
Computational
Logic ∴ Group

Hannes Strass (based on slides by Martin Gebser & Torsten Schaub (CC-BY 3.0))
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

ASP: Syntax and Semantics
Lecture 10, 11th Dec 2023 // Foundations of Logic Programming, WS 2023/24

https://github.com/potassco-asp-course/course
https://creativecommons.org/licenses/by/3.0/deed.en_US
https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2023)


Previously . . .

• The immediate consequence operator TP for a normal logic program Pcharacterizes the supported models of P (= the models of comp(P)).
• The stratification of a program P partitions the program in layers (strata)such that predicates in one layer only negatively/positively depend onpredicates in strictly lower/lower or equal layers.
• Every stratified logic program P has an intended standard model MP.• A program is locally stratified iff its ground instantiation is stratified.
• Locally stratified programs allow for a unique perfect model.
• A normal program Pmay have zero or more well-supported models.

Well-supported models are also known as stable models.

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 2 of 34 Computational
Logic ∴ Group



Logic Programming Semantics

LPs \ Model(s) LeastHerbrand Standard Perfect Stable
(Well-Supported)

Definite defined, exists, unique
Stratified defined, exists, unique
Locally Stratified defined, exists, unique
Normal defined

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 3 of 34 Computational
Logic ∴ Group



Overview

Motivation: ASP vs. Prolog and SAT
ASP Syntax
Semantics
Variables

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 4 of 34 Computational
Logic ∴ Group



Motivation: ASP vs. Prolog and SAT

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 5 of 34 Computational
Logic ∴ Group



KR’s Shift of Paradigm

Theorem Proving based approach (e.g. Prolog)
1. Provide a representation of the problem2. A solution is given by a derivation of a query

Model Generation based approach (e.g. SATisfiability testing)
1. Provide a representation of the problem2. A solution is given by a model of the representation

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 6 of 34 Computational
Logic ∴ Group



LP-style Playing with Blocks
Prolog program

on(a,b). on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries (testing entailment)
?- above(a,c).

yes

?- above(c,a).

no

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 7 of 34 Computational
Logic ∴ Group



LP-style Playing with Blocks
Shuffled Prolog program

on(a,b). on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries (answered via SLD resolution)
?- above(a,c).

Fatal Error: local stack overflow.

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 8 of 34 Computational
Logic ∴ Group



KR’s Shift of Paradigm

Theorem Proving based approach (e.g. Prolog)
1. Provide a representation of the problem2. A solution is given by a derivation of a query

Model Generation based approach (e.g. SATisfiability testing)
1. Provide a representation of the problem2. A solution is given by a model of the representation

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 9 of 34 Computational
Logic ∴ Group



SAT-style Playing with Blocks

Formula
on(a,b)

∧ on(b, c)
∧ (on(X , Y )→ above(X , Y ))
∧ (on(X , Z)∧ above(Z, Y )→ above(X , Y ))
Herbrand model (among 426){

on(a,b), on(b, c), on(a, c), on(b,b),
above(a,b), above(b, c), above(a, c), above(b,b), above(c,b)

}

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 10 of 34 Computational
Logic ∴ Group



KR’s Shift of Paradigm

Theorem Proving based approach (e.g. Prolog)
1. Provide a representation of the problem2. A solution is given by a derivation of a query

Model Generation based approach (e.g. SATisfiability testing)
1. Provide a representation of the problem2. A solution is given by a model of the representation

➥ Answer Set Programming (ASP)

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 11 of 34 Computational
Logic ∴ Group



ASP-style Playing with Blocks
Logic program

on(a,b). on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Logic program (shuffled)
on(a,b). on(b,c).

above(X,Y) :- above(Z,Y), on(X,Z).

above(X,Y) :- on(X,Y).

Stable Herbrand model (and no others)
{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 12 of 34 Computational
Logic ∴ Group



ASP versus LP

ASP Prolog
Model generation Entailment proving
Bottom-up Top-down
Modelling language Programming language

Rule-based format
Instantiation UnificationFlat terms Nested terms

(Turing +) NP(NP) Turing

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 13 of 34 Computational
Logic ∴ Group



ASP versus SAT
ASP SAT

Model generation
Bottom-up

Constructive Logic Classical Logic
Closed (and open) Open world reasoningworld reasoning
Modelling language —
Complex reasoning modes Satisfiability testing
Satisfiability SatisfiabilityEnumeration/Projection —Intersection/Union —Optimization —

(Turing +) NP(NP) NP

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 14 of 34 Computational
Logic ∴ Group



What is ASP Good For?

• Combinatorial search problems in the realm of P, NP, and NPNP(some with substantial amount of data), like
– Automated Planning– Code Optimization– Composition of Renaissance Music– Database Integration– Decision Support for NASA shuttle controllers– Model Checking– Product Configuration– Robotics– Systems Biology– System Synthesis– (industrial) Team-building– and many many more

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 15 of 34 Computational
Logic ∴ Group



ASP Syntax

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 16 of 34 Computational
Logic ∴ Group



Normal Logic Programs
Definition
• A (normal) logic program, P, over a set A of atoms is a finite set of rules.
• A (normal) rule, r, is of the form

a0 ← a1, . . . ,am,∼am+1, . . . ,∼an
where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n.

• A program P is positive (definite) :⇐⇒ m = n for all r ∈ P.
head(r) = a0 body(r) = {a1, . . . ,am,∼am+1, . . . ,∼an}
body(r)+ = {a1, . . . ,am} body(r)– = {am+1, . . . ,an}
atom(P) = ⋃

r∈P

(
{head(r)} ∪ body(r)+ ∪ body(r)–)

body(P) = {body(r) | r ∈ P}

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 17 of 34 Computational
Logic ∴ Group



Rough Notational Convention

We sometimes use the following notation interchangeably in order to stressthe respective view:
default classicaltrue, false if and or iff negation negation

source code :- , | not -logic program ← , ; ∼ ¬formula ⊤,⊥ → ∧ ∨ ↔ ∼ ¬

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 18 of 34 Computational
Logic ∴ Group



Semantics

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 19 of 34 Computational
Logic ∴ Group



Formal Definition Stable Models of Positive Programs
Definition
• A set of atoms X is closed under a positive program P:⇐⇒ for any r ∈ P, we have that body(r)+ ⊆ X implies head(r) ∈ X .

– X corresponds to a model of P (seen as a formula)
• The smallest set of atoms that is closed under a positive program P isdenoted by Cn(P).

– Cn(P) corresponds to the ⊆-smallest model of P
• The set Cn(P) of atoms is the stable model of a positive program P.
Cn(P) is the ⊆-least fixpoint of the one-step consequence operator TP.
Proposition
If P1 and P2 are positive programs with P1 ⊆ P2, then Cn(P1) ⊆ Cn(P2).
Proof idea: Every model of P2 is a model of P1, thus satisfies all a ∈ Cn(P1).

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 20 of 34 Computational
Logic ∴ Group



Basic Idea
Consider the logical formula Φ and its three(classical) models:

HHH
HHj
p 7→ 1
q 7→ 1
r 7→ 0

{p,q}, {q, r}, and {p,q, r}
Φ q ∧ (q∧¬r → p)

Formula Φ has one stable model,often called answer set:
{p,q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

• if X is a (classical) model of P and
• if all atoms in X are justified by some rule in P.
“Justified” here means well-founded support.
(Rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932).)

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 21 of 34 Computational
Logic ∴ Group



Formal Definition Stable Models of Normal Programs

Definition
Let P be a normal logic program and X be a set of atoms.
1. The (Gelfond-Lifschitz-)reduct of P relative to X is the positive program

PX = {head(r)← body(r)+ | r ∈ P and body(r)– ∩ X = ∅}.
2. A set X of atoms is a stable model of a program P :⇐⇒ Cn(PX ) = X .
• Note: Cn(PX ) is the ⊆-smallest (classical) model of PX
• Note: Every atom in X is justified by an “applying rule from P”

Intuitively:
• We assume all atoms a /∈ X to be false, and then
• derive what must be true under this assumption.
• If this allows us to reconstruct X , then X is stable.

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 22 of 34 Computational
Logic ∴ Group



A Closer Look at PX
In other words, given a set X of atoms from P,
PX is obtained from P by deleting
1. each rule having ∼a in its body with a ∈ X and then
2. all negative atoms of the form ∼a in the bodies of the remaining rules.
Note: Only negative body literals are evaluated w.r.t. X .
Proposition
If X ⊆ Y , then PY ⊆ PX .
Proof.
• Let r ∈ PY . Then there exists a rule r′ ∈ P such that

r = head(r′)← body(r′)+ and body(r′)– ∩ Y = ∅.
• Due to X ⊆ Y we have body(r′)– ∩ X = ∅ and thus r ∈ PX .

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 23 of 34 Computational
Logic ∴ Group



A First Example

P = {p← p, q← ∼p}
X PX Cn(PX )
{ } p ← p

q ←
{q} ✘

{p } p ← p ∅ ✘

{ q} p ← p

q ←
{q} ✔

{p,q} p ← p ∅ ✘

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 24 of 34 Computational
Logic ∴ Group



A Second Example

P = {p← ∼q, q← ∼p}
X PX Cn(PX )
{ } p ←

q ←
{p,q} ✘

{p } p ← {p} ✔

{ q}
q ←

{q} ✔

{p,q} ∅ ✘

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 25 of 34 Computational
Logic ∴ Group



A Third Example

P = {p← ∼p}

X PX Cn(PX )
{ } p← {p} ✘

{p} ∅ ✘

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 26 of 34 Computational
Logic ∴ Group



Quiz: Stable Models

Quiz
Consider the following normal logic program P: . . .

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 27 of 34 Computational
Logic ∴ Group



Some Properties
A logic program may have zero, one, or multiple stable models.
Proposition
1. If X is a stable model of a logic program P,then X is a model of P (seen as a formula).
2. If X and Y are distinct stable models of a logic program P,then X ̸⊆ Y .
Proof.
1. – PX evaluates P w.r.t. all a ∈ A \ X .– X = Cn(PX ) is a model of PX .– Thus evaluating P by X leads to true.
2. – Let X and Y be stable models of P and assume X ⊊ Y .– Then PY ⊆ PX and Cn(PY ) ⊆ Cn(PX ).– Thus Y = Cn(PY ) ⊆ Cn(PX ) = X , contradiction.

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 28 of 34 Computational
Logic ∴ Group



Variables

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 29 of 34 Computational
Logic ∴ Group



Programs with Variables
Definition
Let P be a logic program with first-order atoms (built from predicates overterms, where terms are built from constant/function symbols and variables).
• Let T be a set of

(

variable-free

)

terms. (also called Herbrand universe).
• Let A be a set of (variable-free) atoms constructable from T.(also called Herbrand base).
• For a rule r ∈ P (with variables), the ground instances of r are thevariable-free rules obtained by replacing all variables in r by elementsfrom T:

ground(r) := {rθ | θ : var(r)→ T and var(rθ) = ∅}
where var(r) stands for the set of all variables occurring in r;
θ is a (ground) substitution.

• The ground instantiation of P is ground(P) := ⋃
r∈P ground(r).

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 30 of 34 Computational
Logic ∴ Group



An Example

P= { r(a,b)←, r(b, c)←, t(X , Y )← r(X , Y ) }
T= {a,b, c}
A=

{
r(a,a), r(a,b), r(a, c), r(b,a), r(b,b), r(b, c), r(c,a), r(c,b), r(c, c),
t(a,a), t(a,b), t(a, c), t(b,a), t(b,b), t(b, c), t(c,a), t(c,b), t(c, c)

}

ground(P) =


r(a,b) ← ,
r(b, c) ← ,
t(a,a) ← r(a,a), t(b,a) ← r(b,a), t(c,a) ← r(c,a),
t(a,b) ← r(a,b), t(b,b) ← r(b,b), t(c,b) ← r(c,b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c, c) ← r(c, c)


Intelligent Grounding aims at reducing the ground instantiation.

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 31 of 34 Computational
Logic ∴ Group



Stable Models of Programs with Variables
Definition
Let P be a normal logic program with variables.
A set X of ground atoms is a stable model of P:⇐⇒

Cn(ground(P)X ) = X

Example
The normal first-order program P = {even(0)←, even(s(X))← ∼even(X)} hasthe single stable model

S = {even(0), even(s(s(0))), even(s(s(s(s(0))))), . . .}

since the reduct ground(P)S is given by {even(0)←, even(s(s(0)))←, . . .}.
ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 32 of 34 Computational

Logic ∴ Group



Well-Supported Models = Stable Models
Theorem (Fages, 1991)
For any normal (first-order) logic program P, its well-supported modelscoincide with its stable models.
Proof Ideas.
• For X a stable model of P, define A ≺X B :⇐⇒ for some i ∈N, A ∈ TPX ↑iand B ∈ TPX ↑(i + 1) \ TPX ↑i. Show that X is well-supported via ≺X .• For M a well-supported model of P via ≺, show by induction that for anyatom A ∈ M, there is i ∈N with A ∈ TPM↑i. For this, employ that ≺ iswell-founded and use the cardinality of the set {B | B ≺ A}.
Recall: A Herbrand interpretation I ⊆ A is well-supported :⇐⇒there is a well-founded ordering ≺ on A such that:

for each A ∈ I there is a clause A← B⃗ ∈ ground(P) with:
I |= B⃗, and for every positive atom C ∈ B⃗, we have C ≺ A.

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 33 of 34 Computational
Logic ∴ Group



Conclusion
Summary
• PROLOG-based logic programming focuses on theorem proving.
• LP based on stable model semantics focuses onmodel generation.
• The stable model of a positive program is its least (Herbrand) model.
• The stable models of a normal logic program P are those sets X forwhich X is the stable model of the positive program PX (the reduct).
• The well-supportedmodel semantics equals stablemodel semantics.
Suggested action points:
• Download the solver clingo and try out the examples of this lecture.
• Clarify: How do stable models have justified support for true atoms?
• Show that every stable model X of a program P satisfies X ⊆ Cn(P∅).

ASP: Syntax and Semantics (Lecture 10)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 34 of 34 Computational
Logic ∴ Group

https://www.potassco.org

	Motivation: ASP vs. Prolog and SAT
	ASP Syntax
	Semantics
	Variables

