
The (Not So) Easy Task of Computing Class
Subsumptions in OWL RL?

Technical Report

Markus Krötzsch

Department of Computer Science, University of Oxford, UK,
markus.kroetzsch@cs.ox.ac.uk

Abstract. The lightweight ontology language OWL RL is used for rea-
soning with large amounts of data. To this end, the W3C standard pro-
vides a simple system of deduction rules, which operate directly on the
RDF syntax of OWL. Several similar systems have been studied. How-
ever, these approaches are usually complete for instance retrieval only.
This paper asks if and how such methods could also be used for com-
puting entailed subclass relationships. Checking entailment for arbitrary
OWL RL class subsumptions is co-NP-hard, but tractable rule-based
reasoning is possible when restricting to subsumptions between atomic
classes. Surprisingly, however, this cannot be achieved in any RDF-based
rule system, i.e., the W3C calculus cannot be extended to compute all
atomic class subsumptions. We identify syntactic restrictions to mitigate
this problem, and propose a rule system that is sound and complete for
many OWL RL ontologies.

1 Introduction

The lightweight ontology language OWL RL [16] is widely used for reasoning
with large amounts of data, and many systems support query answering over
OWL RL ontologies. Commercial implementations of (parts of) OWL RL include
Oracle 11g [13], OWLIM [2], Virtuoso [5], and AllegroGraph [6].

What makes OWL RL so appealing to users and implementers alike are
its favourable computational properties. As for all three lightweight profiles of
OWL 2, typical reasoning tasks for OWL RL can be solved in polynomial time.
Possibly even more important, however, is the fact that this low complexity can
be achieved by relatively straightforward algorithms that perform bottom-up,
rule-based materialisation of logical consequences until saturation. While it is
also possible to use similar algorithms for OWL EL [15], a simple rule-based
algorithm for OWL RL is already given in the W3C specification [16]. Various
similar rule sets have been published for fragments of OWL RL (e.g., [10,8,21]).

Another advantage of these rule systems is that they operate directly on the
RDF serialisation of OWL. OWL RL reasoning thus can easily be implemented

? Revised version of 13 Nov 2012. See end of document for revision history.

on top of existing RDF databases that support some form of production rules to
infer additional information. Basic rule-matching capabilities are found in most
RDF stores, since they are similar to query matching. Indeed, SPARQL rules
have been proposed as a natural rule extension of the SPARQL query language
that can fully express the OWL RL rule system [20]. It is important that neither
value invention (blank node creation) nor non-monotonic negation are needed in
OWL RL, as both features complicate rule evaluation significantly [20].

A common strategy for evaluating larger amounts of OWL RL data is to
separate terminological information (schema-level axioms) from assertional in-
formation (facts), since the latter are typically significantly larger [14,9,21]. To
further reduce the rules that need to be applied to the data, it would be useful
to pre-compute terminological inferences, especially all subclass relationships.

Unfortunately, it is not known how to do this. To the best of our knowledge,
no polynomial time algorithm has been published for computing schema entail-
ments in OWL RL. As shown in Section 2, the W3C rule system is not complete
for computing class subsumptions, and, more problematically, it is not possible
to compute all class subsumptions without taking assertions into account.

However, it is still possible to obtain RDF-based rule systems that can dis-
cover more entailments than the W3C rules. Using various abbreviations intro-
duced in Section 3, we present one such algorithm in Section 4. We identify
ObjectHasValue as the main obstacle – if it does not occur in superclasses, our
algorithm can compute all class subsumptions. In Section 5, we take a look at
RDF-based rules and show how our results transfer to this setting.

In Section 6, we discuss the problem of computing class subsumptions in un-
restricted OWL RL ontologies, where ObjectHasValue is allowed in superclasses.
It is still possible to use polynomial time rule systems for this case, but it turns
out that there is no RDF-based rule system for this task. This surprising result
shows an inherent limitation of the expressive power of RDF-based rules.

Most of our presentation is based on the Functional-Style Syntax of OWL
[17]. This yields a more concise presentation (compared to the RDF serialisa-
tion) and still is close to the actual language. We assume basic familiarity with
the syntax and semantics of OWL on the level of the OWL Primer [7]. If not
stated otherwise, we generally consider the Direct Semantics of OWL, but we
also mention some results about the RDF-based Semantics. When writing OWL
entities in axioms, we tacitly use prefixes for suggesting abbreviated IRIs.

2 Challenges of Schema Reasoning in OWL RL

Before we focus on the task of computing class subsumptions for OWL RL, it is
worth pointing out some limitations and challenges that do not seem to be well
known, even among practitioners and implementers.

Checking Entailment of OWL RL Axioms is Not Tractable The W3C speci-
fication mentions that Class Expression Subsumption in OWL RL is PTime-
complete w.r.t. the size of the ontology [16, Section 5]. This might evoke the

impression that one could check in polynomial time whether an OWL RL class
inclusion axiom is entailed by an OWL RL ontology. This is not the case.1

Proposition 1. Given an OWL RL ontology O and an OWL RL SubClassOf
axiom A, checking whether O entails A is co-NP-hard.

Proof. We show this by reducing 3SAT unsatisfiability to OWL RL entailment
checking. An instance of the 3SAT problem is a set of propositional clauses
{(L11∨L12∨L13), . . . , (Ln1∨Ln2∨Ln3)}, where each Lij is a propositional vari-
able or a negated propositional variable. The question whether the conjunction
of these clauses is satisfiable is NP-complete. For each propositional variable
p, we introduce two new class names Tp and Fp. To each literal Lij , we as-
sign a class name c(Lij) as follows: if Lij = p, then c(Lij) := Tp; if Lij = ¬p,
then c(Lij) := Fp. For every clause (Li1 ∨ Li2 ∨ Li3), we define a class ex-
pression Ci as ObjectUnionOf(c(L11) c(L12) c(L13)). Now let A be the axiom
SubClassOf(ObjectIntersectionOf(C1 . . .Cn) owl:Nothing), and let O be the ontol-
ogy that consists of the axioms DisjointClasses(Tp Fp) for every propositional
variable p. Clearly, A is an OWL RL axiom and O is an OWL RL ontology.
However, O entails A if and only if the given instance of 3SAT has no solution.
Indeed, if A is not entailed, then O has a model where an individual e is an
instance of each of the class expression Ci. We can construct a propositional
truth assignment as follows: if e is an instance of Tp, then p is mapped to true;
otherwise p is mapped to false. It is easy to see that this is a solution to the
3SAT instance, since e cannot be an instance of Tp and Fp for any p. ut

Another way to find hardness proofs is to use DataSomeValuesFrom in the
subclass, together with datatypes such as XML Schema boolean, which is admis-
sible in OWL RL subclasses. Moreover, similar problems can be found for other
axiom types; e.g., checking entailment of hasKey axioms is also intractable.

These problems are hardly surprising from a logical perspective, since check-
ing the entailment of A from O is equivalent to checking the consistency of
O ∪ {¬A}, where ¬A is the negation of the axiom A (as a logical formula). For
the latter to be in OWL RL, one needs to impose different syntactic restrictions
on A. The check is then possible in PTime. A particularly relevant case where
this is possible is that A is a subclass relationship between two class names. This
is the task that we will focus on in the remainder of this work.

The W3C Rule System is Not Complete for Class Subsumption Checking The
W3C specification states a completeness theorem for its rule system, which as-
serts completeness only for entailment of assertional axioms. However, the rule
system contains a number of rules that would not be necessary to achieve this
especially in Table 9, entitled The Semantics of Schema Vocabulary. This might
lead to the wrong impression that the rules can infer all schema axioms, or at
least all class subsumptions. The following example illustrates that this is wrong.

1 The 2012 update of the OWL 2 specification will correct this; see Section 7.

Example 1. We consider an ontology of three axioms:

SubClassOf(:A :B) (1)
SubClassOf(:A :C) (2)
SubClassOf(ObjectIntersectionOf(:B :C) :D) (3)

This ontology clearly entails SubClassOf(:A :D). However, this is not entailed by
the W3C rule system. The only entailment rules that refer to ObjectIntersectionOf
are rules cls-int1, cls-int2, and scm-int in [16]. The former two rules are only
applicable to individual instances. Rule scm-int can be used to infer SubClassOf(
ObjectIntersectionOf(:B :C) :B) and SubClassOf(ObjectIntersectionOf(:B :C) :C) –
the rule can be viewed as a schema-level version of cls-int2. However, there is
no rule that corresponds to cls-int1 on the schema level, so one can not infer
SubClassOf(:A ObjectIntersectionOf(:B :C)).

This example extends to many other types of axioms. For example, one can-
not infer all entailed property domains or ranges if some class subsumptions have
been missed.

Assertions Can Not be Ignored when Checking Class Subsumptions Since many
OWL RL ontologies are dominated by assertional axioms (i.e., data), it would be
useful if this part of the ontology would not be relevant if one is only interested
in computing class subsumptions. This cannot work in general, since assertions
can cause the ontology to become inconsistent, which in turn leads to the entail-
ment of arbitrary class subsumptions. However, even for consistent ontologies,
assertions cannot be ignored when computing class subsumptions, as shown in
the next example.

Example 2. We consider an ontology of three axioms:

ClassAssertion(:B :b) (4)
SubClassOf(:A ObjectHasValue(:P :b)) (5)
SubClassOf(ObjectSomeValuesFrom(:P :B) :C) (6)

This ontology entails SubClassOf(:A :D): every instance of :A has a :P successor
:b (5), that is an instance of :B (4); thus the subclass in (6) is a superclass of :A.
Without (4) this entailment would be missed.

The relevant assertional information in this example was directly given, but it
is clear that it could also be the result of more complicated reasoning. Therefore,
it is not possible in general to compute all class subsumptions of an ontology
without also computing a significant amount of fact entailments as well. Theo-
rem 3 in Section 4 below identifies a case where assertions can be ignored.

3 A Simpler OWL RL

OWL is a very rich language that provides many redundant syntactic constructs
for the convenience of ontology engineers. When specifying a rule system for

Rca1
ClassAssertion(C a)

SubClassOf(ObjectOneOf(a) C)
Rca2

SubClassOf(ObjectOneOf(a) C)
ClassAssertion(C a)

Rpc1
ObjectPropertyAssertion(P a b)

SubClassOf(ObjectOneOf(a) ObjectSomeValuesFrom(P ObjectOneOf(b)))

Rpc2
SubClassOf(ObjectOneOf(a) ObjectSomeValuesFrom(P ObjectOneOf(b)))

ObjectPropertyAssertion(P a b)

Fig. 1. Rules for expressing assertions as class subsumptions

OWL RL, this abundance of syntax precludes a concise presentation – the W3C
calculus already counts 78 rules. To avoid this problem, we introduce various
simplification rules that allow us to restrict to a much smaller number of features.

Syntactic simplifications can affect the semantics of an ontology. On the one
hand, they may introduce auxiliary vocabulary symbols that had not been de-
fined by the original ontology. On the other hand, any syntactic transformation
of expressions has an impact on the RDF-based Semantics of OWL, which en-
tails only axioms about expressions that are syntactically present in the ontology.
Adding a new expression, even if tautological, thus changes entailments. How-
ever, we expect applications that rely on the RDF-based Semantics to tolerate
this effect. Alternatively, it is possible to view our syntactic simplifications as a
mere abbreviation scheme for a much larger number of rules.

Lists in Axioms We generally assume that all lists of classes or properties in
OWL axioms have been binarised, that is, broken down into lists of length two.
This is always possible by introducing additional axioms; we omit the details
of this frequently used technique. We point out that this simplification is least
essential for our rules. It is easy to generalise all rules we state for binary lists
to lists of arbitrary length.

Datatypes and Data Properties We omit all features related to datatypes from
our presentation. It is not hard to add them. In essence, datatypes in OWL RL
behave like classes for which certain subsumptions are given upfront (e.g., dec-
imal is a superclass of integer), and for which some disjointness axioms are
known (e.g., rational is disjoint from string). Likewise, datatype literals behave
like individual names for which the membership in some class (i.e., datatype)
is known. This auxiliary information can be added when loading an ontology.
Thereafter, datatypes can be treated like classes, using the same rule system.

Assertions as Class Inclusions Class and property assertions can be expressed as
class inclusion axioms, and indeed many rules for assertions are just special forms
of the rules needed for terminological axioms. To avoid unnecessary repetition,
we generally use the respective forms interchangeably. This is formalised by
the rules in Fig. 1. The rules are applied top to bottom: whenever the axioms
above the line are found, the axioms below the line are added. C denotes a class

Table 1. Syntactic simplifications for OWL RL constructs

ObjectMaxCardinality(0 P) ObjectAllValuesFrom(P owl:Nothing)
ObjectMaxCardinality(0 P C) ObjectAllValuesFrom(P ObjectComplementOf(C))
ObjectHasValue(P d) ObjectSomeValuesFrom(P ObjectOneOf(c))
ObjectOneOf(a1 . . . an) ObjectUnionOn(ObjectOneOf(a1) . . . ObjectOneOf(an))
EquivalentClasses(C1 . . . Cn) SubClassOf(C1 C2), . . . , SubClassOf(Cn C1)
DisjointClasses(C1 . . . Cn) SubClassOf(ObjectIntersectionOf(Ci Cj) owl:Nothing)

for all 1 ≤ i < j ≤ n
ObjectPropertyDomain(P C) SubClassOf(ObjectSomeValuesFrom(P owl:Thing) C)
ObjectPropertyRange(P C) SubClassOf(owl:Thing ObjectAllValuesFrom(P C))
EquivalentObjectProperties(P1 . . . Pn) SubObjectPropertyOf(P1 P2), . . . , SubObjectPropertyOf(Pn P1)
InverseObjectProperties(P Q) SubObjectPropertyOf(P ObjectInverseOf(Q)),

SubObjectPropertyOf(Q ObjectInverseOf(P))
SymmetricObjectProperty(P) SubObjectPropertyOf(P ObjectInverseOf(P))
TransitiveObjectProperty(P) SubObjectPropertyOf(ObjectPropertyChain(P P) P)
FunctionalObjectProperty(P) SubClassOf(owl:Thing ObjectMaxCardinality(1 P))
InverseFunctionalObjectProperty(P) SubClassOf(owl:Thing ObjectMaxCardinality(1 ObjectInverseOf(P)))
AsymmetricObjectProperty(P) DisjointObjectProperties(P ObjectInverseOf(P))
SameIndividual(a1 . . . an) SubClassOf(ObjectOneOf(a1) ObjectOneOf(a2)), . . . ,

SubClassOf(ObjectOneOf(an) ObjectOneOf(a1))
NegativeObjectPropertyAssertion(P a b) SubClassOf(ObjectOneOf(a) ObjectComplementOf(

ObjectSomeValuesFrom(P ObjectOneOf(b)))
DifferentIndividuals(a1 . . . an) SubClassOf(ObjectOneOf(ai)

ObjectComplementOf(ObjectOneOf(aj))) for all 1 ≤ i < j ≤ n

expression (not necessarily a class name), and P denotes an object property
expression. We use a and b for individual names (IRIs).

We will make use of the shorter syntactic form of assertions whenever possi-
ble. Note that the class subsumptions in rules Rpc1 and Rpc2 are not in OWL RL,
which does not allow ObjectOneOf in superclasses. Allowing this does not in-
crease reasoning complexity as long as one restricts to exactly one individual in
ObjectOneOf (indeed, this is also done in the tractable OWL EL profile). We will
therefore introduce such expressions whenever this simplifies presentation.

Syntactic Sugar Many OWL features are directly expressible in terms of others.
Table 1 lists straightforward syntactic transformations. C, D, E denote class
expressions, P , Q object property expressions, and all lower-case letters denote
individuals. Below, we can therefore disregard all features on the left of this
table. As before, some of the expressions that we use here are not in OWL RL.
Besides ObjectOneOf superclasses as discussed above, OWL RL also disallows
owl:Thing to be used as a subclass. Again, introducing this does not complicate
reasoning. The main motivation for leaving out owl:Thing in the standard is that
it may lead to a big number of “uninteresting” entailments, since every individual
is an instance of owl:Thing.

In summary, we therefore consider only OWL class inclusion axioms of the
form SubClassOf(CL CR), where CL and CR are defined as in Table 2.

Table 2. Subclasses (CL) and superclasses (CR) in syntactically simplified OWL RL

CL ::=Class | ObjectIntersectionOf(CL CL) | ObjectUnionOf(CL CL) |
ObjectOneOf(Individual) | ObjectSomeValuesFrom(Property CL)

CR ::=Class | ObjectIntersectionOf(CR CR) | ObjectComplementOf(CL) |
ObjectAllValuesFrom(Property CR) | ObjectMaxCardinality(1 Property CL) |
ObjectSomeValuesFrom(Property ObjectOneOf(Individual)) |ObjectOneOf(Individual)

Csco
SubClassOf(C D) SubClassOf(D E)

SubClassOf(C E)

Cinit
C a class expression in the ontology

SubClassOf(C C) SubClassOf(C owl:Thing)

Cint−
SubClassOf(C ObjectIntersectionOf(D1 D2))
SubClassOf(C D1) SubClassOf(C D2)

Cint+
SubClassOf(C D1) SubClassOf(C D2)
SubClassOf(C ObjectIntersectionOf(D1 D2))

Ccom−
SubClassOf(C D) SubClassOf(C ObjectComplementOf(D))

SubClassOf(C owl:Nothing)

Cuni+
SubClassOf(C D) where D = D1 or D = D2

SubClassOf(C ObjectUnionOf(D1 D2))

Csa
SubClassOf(ObjectOneOf(c) ObjectOneOf(d))
SubClassOf(ObjectOneOf(d) ObjectOneOf(c))

Fig. 2. OWL RL inference rules for class subsumptions

4 A Rule-Based Classification Calculus for OWL RL

In this section, we specify a class subsumption algorithm for OWL RL, and we
introduce conditions under which it is complete. Using the simplifications of the
previous section, the only OWL axioms that we need to consider are SubClassOf,
SubObjectPropertyOf, DisjointObjectProperties, IrreflexiveObjectProperty, and HasKey.
Remaining expressive features are those given in Table 2 (for class expressions)
and ObjectPropertyChain (for property inclusions).

Figures 2 and 3 specify a rule system for deriving class subsumptions, where
we use the same notation for rules as above. The rules in Fig. 2 apply to class
subsumptions and, using the correspondences of Fig. 1, also to assertions. In
contrast, the rules in Fig. 3 are only applicable to specific assertions and are not
generalised to other subsumptions. For example, rule Pinv− is sound, but the
following generalisation to class inclusions would of course be wrong:

SubClassOf(C ObjectSomeValuesFrom(ObjectInverseOf(P) D))
SubClassOf(D ObjectSomeValuesFrom(P C))

As an additional condition for applying rules, we require that all class and prop-
erty expressions in the conclusion also occur in the ontology. This is a restriction
only for the rules Cint+, Cuni+, Psvf+, and Pinv+, since they are the only rules

Pavf−
ObjectPropertyAssertion(P c d) ClassAssertion(ObjectAllValuesFrom(P E) c)

ClassAssertion(E d)

Psvf+
ObjectPropertyAssertion(P c d) ClassAssertion(E d)

ClassAssertion(ObjectSomeValuesFrom(P E) c)

Pinv−
ObjectPropertyAssertion(ObjectInverseOf(P) c d)

ObjectPropertyAssertion(P d c)

Pinv+
ObjectPropertyAssertion(P d c)

ObjectPropertyAssertion(ObjectInverseOf(P) c d)

Pspo
ObjectPropertyAssertion(P c d) SubObjectPropertyOf(P Q)

ObjectPropertyAssertion(Q c d)

Pspc

SubObjectPropertyOf(ObjectPropertyChain(P Q) R)
ObjectPropertyAssertion(P c d) ObjectPropertyAssertion(Q d e)

ObjectPropertyAssertion(R c e)

Pdp

DisjointObjectProperties(P Q)
ObjectPropertyAssertion(P c d) ObjectPropertyAssertion(Q c d)

ClassAssertion(owl:Nothing c)

Pip
ObjectPropertyAssertion(P c c) IrreflexiveObjectProperty(P)

ClassAssertion(owl:Nothing c)

Pkey

HasKey(E (P1 . . . Pn) ())
ClassAssertion(E c) ClassAssertion(E d)

ObjectPropertyAssertion(P1 c e1) . . . ObjectPropertyAssertion(Pn c en)
ObjectPropertyAssertion(P1 d e1) . . . ObjectPropertyAssertion(Pn d en)

SubClassOf(ObjectOneOf(c) ObjectOneOf(d))

Pfun

ClassAssertion(ObjectMaxCardinality(1 P D) c)
ObjectPropertyAssertion(P c e1) ObjectPropertyAssertion(P c e2)

ClassAssertion(D e1) ClassAssertion(D e2)

SubClassOf(ObjectOneOf(e1) ObjectOneOf(e2))

Fig. 3. OWL RL inference rules that are specific to property assertions

that derive expressions that are not mentioned in their premise. Due to this
restriction, it is easy to see that the following holds:

Lemma 1. Every class or property expression that occurs in an axiom that is
derived by applying the rules exhaustively to an ontology O occurs also in O.

For an OWL ontology O, we say that a class subsumption SubClassOf(C D)
is inferred by the rule system if one of the following axioms is derived by applying
the rules exhaustively to O:

– SubClassOf(C D),
– SubClassOf(C owl:Nothing), or
– ClassAssertion(owl:Nothing c) for some individual c.

The first condition corresponds to a direct derivation, the second captures the
case that C is inconsistent (necessarily empty), and the third case occurs when-

ever O is inconsistent. The inference rules in [16] use a special conclusion false
to encode ontology inconsistency, but this just a minor difference.

Theorem 1. The rule system is sound, that is, if a class subsumption A is
inferred from O, then O entails A under the Direct Semantics and under the
RDF-based Semantics of OWL.

Proof. The result follows by an easy induction that shows that every class sub-
sumption that is derived by the rule system is a logical consequence under either
semantics. Clearly, this is true for the initial set of derivations, which is just the
input ontology. The induction step is established by verifying that every rule is
sound, that is: whenever its preconditions of the rule are satisfied in a model,
then its consequences are also satisfied in this model. This is easy to see for
either semantics of OWL. ut

However, the rule system is not complete. The following examples illustrate
two interesting cases that are not covered.

Example 3. We consider an ontology of four axioms:

ClassAssertion(:D :d) (7)
SubClassOf(:D :C) (8)
SubClassOf(:C ObjectHasValue(:P :a)) (9)

ClassAssertion(ObjectMaxCardinality(1 ObjectInverseOf(:P) owl:Thing) :a) (10)

From this, the axiom SubClassOf(:C :D) follows. Indeed, (9) and (10) together
imply that :C can have at most one instance; by (7) and (8), this instance is
:d and thus contained in :D. However, this is not entailed by our rule system.
Axioms (9) and (10) can be represented as follows:

SubClassOf(:C ObjectSomeValuesFrom(:P ObjectOneOf(:a))) (11)
ClassAssertion(ObjectAllValuesFrom(ObjectInverseOf(:P) ObjectOneOf(:e)) :a) (12)

where :e is an auxiliary individual. Using Csco and the rules of Fig. 1, we can
derive ObjectPropertyAssertion(:P :d :a) from (7), (8), and (11). By applying rule
Pinv+, we obtain ObjectPropertyAssertion(ObjectInverseOf(:P) :a :d). Together
with (12), Pavf− implies ClassAssertion(ObjectOneOf(:e) :d). The same could
be derived for any other instance :d’ of :C, showing that all such instances must
be equal, and instances of :D. However, we cannot derive SubClassOf(:C :D).

Example 4. Consider the ontology of the following axioms:

SubClassOf(:C ObjectHasValue(:Q :b)) (13)
ObjectPropertyRange(:Q :D) (14)

ObjectPropertyDomain(:Q :D) (15)
SubClassOf(:D ObjectHasValue(:P :a)) (16)

SubObjectPropertyOf(ObjectPropertyChain(:P ObjectInverseOf(:P)) :R) (17)
SubClassOf(ObjectSomeValuesFrom(:R owl:Thing) :E) (18)

These axioms imply SubClassOf(:C :E). Indeed, axioms (16) and (17) together
imply that every pair of instances of :D is connected by property :R. Axioms
(14) and (15) in turn imply that :Q only connects instances that are in :D. Thus,
we find that :Q is a subproperty of :R, which is an interesting inference in its
own right. Combining this with (13) and (18), we obtain the claimed entailment
SubClassOf(:C :E). Again, this is not inferred by our inference rules.

Examples 3 and 4 illustrate two very different forms of semantic interactions
that lead to entailments not inferred by our rule system. It is interesting to note,
however, that ObjectHasValue plays a crucial role in both cases. Indeed, we find
that this feature is involved in every situation where an entailment is missed:

Theorem 2. If O is an OWL RL ontology that does not contain ObjectHasValue
in superclasses, then the rule system is complete for O. More precisely, let O′ be
the syntactic simplification of O as discussed above. If :A and :B are class names
and O entails SubClassOf(:A :B) under Direct Semantics, then SubClassOf(
:A :B) is inferred from O′ by the rule system.

An essential ingredient for proving this result is the following observation.

Lemma 2. Consider an OWL RL ontology O that does not contain ObjectHas-
Value in superclasses, and let O′ be the syntactic simplification of O.

(1) If an axiom of the form SubClassOf(C ObjectOneOf(d)) is derived from O′,
then C has the form ObjectOneOf(c).

(2) If an axiom of the form SubClassOf(C ObjectSomeValuesFrom(P D)) is
derived from O′, then C has the form ObjectOneOf(c), and there is an indi-
vidual d such that ClassAssertion(D d) and ObjectPropertyAssertion(P c d)
are derived.

Proof. The properties are verified by a simple induction. All class inclusion ax-
ioms of the initial ontology O′ satisfy the claims, which can be seen as follows.
OWL RL ontologies cannot contain ObjectOneOf in superclasses (including prop-
erty domains). Axioms as in (1) can only be introduced during the syntactic
simplification of SameIndividual and ObjectHasValue. The former satisfy the con-
ditions; the latter was excluded. Axioms of the form (2) that are introduced by
syntactic simplification of ObjectPropertyAssertion clearly satisfy the conditions.
Without ObjectHasValue in superclasses, this is the only source of non-negated
(i.e., superclass) uses of ObjectSomeValuesFrom in the initial ontology.

For the induction step, it remains to check that the claim holds for every
axiom of the form (1) or (2) that is derived by any of the rules, under the as-
sumption that the claim is true for all premises of the rules. Rule Csco can derive
axioms of type (1) and (2). In either case, the second premise must also be of
this form, so in particular D has the form ObjectOneOf(d). Thus the first premise
is of form (1), so by the induction hypothesis C has the form ObjectOneOf(c).
For case (2), we additionally find that axioms ObjectPropertyAssertion(P d e)
and ClassAssertion(E e) are derived. By the rules in Fig. 1, we also obtain
SubClassOf(ObjectOneOf(d) ObjectSomeValuesFrom(P ObjectOneOf(e))). By Csco

we derive SubClassOf(ObjectOneOf(c) ObjectSomeValuesFrom(P ObjectOneOf(e))),
which leads to the required ObjectPropertyAssertion(P c e), again by the rules of
Fig. 1.

Further rules that can derive axioms of type (1) are: Cinit applied to expres-
sions ObjectOneOf(c), Csa, Pkey, and Pfun. The rules that can derive axioms of
type (2) are: Psvf+, Pinv−, Pinv+, Pspo, Pspc. All other rules cannot derive ax-
ioms of the forms that we consider. For rules Cint−, Cint+, Ccom−, Cuni+, and
Pavf− this is a consequence of Lemma 1. Most derivations immediately satisfy
the claim since they are stated using individuals. The only exception is Psvf+,
but this rule has the claim as its preconditions. ut

We are now ready to show the claimed completeness of the calculus.

Proof (of Theorem 2). Let O be the syntactic simplification of an OWL RL
ontology that does not contain ObjectHasValue, and let O′ be the saturation of
O under the above rules. If O′ contains an axiom of the form SubClassOf(c
owl:Nothing), then the claim follows immediately since in this case the calculus
is defined to infer every class inclusion axiom.

For the remainder, we assume that O′ does not contain an axiom of the
form SubClassOf(ObjectOneOf(c) owl:Nothing). We define an interpretation I
as follows: The domain ∆I of I contains

– all individual names (without loss of generality, we assume that there is at
least one, even if it does not occur in O), and

– an element of the form eC for every class expression C in O such that
SubClassOf(C owl:Nothing) /∈ O′,

where we identify every pair of individual names c and d for which SubClassOf(
ObjectOneOf(c) ObjectOneOf(d)) ∈ O′. All other elements are mutually distinct.
We assign a class expression cls(d) to every element d ∈ ∆I : if d is an indi-
vidual name, then cls(d) := ObjectOneOf(d); if d = eC then cls(d) := C. The
interpretation I is further defined as follows:

– For every individual name c, define cI := c.
– For every class name A, define d ∈ AI if and only if SubClassOf(cls(d) A) ∈
O′.

– For every property name P , define 〈c, d〉 ∈ P I if and only if c and d are
individual names and ObjectPropertyAssertion(P c d) ∈ O′.

It is easy to see that I is well-defined. In particular, individual names c and d
that are identified will be assigned to the same class and property extensions
since O′ is saturated under Csub, Csa, and Psvf+. We show that I is a model of
O that satisfies only those class subsumptions between class names that occur
in O′. We first observe that the relationship used to define I for property names
extends to inverse properties:

Claim 1 The following statements are equivalent:

– ObjectInverseOf(P) occurs in O and 〈c, d〉 ∈ ObjectInverseOf(P)I

– c and d are individual names and ObjectPropertyAssertion(ObjectInverseOf(P)
c d) ∈ O′

If the first statement holds, then 〈d, c〉 ∈ P I by the semantics of inverse proper-
ties. By definition of I, c and d are individual names, and ObjectPropertyAssertion(
P d c) ∈ O′. Thus rule Pinv+ is applicable. Since O′ is saturated, we find that
ObjectPropertyAssertion(ObjectInverseOf(P) c d) ∈ O′. Conversely, if the second
statement holds, then Pinv− is applicable. Thus ObjectPropertyAssertion(P d c) ∈
O′. By the definition of I, 〈d, c〉 ∈ P I . Therefore 〈c, d〉 ∈ ObjectInverseOf(P)I ,
as required. The fact that ObjectInverseOf(P) occurs in O follows by Lemma 1.
This completes the proof of Claim 1.

Claim 2 If E ∈ CL occurs in O, then c ∈ EI implies SubClassOf(cls(c) E) ∈ O′.
In other words, all relationships c ∈ EI that hold in I are also derived in O′.

To show this claim for arbitrary CL classes E, we perform an induction over the
structure of such classes, as defined by the grammar in Table 2. We begin with
the base cases:

– If E is a class name, then the claim follows from the definition of EI .
– If E = owl:Nothing, then the claim holds since c ∈ EI does not hold for any
c (since owl:NothingI = ∅).

– If E = owl:Thing, then the claim follows from rule Cinit.

For the remaining cases, we assume that the claim has already been established
for the classes D, D1 and D2 (induction hypothesis). In all cases, we assume
that E occurs in O and that c ∈ EI .

– Case E = ObjectIntersectionOf(D1 D2). According to the semantics of Object-
IntersectionOf, we find c ∈ DI

1 and c ∈ DI
2 . Clearly, D1 and D2 occur in O

since E does. Thus, the induction hypothesis implies SubClassOf(cls(c)
D1) ∈ O′ and SubClassOf(cls(c) D2) ∈ O′. Since E occurs in O, rule
Cint+ applies and SubClassOf(cls(c) E) ∈ O′ as required.

– Case E = ObjectUnionOf(D1 D2). By the semantics of ObjectUnionOf, we
find c ∈ DI

1 or c ∈ DI
2 . Clearly, D1 and D2 occur in O since E does.

Thus, the induction hypothesis implies SubClassOf(cls(c) D1) ∈ O′ or
SubClassOf(cls(c) D2) ∈ O′. Since E occurs in O, rule Cuni+ applies and
SubClassOf(cls(c) E) ∈ O′ as required.

– Case E = ObjectOneOf(d). Then c = dI . By definition of I, c and d denote
the same domain element, and in particular c is an individual name and
cls(c) = ObjectOneOf(c). By the definition of I, we find that either c =
d, or SubClassOf(ObjectOneOf(c) ObjectOneOf(d)) ∈ O′ or SubClassOf(
ObjectOneOf(d) ObjectOneOf(c)) ∈ O′. The claim is immediate in the first two
cases; in the last one, we get SubClassOf(ObjectOneOf(c) ObjectOneOf(d)) ∈
O′ from Csa.

– Case E = ObjectSomeValuesFrom(P D). By the semantics of ObjectSome-
ValuesFrom, there is an element d ∈ ∆I such that 〈c, d〉 ∈ P I and d ∈ DI .
By the definition of I, d is an individual name. Since E occurs in O, so
do P and D. According to Claim 1 (if P is inverse) or the definition of I
(otherwise), we find that ObjectPropertyAssertion(P c d) ∈ O′. By the
induction hypothesis, SubClassOf(cls(d) D) ∈ O′, which is the same as
ClassAssertion(D d) ∈ O′ since d is an individual name. Since E occurs in
O, rule Psvf+ applies and SubClassOf(cls(c) E) ∈ O′ as required.

This finishes the proof of Claim 2. The other direction needs to be established
for another language of class expressions:

Claim 3 If E ∈ CR and SubClassOf(cls(c) E) ∈ O′, then E occurs in O and
c ∈ EI .

The fact that E occurs in O is a consequence of Lemma 1. To show the
remaining claim for arbitrary CR classes E, we perform an induction over the
structure of such classes, as defined by the grammar in Table 2. We begin with
the base cases:

– If E is a class name, then the claim follows from the definition of EI .
– If E = owl:Nothing, then we distinguish two cases. If c is an individual name,

the claim holds since we assumed that no axiom of the form SubClassOf(
ObjectOneOf(c) owl:Nothing) occurs in O′. If c is of the form eD, then cls(c) =
D and SubClassOf(D owl:Nothing) /∈ O′ by construction of I.

– If E = owl:Thing, then the claim holds since EI = ∆I .

For the remaining cases, we assume that the claim has already been established
for the classes D, D1 and D2 (induction hypothesis). In all cases, we assume
that SubClassOf(cls(c) E) ∈ O′.

– Case E = ObjectIntersectionOf(D1 D2). Then rule Cint− is applicable. Since
O′ is saturated, we find SubClassOf(cls(c) D1) ∈ O′ and SubClassOf(
cls(c) D2) ∈ O′. By the induction hypothesis, c ∈ DI

1 and c ∈ DI
2 . By the

semantics of ObjectIntersectionOf, this implies c ∈ EI as required.
– Case E = ObjectComplementOf(D) where D ∈ CL. As argued in case E =

owl:Nothing above, O′ does not contain SubClassOf(cls(c) owl:Nothing).
Therefore, rule Ccom− is not applicable, that is, SubClassOf(cls(c) D) /∈ O′.
We already noted above that E and thus D must occur in O. Therefore,
(the contrapositive of) Claim 2 implies that c /∈ DI . By the semantics of
ObjectComplementOf, c ∈ EI .

– Case E = ObjectAllValuesFrom(P D). Consider an arbitrary element d such
that 〈c, d〉 ∈ P I . According to Claim 1 (if P is inverse) or the definition of
I (otherwise), we find that ObjectPropertyAssertion(P c d) ∈ O′. There-
fore, rule Pavf− is applicable to obtain ClassAssertion(D d) ∈ O′. By the
induction hypothesis, this implies d ∈ DI . Since d was arbitrary, this shows
that c ∈ EI according to the semantics of ObjectAllValuesFrom.

– Case E = ObjectMaxCardinality(1 P D). Consider two arbitrary elements d1
and d2 such that 〈c, di〉 ∈ P I and di ∈ DI . As in the previous case, we
find that ObjectPropertyAssertion(P c di) ∈ O′. By Claim 2, we find
SubClassOf(cls(di) D) ∈ O′, where cls(di) = ObjectOneOf(di) since di
occurs in a property extension. Therefore, rule Pfun is applicable to obtain
SubClassOf(ObjectOneOf(d1) ObjectOneOf(d2)) ∈ O′. By the definition of I,
the domain elements for d1 and d2 are thus the same. Since d1 and d2 was
arbitrary, this shows that c ∈ EI according to the semantics of ObjectMax-
Cardinality.

– Case E = ObjectSomeValuesFrom(P D) where D = ObjectOneOf(d). By
Lemma 2, c must be an individual name, and there is an individual name d′
for which ObjectPropertyAssertion(P c d′) ∈ O′ and ClassAssertion(D d′) ∈
O′. By the definition of I, the domain elements of d and d′ are the same.
By Claim 1, 〈c, d〉 ∈ P I , even if P is an inverse property. By the induction
hypothesis, d ∈ DI . By the semantics of ObjectSomeValuesFrom, we thus
obtain c ∈ EI .

– Case E = ObjectOneOf(d). By Lemma 2, c must be an individual name. By
the definition of I, the domain elements of c and d are the same. By the
semantics of ObjectOneOf, we thus obtain c ∈ EI .

This finishes the proof of Claim 3. We can now show that I is a model of O.
We need to show that I satisfies each axiom in O. We distinguish the possible
forms of syntactically simplified OWL RL axioms:

– SubClassOf(D E) ∈ O. Whenever there is an element c ∈ DI , then
SubClassOf(cls(c) D) ∈ O′ by Claim 2. Thus, rule Csub is applicable and
yields SubClassOf(cls(c) E) ∈ O′. By Claim 3, c ∈ EI . The same reasoning
applies to assertions, using Fig. 1.

– SubObjectPropertyOf(P Q) ∈ O, where P is a property expression or a prop-
erty chain. If there are elements 〈c, d〉 ∈ P I , then O contains a corresponding
(chain of) property assertion(s) according to Claim 1 and the definition of I.
Thus, rule Pspo or Pspc is applicable to obtain ObjectPropertyAssertion(Qc d).
By Claim 1 and the definition of I, we find 〈c, d〉 ∈ QI .

– DisjointObjectProperties(P Q) ∈ O. Suppose for a contradiction that the ax-
iom is not satisfied. Then there are individuals c and d with 〈c, d〉 ∈ P I and
〈c, d〉 ∈ QI . By Claim 1 and the definition of I, ObjectPropertyAssertion(P
c d) ∈ O′ and ObjectPropertyAssertion(Q c d) ∈ O′. Thus rule Pdp applies
and yields SubClassOf(ObjectOneOf(c) owl:Nothing). This contradicts our
initial assumption.

– IrreflexiveObjectProperty(P) ∈ O. Similar to DisjointObjectProperties.
– HasKey(D (P1 . . . Pn) ()) ∈ O. Similar to DisjointObjectProperties.

This shows that I models all axioms of O.
Finally, the overall claim can be shown by a similar argument: If a subsump-

tion SubClassOf(A B) for class names A and B is not derived from O, then
SubClassOf(A B) /∈ O′ and SubClassOf(A owl:Nothing) /∈ O′. Thus there is an
element eA ∈ ∆I and cls(eA) = A. By definition, eA ∈ AI . By the contrapositive

of Claim 2, eA /∈ BI . Hence O 6|= SubClassOf(A B). We have thus shown that,
whenever axioms of this type are not derived, they are not logical consequences
of O. This finishes the proof. ut

Even in the case of Theorem 2, we need to take assertions into account
during reasoning, since they might make the ontology inconsistent. For consistent
ontologies, however, the rule system can be simplified further.

Theorem 3. For a consistent OWL RL ontology O that does not contain Object-
HasValue in superclasses, all entailed subsumptions between class names can be
computed using the rules of Fig. 2 only, without taking assertions into account.

More precisely, let Ot ⊆ O be the set of all axioms in O that do not use Class-
Assertion, ObjectPropertyAssertion, SameIndividual, DifferentIndividuals, or Nega-
tiveObjectPropertyAssertion. Let O′

t be the syntactic simplification of Ot. If O
entails SubClassOf(:A :B) under Direct Semantics, and :A and :B are class
names, then SubClassOf(:A :B) or SubClassOf(:A owl:Nothing) is derived from
O′

t by the rules of Fig. 2.

Proof. By Theorem 2, the original rule system is complete. If O is consistent,
we are not interested in inferences of the form SubClassOf(ObjectOneOf(c)
owl:Nothing) but only in inferences of the form SubClassOf(:A :B) or SubClassOf(
:A owl:Nothing). We show that, whenever such inferences are obtained at all,
they can be obtained by applying the rules of Fig. 2 to terminological axioms
only.

To this end, we note that, whenever a rule is applied to a premise that
contains individual names, the consequence must also contain individual names.
For Csa and the rules in Fig. 3, the conclusion holds immediately. For rule Csub,
the claim follows from Lemma 2: if D is of the form ObjectOneOf(d), then C is of
the form ObjectOneOf(c) due to the first premise. The same reasoning applies to
Ccom−. For the remaining rules, it is clear that all expressions in the premises
occur in the conclusion as well. ut

This tells us that the computation of class subsumptions in OWL RL is in-
deed very simple for consistent ontologies without ObjectHasValue in superclasses.
Provided that this situation can be assumed, it would therefore be feasible to
pre-compute class subsumptions without taking assertions into account. In data-
centric ontologies, this can lead to a much smaller set of axioms. In addition, the
set of rules that need to be applied becomes relatively small as well.

5 RDF-Based Rule Systems

We have formulated rules above using the Functional-Style Syntax of OWL. In
this section, we explain how these results transfer to RDF-based rules in the
style of the W3C specification [16], which act on the RDF serialisation of OWL
[18]. This also prepares the ground for discussing the limitations of such rules in
the next section.

Definition 1. An RDF-based rule is a first-order implication of the form

T (s1, t1, u1) ∧ . . . ∧ T (sn, tn, un)→ T (s, t, u)

where s(i), t(i), and u(i) are RDF terms (i.e., IRIs, literals, or blank nodes) or
first-order logic variables. All variables are assumed to be universally quantified.

An (RDF-based) rule system is a finite set R of RDF-based rules. R is
applied to an RDF graph by considering RDF triples 〈s p o〉 as facts T (s, p, o).
A rule system R is applied to an OWL ontology O by applying it to the RDF
serialisation of O [18].

A rule system R is a sound and complete classification system for a class C
of ontologies if, for every ontology O in C and all class names :A and :B:

SubClassOf(:A :B) is entailed by O
if and only if

R infers T (:A, rdfs:subClassOf, :B) from O.

The main features of RDF-based rule systems are thus as follows:

– Finiteness: the set of rules is finite
– Monotonicity: the larger the set of (derived) facts, the larger the number of

rules that can be applied
– No value invention: applying rules does not introduce new terms
– Uniformity: the applicability of rules does not depend on the IRIs of the

entities it is applied to, but only on the statements that these IRIs occur in
– Triple-based: the only relation symbol used in inferences is the ternary T

The W3C OWL RL inference rules do not constitute a rule system in the
sense of Definition 1, since they are not finite in number. The reason is that the
rules support list-based OWL features for lists of arbitrary length, leading to an
infinite number of possible patterns. A rule system that is not restricted to be
finite can trivially solve all reasoning tasks: for every ontology O for which we
require an inference T (s, p, o), we can add a rule TO → T (s, p, o), where TO is
the triple pattern that corresponds to the RDF serialisation of O. It is also clear,
however, that the infinite W3C rule system does not use this potential power.

Theorem 4. The rules of Section 4 give rise to an RDF-based sound and com-
plete classification system for (the syntactic simplification of) OWL RL ontolo-
gies without ObjectHasValue in superclasses.

Proof. According to Theorems 1 and 2, the rule system of Section 4 is sound and
complete. Recall that a class subsumption can be derived by this rule system in
three ways, corresponding to direct inference, inconsistent subclass, and incon-
sistent ontology. Definition 1 requires all entailments to be produced directly. To
achieve this, we add the following rules:

C a class expression in the ontology
SubClassOf(owl:Nothing C)

(19)

ClassAssertion(owl:Nothing c) C a class expression in the ontology
SubClassOf(C owl:Nothing)

(20)

Rule (19) together with rule Csco ensures that an inconsistent class (one that is
a subclass of owl:Nothing) is a subclass of every class in the ontology. Rule (20)
infers all classes to be inconsistent if the ontology is inconsistent. Other rules
could be used to achieve a similar effect.2

The proof is finished by observing that rule (19), rule (20), and all rules of
Section 4 can easily be expressed in the RDF serialisation of OWL based on the
T predicate. For example, Cint+ can be written as follows, where question marks
denote variables as in [16]:

T (?x, rdfs:subClassOf, ?y1) ∧ T (?x, rdfs:subClassOf, ?y2) ∧
T (?c, owl:intersectionOf, ?l) ∧ T (?l, rdf:first, ?y1) ∧ T (?l, rdf:rest, ?l′) ∧

T (?l′, rdf:first, ?y2) ∧ T (?l′, rdf:rest, rdf:nil)

→ T (?x, rdfs:subClassOf, ?c)

This is also the rule that is mainly missing from [16]. Note how the check for the
existence of the expression ObjectIntersectionOf(D1 D2) that is required for ap-
plying Cint+ is performed naturally as part of the rule application. This does not
work for the rules in Fig. 1, which do not require existence of all class expressions
in the consequence. Either they are created as part of the syntactic simplification
stage, or the remaining rules need to be extended to allow for multiple alterna-
tive forms of each premise. The latter corresponds to the approach taken in the
W3C specification.

The existence of a class expression as used in rule Cinit, (19), and (20) can be
expressed using prefixes such as T (?c, rdf:type, owl:Class). It is straightforward to
express all remaining rules. ut

6 Rule-Based Classification of Unrestricted OWL RL

So far, we have seen that the (RDF-based) rule systems for OWL RL can be
extended to obtain a sound and complete approach for computing class sub-
sumptions, as long as we disallow ObjectHasValue in superclasses. The natural
question is whether this can be extended to arbitrary OWL RL ontologies. The
answer is no, as we will show in this section.

This negative result is caused by the use of RDF as a basis for deduction
rules. Without this restriction, it is not hard to find rule-based classification
systems that are sound and complete, though not necessarily efficient. Namely,
one can always check SubClassOf(C D) by adding an axiom ClassAssertion(C
e) for a new individual e, and checking whether ClassAssertion(D e) using the
existing rule-based approaches for instance retrieval. The problem is that this
executes a single check, based on a modification of the ontology, rather than
computing all class subsumptions at once. Tests for different classes may lead

2 In practice it might be preferable to check for the original conditions separately
instead of deriving potentially large amounts of further axioms. In Section 6 below,
however, it is more convenient to consider only one way of deriving a result.

to different inferences. To address this, we can augment each inferred axiom
with the test class C for which we have assumed ClassAssertion(C e) (the IRI
of e is immaterial and does not need to be recorded). The rules are restricted
to the case that all premises can be derived under the same assumption, and
computation can proceed concurrently without interactions between independent
assumptions. Similar solutions and various optimisations have been suggested
and implemented for OWL EL [15,11]. Unfortunately, however, it is not obvious
how to represent such an extended form of inferences in RDF without introducing
new entities or blank nodes.

The main result of this section is that this problem is not just due to an
overly naive approach for extending the rules, but rather an inherent limitation
of RDF-based rules:

Theorem 5. There is no RDF-based sound and complete classification system
for OWL RL.

This is a very general result, since it makes a statement about every con-
ceivable RDF-based rule system. A technique for proving such results has been
developed in the context of rule-based reasoning for OWL EL [15]. Recalling
this in full detail is beyond the scope of this paper. Instead, we extract the main
insights on the level of ontological reasoning (Lemma 3), and present the crucial
steps for applying this approach to our scenario.

The argumentation is based on the analysis of derivations in rule systems,
which can be represented as proof trees. The key observation is that every proof
tree of a rule system can be used to construct further proof trees by selectively
renaming constants (i.e., IRIs). This renaming leads to proof trees that derive the
same conclusion, applying rules in the same order, but based on a renamed input
ontology. The renaming may not be uniform, that is, multiple occurrences of the
same constant might be renamed differently. The proof uses the fact that such
renaming may destroy entailments. Ontologies that are particularly sensitive in
this respect are called critical :

Definition 2. A renaming of an ontology O is an ontology O′ that is obtained
from O by replacing occurrences of entity names by fresh entity names, where
neither the old nor the new entities have a special semantics in OWL. A renam-
ing is uniform if all occurrences of one entity have been replaced in the same
way; otherwise it is non-uniform.

An ontology O is critical for an axiom A if A is entailed by O, and A is not
entailed by any non-uniform renaming of O.

Roughly speaking, an ontology is critical if all of its axioms are really needed
for obtaining the desired conclusion. The next result explains the significance of
critical ontologies O. It states that, given a sound and complete classification
system, it must be possible to decompose O into sets Osplit and O \ Osplit. The
requirement is that both sets “touch” in at most 3 axioms, which reflects the
arity of RDF triples. By finding a critical ontology for which this is not possible,
we can show that there is no sound and complete classification system.

Lemma 3. Suppose that R is a sound and complete classification system with
at most ` atoms T (s, t, u) in the premise of any rule, and consider an ontology
O that is critical for an axiom SubClassOf(C D) with class names C and D.

For every O′ ⊆ O with |O′| > 3(`+ 1), there is Osplit ⊆ O such that:

– |O′ ∩ Osplit| ≥ 4,
– |O′ ∩ (O \ Osplit)| ≥ 4,
– there are at most 3 axioms in Osplit that share any vocabulary symbols with
O \ Osplit.

This result is obtained as a summary of various insights from [15]. Lemma 3
requires critical ontologies to contain at least 3(`+1) axioms. Since ` depends on
the rule system we consider, we require critical OWL RL ontologies of arbitrary
size. The following definition provides this crucial ingredient.

Definition 3. For every natural number k ≥ 0, we define an ontology Ok as
follows. We consider class names A, B, Di (i = 0, . . . , k + 1), property names
V , W , Pi (i = 0, . . . , k), Qi (i = 0, . . . , k + 1), and individual names a, b, c, di
(i = 1, . . . , k + 1). The ontology Ok consists of the following axioms:

SubClassOf(Di ObjectHasValue(Pi di+1) 0 ≤ i ≤ k (21)
SubClassOf(Di ObjectAllValuesFrom(Pi Di+1) 0 ≤ i ≤ k (22)
SubClassOf(D0 ObjectHasValue(W a)) (23)
SubClassOf(D0 ObjectAllValuesFrom(W A)) (24)
SubClassOf(A C) (25)
SubClassOf(C ObjectHasValue(Qk+1 b)) (26)
SubClassOf(A ObjectHasValue(V c)) (27)
SubClassOf(Dk+1 ObjectHasValue(V c)) (28)

InverseFunctionalObjectProperty(V) (29)
SubObjectPropertyOf(ObjectPropertyChain(Pi Qi+1) Qi) 0 ≤ i ≤ k (30)

SubClassOf(ObjectHasValue(Q0 b) B) (31)

Lemma 4. For every k ≥ 0, Ok entails SubClassOf(D0 B).

This can be seen as follows: If D0 does not contain any instances, then the
statement clearly holds. If D0 contains some instance o, then it is the start of a
property chain P0, . . . , Pk (through individuals d1, . . . , dk+1) due to (21) and
(22). In particular, dk is an instance ofDk+1, hence, by (28), dk has a V successor
c. Similarly, by (23) and (24), a is an instance of A. By (25), (26), and (27), a
thus has a Qk+1 successor b and a V successor c. Since V is inverse functional
(29), a must therefore be equal to dk, so dk has a Qk+1 successor b. Applying
axioms (30) to the chain of di elements, we find that di has the Qi successor b
for all 1 ≤ i ≤ k. Accordingly, the instance o of D0 has Q0 successor b. By (31),
o thus is an instance of B. Since this reasoning applies to every instance o of D0,
we find that SubClassOf(D0 B) as claimed.

D0

P0

Q0

P1 Pk

b

A

c

W

C

D1 D2 Dk Dk+1

Q1 Q2 Qk
Qk+1

V

B

Fig. 4. Illustration of syntactic dependencies in Ok

It is not hard to see that this entailment is no longer valid if any two occur-
rences of symbols within Ok are renamed in a non-uniform way:

Lemma 5. For every k ≥ 0, Ok is critical for SubClassOf(D0 B).

To complete the proof of Theorem 5 we thus need to argue that there are
critical ontologies that cannot be split as in Lemma 3.

Lemma 6. Consider Ok and let O′ be the subset of all axioms (22). For every
Osplit ⊆ O such that |Osplit ∩ O′| ≥ 4 and |O′ \ Osplit| ≥ 4, there are at least 4
axioms in Osplit that share vocabulary symbols with O \ Osplit.

Proof. We can illustrate the syntactic dependencies in an ontology by means of
a (hyper)graph where each axiom is an edge between all entities that it refers to.
Figure 4 shows part of the according graph for Ok, showing only axioms (22),
(24)–(28), (30), and (31). A subset of these axioms thus corresponds to a subset
of edges, and the shared vocabulary symbols are shared nodes.

The assumptions on Osplit require that Osplit contains at least 4 of the axioms
(22) (upper row in Fig. 4), and also misses at least 4 of the axioms (22). Using
the illustration in Fig. 4, it is not hard to see that this requires Osplit to share
signature symbols with at least 4 axioms not in Osplit. ut

Thus, for any rule system R with at most ` atoms in rule premises, the
ontology Ok for k = 3(` + 1) is critical but does not satisfy the conditions of
Lemma 3. Thus, R cannot be a sound and complete classification system.

7 Conclusion

From a practical perspective, the main contribution of this work is to clarify the
problems of OWL RL classification, and to propose rule systems for solving this
task in relevant cases. The rules that we proposed produce sound conclusions
on arbitrary OWL ontologies, under either of the two semantics of OWL. If the
input is an OWL RL ontology where ObjectHasValue is not used in superclasses,
the rule system is also guaranteed to be complete.

Our findings have also been brought to the attention of the OWL Working
Group, which is preparing an editorial update of the OWL 2 specification at the
time of this writing. This new version will correct the complexity claims about
OWL RL. Extending the inference rules to be complete for computing class
subsumptions in ontologies without ObjectHasValue, however, is beyond the scope
of this editorial update. OWL RL tools can achieve completeness in this sense
by adding, in essence, the one additional rule given after Theorem 4 (generalised
to conjunctions of arbitrary arity). This does not affect official conformance.

Interestingly, ObjectHasValue in superclasses is the one OWL RL feature that
complicates schema reasoning the most. This contrasts with OWL EL, where
such expressions are as easy to handle as assertions [11]. The reason is that in-
verse properties, ObjectAllValuesFrom, and ObjectMaxCardinality, all of which allow
for some complicated interactions with ObjectHasValue, are not in OWL EL.

Another interesting insight of this work is that there are practical problems
in OWL RL reasoning that RDF-based rules are too inexpressive to solve. This
limitation is due to the triple-based representation of RDF, which could be
overcome by allowing predicates of higher arities as in Datalog [1] or RIF [12].
For keeping closer to features supported in RDF databases, it might be possible
to use quads or named graphs for expressing 4-ary predicates, but it is doubtful
if this would be an adequate use of these features. On the other hand, 4-ary
relations are only needed as intermediate results during reasoning, so individual
systems can implement solutions without referring to any language standard.

Another approach is to allow rules with value creation (blank nodes in rule
heads) to encode n-ary relationships by introducing auxiliary entities. Value
invention is problematic in general, as it can lead to non-termination and un-
decidability. Many works have studied conditions that ensure termination of
bottom-up reasoning in the presence of value creation – see [4] for a recent
overview – but it is unclear if any of these conditions would apply in our case.

Acknowledgements The research reported herein was supported by the EPSRC
projects ConDOR and ExODA.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley
(1994)

2. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.:
OWLIM: a family of scalable semantic repositories. Semantic Web Journal 2(1),
33–42 (2011)

3. Brewka, G., Eiter, T., McIlraith, S.A. (eds.): Proc. 13th Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR’12). AAAI Press (2012)

4. Cuenca Grau, B., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B.,
Wang, Z.: Acyclicity conditions and their application to query answering in de-
scription logics. In: Brewka et al. [3], pp. 243–253

5. Erling, O.: Virtuoso, a hybrid RDBMS/graph column store. IEEE Data Eng. Bull.
35(1), 3–8 (2012)

6. Franz Inc.: AllegroGraph RDFStore: Web 3.0’s Database (2012), http://www.
franz.com/agraph/allegrograph/, accessed April 2012

7. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.):
OWL 2 Web Ontology Language: Primer. W3C Recommendation (27 October
2009), available at http://www.w3.org/TR/owl2-primer/

8. Hogan, A., Harth, A., Polleres, A.: Scalable authoritative OWL reasoning for the
Web. Int. J. of Semantic Web Inf. Syst. 5(2), 49–90 (2009)

9. Hogan, A., Pan, J.Z., Polleres, A., Decker, S.: SAOR: template rule optimisations
for distributed reasoning over 1 billion linked data triples. In: Patel-Schneider et al.
[19], pp. 337–353

10. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary. J. of Web Se-
mantics 3(2–3), 79–115 (2005)

11. Kazakov, Y., Krötzsch, M., Simančík, F.: Practical reasoning with nominals in the
EL family of description logics. In: Brewka et al. [3], pp. 264–274

12. Kifer, M., Boley, H. (eds.): RIF Overview. W3C Working Group Note (22 June
2010), available at http://www.w3.org/TR/rif-overview/

13. Kolovski, V., Wu, Z., Eadon, G.: Optimizing enterprise-scale OWL 2 RL reasoning
in a relational database system. In: Patel-Schneider et al. [19], pp. 436–452

14. Kotoulas, S., Oren, E., van Harmelen, F.: Mind the data skew: distributed infer-
encing by speeddating in elastic regions. In: Proc. 19th Int. Conf. on World Wide
Web (WWW’10). pp. 531–540. WWW’10, ACM (2010)

15. Krötzsch, M.: Efficient rule-based inferencing for OWL EL. In: Walsh, T. (ed.)
Proc. 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI’11). pp. 2668–2673.
AAAI Press/IJCAI (2011)

16. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.):
OWL 2 Web Ontology Language: Profiles. W3C Recommendation (27 October
2009), available at http://www.w3.org/TR/owl2-profiles/

17. Motik, B., Patel-Schneider, P.F., Parsia, B. (eds.): OWL 2 Web Ontology Lan-
guage: Structural Specification and Functional-Style Syntax. W3C Recommenda-
tion (27 October 2009), available at http://www.w3.org/TR/owl2-syntax/

18. Patel-Schneider, P.F., Motik, B. (eds.): OWL 2 Web Ontology Language: Mapping
to RDF Graphs. W3C Recommendation (27 October 2009), available at http:
//www.w3.org/TR/owl2-mapping-to-rdf/

19. Patel-Schneider, P.F., Pan, Y., Glimm, B., Hitzler, P., Mika, P., Pan, J., Horrocks,
I. (eds.): Proc. 9th Int. Semantic Web Conf. (ISWC’10), LNCS, vol. 6496. Springer
(2010)

20. Schenk, S., Staab, S.: Networked graphs: a declarative mechanism for SPARQL
rules, SPARQL views and RDF data integration on the Web. In: Huai, J., Chen,
R., Hon, H.W., Liu, Y., Ma, W.Y., Tomkins, A., Zhang, X. (eds.) Proc. 17th Int.
Conf. on World Wide Web (WWW’08). pp. 585–594. ACM (2008)

21. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: WebPIE: a Web-
scale parallel inference engine using MapReduce. J. of Web Semantics 10, 59–75
(2012)

Revision History
– 10 July 2012. Clarified proof of Theorem 4. Fixed some typos.
– 26 June 2012. Fixed a glitch in the treatment of functionality

(ObjectMaxCardinality).
– 13 November 2012. Fixed some typos.

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/rif-overview/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-syntax/

	The (Not So) Easy Task of Computing Class Subsumptions in OWL RL
	Introduction
	Challenges of Schema Reasoning in OWL RL
	A Simpler OWL RL
	A Rule-Based Classification Calculus for OWL RL
	RDF-Based Rule Systems
	Rule-Based Classification of Unrestricted OWL RL
	Conclusion

