sigma^* \rightarrow \Sigma^*$ such that $w \in P$ iff $f(w) \in Q$ for all $w \in \Sigma^*$.

(a) Premise: L is Turing-recognisable.

(b) Premise: \overline{L} is many-one reducible to L.

(c) By (a) and (b): \overline{L} is Turing-recognisable.

(d) By (a) and (c): L and \overline{L} can be enumerated.

(e) By (d): Given some word w, we can enumerate all words in L and \overline{L} in parallel. Eventually, we will be able to determine whether w is in L or not.
Exercise Sheet 2

Exercise 4. Let \(L = \{\langle M \rangle \mid M \text{ a TM that accepts } w^r \text{ whenever it accepts } w \} \), where \(w^r \) is the word \(w \) reversed. Show that \(L \) is undecidable.

- Let \(\mathcal{P} \) be the property containing a language \(L' \) iff \(w \in L' \iff w^r \in L' \) for every \(w \in \Sigma^* \). Note that, a property is a set of languages, i.e., a set of sets of words.
- \(L \) is the set of all TM encodings \(\langle M \rangle \) that accept some language in \(\mathcal{P} \).
- Since \(\mathcal{P} \) is non-trivial, \(L \) is undecidable by Rice’s Theorem.

Definition 4.2: Let \(\mathcal{P} \) be a set of languages. A language \(L \) has the property \(\mathcal{P} \) if \(L \in \mathcal{P} \). Property \(\mathcal{P} \) is a non-trivial property of recognisable languages if there are TM-recognisable languages that have it and others that do not have it.

Theorem 4.1 (Rice’s Theorem): If \(\mathcal{P} \) is a non-trivial property of recognisable languages, then the following problem is undecidable:

\[
\mathcal{P}\text{-ness} = \{\langle M \rangle \mid L(M) \in \mathcal{P}\}
\]
Exercise Sheet 2

Exercise 5. Consider the following languages L and L':

$$L = \{ \langle M, w \rangle \mid M \text{ accepts } w \} \quad L' = \{ \langle M \rangle \mid M \text{ does not accept any word} \}$$

Show that there cannot exist a many-one reduction from L to L'.

Definition. Consider some languages P and Q defined over the alphabet Σ. Then, P is many-one reducible to Q if there exists a total computable function $f : \Sigma^* \rightarrow \Sigma^*$ such that $w \in P$ iff $f(w) \in Q$ for all $w \in \Sigma^*$.

Solution.

(a) Suppose for a contradiction that $L \leq_m L'$.

(b) By (a): $\overline{L} \leq_m \overline{L'}$.

(c) $\overline{L'}$ is semi-decidable (see Exercise 10 on the previous exercise sheet).

(d) By (b) and (c): \overline{L} is semi-decidable.

(e) L is semi-decidable (discuss).

(f) By (d) and (e): L is decidable.

(g) L is undecidable (discuss).

(h) By (f) and (g): Contradiction!
Exercise Sheet 2

Exercise 6. Show that every Turing-recognisable language can be mapping-reduced to the following language.

\[L = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts the word } w \} \]

Definition. Consider some languages \(P \) and \(Q \) defined over the alphabet \(\Sigma \). Then, \(P \) is \textit{many-one reducible} to \(Q \) if there exists a total computable function \(f : \Sigma^* \rightarrow \Sigma^* \) such that \(w \in P \) iff \(f(w) \in Q \) for all \(w \in \Sigma^* \).

Solution.
(a) Let \(L' \) be a semi-decidable language.
(b) By (a): There is some TM \(M \) that recognises \(L' \).
(c) Let \(f \) be the Turing-computable function mapping a word \(w \) to \(\langle M, w \rangle \).
(d) By (c): For every \(w \in \Sigma^* \), \(w \in L' \) iff \(\langle M, w \rangle \in L \).
(e) By (c) and (d): \(L' \leq_m L \).