

Hannes Strass (based on slides by Martin Gebser & Torsten Schaub (CC-BY 3.0)) Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

ASP: Syntax and Semantics

Lecture 10, 11th Dec 2023 // Foundations of Logic Programming, WS 2023/24

Previously ...

- The immediate consequence operator T_P for a normal logic program P characterizes the **supported models** of P (= the models of comp(P)).
- The **stratification** of a program *P* partitions the program in layers (strata) such that predicates in one layer only negatively/positively depend on predicates in strictly lower/lower or equal layers.
- Every **stratified** logic program *P* has an intended **standard model** *M*_{*P*}.
- A program is **locally stratified** iff its ground instantiation is stratified.
- Locally stratified programs allow for a unique **perfect model**.
- A normal program *P* may have zero or more **well-supported models**.

Well-supported models are also known as *stable models*.

Logic Programming Semantics

LPs \ Model(s)	Least Herbrand	Standard	Perfect	Stable (Well-Supported)	
Definite	defined, exists, unique				
Stratified	defined, exists, unique				
Locally Stratified			defined, exists, unique		
Normal				defined	

Motivation: ASP vs. Prolog and SAT

ASP Syntax

Semantics

Variables

Motivation: ASP vs. Prolog and SAT

ASP: Syntax and Semantics (Lecture 10) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 5 of 34

KR's Shift of Paradigm

Theorem Proving based approach (e.g. Prolog)

- 1. Provide a representation of the problem
- 2. A solution is given by a derivation of a query

Model Generation based approach (e.g. SATisfiability testing)

- 1. Provide a representation of the problem
- 2. A solution is given by a model of the representation

LP-style Playing with Blocks

ASP: Syntax and Semantics (Lecture 10) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 7 of 34

LP-style Playing with Blocks

Shuffled Prolog program

```
on(a,b). on(b,c).
```

```
above(X,Y) :- above(X,Z), on(Z,Y).
```

```
above(X,Y) := on(X,Y).
```

Prolog queries (answered via SLD resolution)

?- above(a,c).

Fatal Error: local stack overflow.

ASP: Syntax and Semantics (Lecture 10) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 8 of 34

KR's Shift of Paradigm

Theorem Proving based approach (e.g. Prolog)

- 1. Provide a representation of the problem
- 2. A solution is given by a derivation of a query

Model Generation based approach (e.g. SATisfiability testing)

- 1. Provide a representation of the problem
- 2. A solution is given by a model of the representation

SAT-style Playing with Blocks

Formula

on(a, b)

\wedge on(b, c)

- $\land (on(X, Y) \rightarrow above(X, Y))$
- $\land (on(X, Z) \land above(Z, Y) \rightarrow above(X, Y))$

Herbrand model (among 426)

ſ	on(a, b),	on(b, c),	on(a, c),	on(b, b),	
ĺ	above(a, b),	above(b, c),	above(a, c),	above(b, b),	above(c, b)

KR's Shift of Paradigm

Theorem Proving based approach (e.g. Prolog)

- 1. Provide a representation of the problem
- 2. A solution is given by a derivation of a query

Model Generation based approach (e.g. SATisfiability testing)

- 1. Provide a representation of the problem
- 2. A solution is given by a model of the representation

► Answer Set Programming (ASP)

ASP-style Playing with Blocks

Logic program

```
on(a,b). on(b,c).
```

```
above(X,Y) := on(X,Y).
```

```
above(X,Y) :- on(X,Z), above(Z,Y).
```

Logic program (shuffled)

```
on(a,b). on(b,c).
```

```
above(X,Y) :- above(Z,Y), on(X,Z).
```

```
above(X,Y) :- on(X,Y).
```

 $\left(-\frac{1}{2} \left(-\frac{1}{2} \right) -$

Stable Herbrand model (and in others) UNIVERSITAT DRESDEN

Slide 12 of 34

ASP versus LP

ASP	Prolog			
Model generation	Entailment proving			
Bottom-up	Top-down			
Modelling language	Programming language			
Rule-based format				
Instantiation	Unification			
Flat terms	Nested terms			
(Turing +) NP(^{NP})	Turing			

ASP versus SAT

ASP	SAT				
Model generation					
Bottom-up					
Constructive Logic	Classical Logic				
Closed (and open) world reasoning	Open world reasoning				
Modelling language	_				
Complex reasoning modes	Satisfiability testing				
Satisfiability	Satisfiability				
Enumeration/Projection	—				
Intersection/Union	—				
Optimization					
(Turing +) <i>NP(^{NP})</i>	NP				

What is ASP Good For?

- Combinatorial search problems in the realm of *P*, *NP*, and *NP*^{*NP*} (some with substantial amount of data), like
 - Automated Planning
 - Code Optimization
 - Composition of Renaissance Music
 - Database Integration
 - Decision Support for NASA shuttle controllers
 - Model Checking
 - Product Configuration
 - Robotics
 - Systems Biology
 - System Synthesis
 - (industrial) Team-building
 - and many many more

ASP Syntax

ASP: Syntax and Semantics (Lecture 10) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 16 of 34

Normal Logic Programs

Definition

- A (normal) **logic program**, *P*, over a set *A* of atoms is a finite *set* of rules.
- A (normal) **rule**, *r*, is of the form

$$a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$$

where $0 \le m \le n$ and each $a_i \in A$ is an atom for $0 \le i \le n$.

• A program *P* is **positive** (definite) : $\iff m = n$ for all $r \in P$.

 $head(r) = a_0 \qquad body(r) = \{a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n\}$ $body(r)^+ = \{a_1, \dots, a_m\} \qquad body(r)^- = \{a_{m+1}, \dots, a_n\}$ $atom(P) = \bigcup_{r \in P} \left(\{head(r)\} \cup body(r)^+ \cup body(r)^-\right)$ $body(P) = \{body(r) \mid r \in P\}$

Rough Notational Convention

We sometimes use the following notation interchangeably in order to stress the respective view:

						default	classical
	true, false	if	and	or	iff	negation	negation
source code		:-	ı			not	-
logic program		\leftarrow	,	;		\sim	7
formula	op, $ op$	\rightarrow	\wedge	\vee	\leftrightarrow	\sim	7

Semantics

ASP: Syntax and Semantics (Lecture 10) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 19 of 34

Formal Definition Stable Models of Positive Programs

Definition

- A set of atoms *X* is **closed under** a positive program *P* : \iff for any $r \in P$, we have that $body(r)^{+} \subseteq X$ implies $head(r) \in X$.
 - X corresponds to a model of P (seen as a formula)
- The **smallest** set of atoms that is closed under a positive program *P* is denoted by *Cn*(*P*).
 - Cn(P) corresponds to the \subseteq -smallest model of P
- The set *Cn*(*P*) of atoms is the **stable model** of a *positive* program *P*.

Cn(*P*) is the \subseteq -least fixpoint of the one-step consequence operator T_P .

Proposition

If P_1 and P_2 are positive programs with $P_1 \subseteq P_2$, then $Cn(P_1) \subseteq Cn(P_2)$.

Proof idea: Every model of P_2 is a model of P_1 , thus satisfies all $a \in Cn(P_1)$.

Basic Idea

Consider the logical formula ϕ and its three (classical) models:

{p,q}, {q,r}, and {p,q,r} Formula ϕ has one stable model, often called answer set: $p \mapsto 1$ qp,q} 1

$$\phi \quad q \land (q \land \neg r \to p)$$

Informally, a set X of atoms is a stable model of a logic program P

- if X is a (classical) model of P and
- if all atoms in *X* are justified by some rule in *P*.

"Justified" here means well-founded support.

(Rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932).)

Slide 21 of 34

Formal Definition Stable Models of Normal Programs

Definition

Let *P* be a normal logic program and *X* be a set of atoms.

1. The (Gelfond-Lifschitz-)**reduct** of *P* relative to *X* is the positive program

 $P^{\chi} = \{ head(r) \leftarrow body(r)^{+} \mid r \in P \text{ and } body(r)^{-} \cap X = \emptyset \}.$

2. A set X of atoms is a **stable model** of a program $P :\iff Cn(P^X) = X$.

- Note: $Cn(P^{\chi})$ is the \subseteq -smallest (classical) model of P^{χ}
- Note: Every atom in *X* is justified by an *"applying rule from P"* Intuitively:
- We assume all atoms $a \notin X$ to be false, and then
- derive what must be true under this assumption.
- If this allows us to reconstruct *X*, then *X* is stable.

A Closer Look at P^{χ}

In other words, given a set X of atoms from P,

- P^{χ} is obtained from *P* by deleting
- 1. each rule having $\sim a$ in its body with $a \in X$ and then
- 2. all negative atoms of the form $\sim a$ in the bodies of the remaining rules.

Note: Only negative body literals are evaluated w.r.t. X.

Proposition

```
If X \subseteq Y, then P^Y \subseteq P^X.
```

Proof.

- Let $r \in P^{\gamma}$. Then there exists a rule $r' \in P$ such that $r = head(r') \leftarrow body(r')^{+}$ and $body(r')^{-} \cap Y = \emptyset$.
- Due to $X \subseteq Y$ we have $body(r')^{-} \cap X = \emptyset$ and thus $r \in P^{X}$.

A First Example

 $P = \{p \leftarrow p, \ q \leftarrow {\sim}p\}$

X	P^{X}	Cn(P ^X)
{ }	$p \leftarrow p$	{q} X
	$q \leftarrow$	
{ <i>p</i> }	$p \leftarrow p$	Ø 🗙
{ q}	$p \leftarrow p \\ q \leftarrow$	{q} 🖌
{ <i>p</i> , <i>q</i> }	$p \leftarrow p$	Ø 🗙

ASP: Syntax and Semantics (Lecture 10) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 24 of 34

A Second Example

$$P = \{p \leftarrow \neg q, q \leftarrow \neg p\}$$

X	P^{X}	Cn(P ^X)
{ }	$p \leftarrow$	{ <i>p</i> , <i>q</i> } X
	$q \leftarrow$	
{ <i>p</i> }	p ←	{ <i>p</i> } <
{ q}	q ←	{q} 🖌
{ <i>p</i> , <i>q</i> }		Ø 🗙

ASP: Syntax and Semantics (Lecture 10) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 25 of 34

A Third Example

$$P = \{p \leftarrow \sim p\}$$

ASP: Syntax and Semantics (Lecture 10) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 26 of 34

Quiz: Stable Models

Quiz

Consider the following normal logic program P: ...

Some Properties

A logic program may have zero, one, or multiple stable models.

Proposition

- 1. If *X* is a stable model of a logic program *P*, then *X* is a model of *P* (seen as a formula).
- 2. If X and Y are distinct stable models of a logic program P, then $X \nsubseteq Y$.

Proof.

- 1. P^X evaluates P w.r.t. all $a \in A \setminus X$.
 - $X = Cn(P^{\chi})$ is a model of P^{χ} .
 - Thus evaluating *P* by *X* leads to true.
- 2. Let X and Y be stable models of P and assume $X \subsetneq Y$.
 - Then $P^{Y} \subseteq P^{X}$ and $Cn(P^{Y}) \subseteq Cn(P^{X})$.
 - Thus $Y = Cn(P^Y) \subseteq Cn(P^X) = X$, contradiction.

Variables

ASP: Syntax and Semantics (Lecture 10) Computational Logic Group // Hannes Strass Foundations of Logic Programming, WS 2023/24

Slide 29 of 34

Programs with Variables

Definition

Let *P* be a logic program with first-order atoms (built from predicates over terms, where terms are built from constant/function symbols and variables).

- Let $\ensuremath{\mathfrak{T}}$ be a set of variable-free terms. (also called Herbrand universe).
- Let A be a set of (variable-free) atoms constructable from T. (also called Herbrand base).
- For a rule *r* ∈ *P* (with variables), the **ground instances** of *r* are the variable-free rules obtained by replacing all variables in *r* by elements from *T*:

ground(r) := { $r\theta \mid \theta : var(r) \rightarrow \Im$ and $var(r\theta) = \emptyset$ }

where *var*(*r*) stands for the set of all variables occurring in *r*; θ is a (ground) substitution.

• The **ground instantiation** of *P* is $ground(P) := \bigcup_{r \in P} ground(r)$.

An Example

$$P = \{ r(a, b) \leftarrow, r(b, c) \leftarrow, t(X, Y) \leftarrow r(X, Y) \}$$

$$\Im = \{ a, b, c \}$$

$$\mathcal{A} = \left\{ r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c, a), r(c, b), r(c, c), t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c) \right\}$$

$$ground(P) = \left\{ r(a, b) \leftarrow, r(b, c), t(c, a), t(c, b), t(c, c), t(c, a), t(c, b), t(c, c), t(c, a), t(c, b), t(c, c), t(c, c)$$

Intelligent Grounding aims at reducing the ground instantiation.

Slide 31 of 34

Stable Models of Programs with Variables

Definition Let *P* be a normal logic program with variables. A set *X* of ground atoms is a **stable model** of *P* $:\iff$ $Cn(ground(P)^X) = X$ Example The normal first-order program $P = \{even(0) \leftarrow even(star)\}$

The normal first-order program $P = \{even(0) \leftarrow, even(s(X)) \leftarrow \sim even(X)\}$ has the single stable model

 $S = \{even(0), even(s(s(0))), even(s(s(s(0))))), ...\}$

since the reduct ground(P)^S is given by { $even(0) \leftarrow$, $even(s(s(0))) \leftarrow$, ...}.

Well-Supported Models = Stable Models

Theorem (Fages, 1991)

For any normal (first-order) logic program *P*, its well-supported models coincide with its stable models.

Proof Ideas.

- For *X* a stable model of *P*, define $A \prec_X B :\iff$ for some $i \in \mathbb{N}$, $A \in T_{P^X} \uparrow i$ and $B \in T_{P^X} \uparrow (i+1) \setminus T_{P^X} \uparrow i$. Show that *X* is well-supported via \prec_X .
- For *M* a well-supported model of *P* via \prec , show by induction that for any atom $A \in M$, there is $i \in \mathbb{N}$ with $A \in T_{PM} \uparrow i$. For this, employ that \prec is well-founded and use the cardinality of the set $\{B \mid B \prec A\}$.

Recall: A Herbrand interpretation $I \subseteq A$ is **well-supported** : \iff there is a well-founded ordering \prec on A such that: for each $A \in I$ there is a clause $A \leftarrow \vec{B} \in ground(P)$ with: $I \models \vec{B}$, and for every positive atom $C \in \vec{B}$, we have $C \prec A$.

Conclusion

Summary

- PROLOG-based logic programming focuses on **theorem proving**.
- LP based on stable model semantics focuses on **model generation**.
- The **stable model** of a positive program is its least (Herbrand) model.
- The **stable models** of a normal logic program *P* are those sets *X* for which *X* is the stable model of the positive program *P*^{*X*} (the reduct).
- The **well-supported** model semantics equals **stable** model semantics.

Suggested action points:

- Download the solver clingo and try out the examples of this lecture.
- Clarify: How do stable models have justified support for true atoms?
- Show that every stable model *X* of a program *P* satisfies $X \subseteq Cn(P^{\emptyset})$.

