
REWRITING ALCHIQ TO DISJUNCTIVE
EXISTENTIAL RULES
David Carral Markus Krötzsch

Knowledge-Based Systems
TU Dresden

Full paper and video at
https://tud.link/h5l5

IJCAI 2020

https://kbs.inf.tu-dresden.de/mak
https://tud.link/h5l5

Rewriting DLs to Rules

Given a theory T1 in a logic L1

and a theory T2 in a logic L2,
T2 is a rewriting of T1 if,

T1,F |= ϕ iff T2,F |= ϕ

for every set F of ground facts and every
ground fact ϕ over the signature of T1.

Rules and DLs
Rule languages we encounter:

• Datalog: the “simplest rules conceivable”, e.g.,
A(x) ∧ R(x, y)→ B(y)

• Datalog∨: Datalog + ∨ in heads

• Datalog∃: Datalog + ∃ in heads, a.k.a. existential rules

• Datalog∨∃: Datalog + ∨ and ∃ in heads

The DL ALCHIQ can be normalised∗ to rules of nine forms:

A(x) ∧ B(x)→ C(x) A u B v C A(x)→ B(x) ∨ C(x) A v B t C
A(x) ∧ R(x, y)→ B(y) A v ∀R.B A(x)→ ∃y.R(x, y) ∧ B(y) A v ∃R.B

R(x, y) ∧ R(x, z)→ y ≈ z > v 61 R.> R(x, y)→ S(x, y) ∨ V(x, y) R v S t V
R(x, y) ∧ S(x, y)→ V(x, y) R u S v V R(y, x)→ S(x, y) R− v S

A(x) ∧ R(x, y) ∧ B(y)→ S(x, y) A ◦ R ◦ B v S

∗) this is polynomial under unary encoding of numbers

Rules and DLs
Rule languages we encounter:

• Datalog: the “simplest rules conceivable”, e.g.,
A(x) ∧ R(x, y)→ B(y)

• Datalog∨: Datalog + ∨ in heads

• Datalog∃: Datalog + ∃ in heads, a.k.a. existential rules

• Datalog∨∃: Datalog + ∨ and ∃ in heads

The DL ALCHIQ can be normalised∗ to rules of nine forms:

A(x) ∧ B(x)→ C(x) A u B v C A(x)→ B(x) ∨ C(x) A v B t C
A(x) ∧ R(x, y)→ B(y) A v ∀R.B A(x)→ ∃y.R(x, y) ∧ B(y) A v ∃R.B

R(x, y) ∧ R(x, z)→ y ≈ z > v 61 R.> R(x, y)→ S(x, y) ∨ V(x, y) R v S t V
R(x, y) ∧ S(x, y)→ V(x, y) R u S v V R(y, x)→ S(x, y) R− v S

A(x) ∧ R(x, y) ∧ B(y)→ S(x, y) A ◦ R ◦ B v S

∗) this is polynomial under unary encoding of numbers

Work Source Target Size Rules

Hustadt et al. [2007] ALCHIQ Datalog∨ exp. bounded
Eiter et al. [2012] Horn-SHIQ Datalog exp. bounded

Rudolph et al. [2012] SHIQbs Datalog∨ exp. bounded
Bienvenu et al. [2014] SHI Datalog∨ exp. bounded

Carral et al. [2018] Horn-ALCHOIQ Datalog exp. bounded
Carral et al. [2019b] Horn-SHIQ Datalog exp. bounded

Horn-SRIQ Datalog 2exp. bounded

Ortiz et al. [2010] Horn-ALCHOIQ Datalog poly. unbounded
Ahmetaj et al. [2016] ALCHIO Datalog∨ poly. unbounded

Krötzsch [2011] EL++ Datalog poly. bounded
Carral et al. [2019a] Horn-ALC Datalog∃ poly. bounded

Work Source Target Size Rules

Hustadt et al. [2007] ALCHIQ Datalog∨ exp. bounded
Eiter et al. [2012] Horn-SHIQ Datalog exp. bounded

Rudolph et al. [2012] SHIQbs Datalog∨ exp. bounded
Bienvenu et al. [2014] SHI Datalog∨ exp. bounded

Carral et al. [2018] Horn-ALCHOIQ Datalog exp. bounded
Carral et al. [2019b] Horn-SHIQ Datalog exp. bounded

Horn-SRIQ Datalog 2exp. bounded

Ortiz et al. [2010] Horn-ALCHOIQ Datalog poly. unbounded
Ahmetaj et al. [2016] ALCHIO Datalog∨ poly. unbounded

Krötzsch [2011] EL++ Datalog poly. bounded
Carral et al. [2019a] Horn-ALC Datalog∃ poly. bounded

ALCHIQ Datalog∨ poly. unbounded
ALCHIQ Datalog∨∃ poly. bounded

Horn-ALCHIQ Datalog∃ poly. bounded
NEW!

From ALCHIQ to Datalog∨ using types

We decompose ALCHIQ models into structures of bounded size,
i.e. “types”:

c

~C

d

~D

s1 ~E1

.

.

.

s` ~E`

~R

~S1

~S`

A type is given by a fixed number of:

• sets of concepts ~C, ~D, ~E1,. . . , ~E`
• sets of (inverse) relations ~R, ~S1,. . . ,~S`
• where ` is the number of ALCHIQ

axioms of form A(x)→ ∃y.R(x, y)∧B(y)

⇒We can represent sets as bit vectors and store types as facts Type(1, 0, 1, 0, 1, 0, . . .︸ ︷︷ ︸
suitably long bit vector

)

An ALCHIQ ontology is satisfiable iff it admits a consistent set of types.

⇒ Datalog∨ encoding: axiomatise required types and consistency conditions

Markus Krötzsch Rewriting ALCHIQ to Disjunctive Existential Rules slide 6 of 9

From ALCHIQ to Datalog∨ using types
We decompose ALCHIQ models into structures of bounded size,
i.e. “types”:

c

~C

d

~D

s1 ~E1

.

.

.

s` ~E`

~R

~S1

~S`

A type is given by a fixed number of:

• sets of concepts ~C, ~D, ~E1,. . . , ~E`
• sets of (inverse) relations ~R, ~S1,. . . ,~S`
• where ` is the number of ALCHIQ

axioms of form A(x)→ ∃y.R(x, y)∧B(y)

⇒We can represent sets as bit vectors and store types as facts Type(1, 0, 1, 0, 1, 0, . . .︸ ︷︷ ︸
suitably long bit vector

)

An ALCHIQ ontology is satisfiable iff it admits a consistent set of types.

⇒ Datalog∨ encoding: axiomatise required types and consistency conditions

Markus Krötzsch Rewriting ALCHIQ to Disjunctive Existential Rules slide 6 of 9

From ALCHIQ to Datalog∨ using types
We decompose ALCHIQ models into structures of bounded size,
i.e. “types”:

c

~C

d

~D

s1 ~E1

.

.

.

s` ~E`

~R

~S1

~S`

A type is given by a fixed number of:

• sets of concepts ~C, ~D, ~E1,. . . , ~E`
• sets of (inverse) relations ~R, ~S1,. . . ,~S`
• where ` is the number of ALCHIQ

axioms of form A(x)→ ∃y.R(x, y)∧B(y)

⇒We can represent sets as bit vectors and store types as facts Type(1, 0, 1, 0, 1, 0, . . .︸ ︷︷ ︸
suitably long bit vector

)

An ALCHIQ ontology is satisfiable iff it admits a consistent set of types.

⇒ Datalog∨ encoding: axiomatise required types and consistency conditions

Markus Krötzsch Rewriting ALCHIQ to Disjunctive Existential Rules slide 6 of 9

From ALCHIQ to Datalog∨ using types
We decompose ALCHIQ models into structures of bounded size,
i.e. “types”:

c

~C

d

~D

s1 ~E1

.

.

.

s` ~E`

~R

~S1

~S`

A type is given by a fixed number of:

• sets of concepts ~C, ~D, ~E1,. . . , ~E`
• sets of (inverse) relations ~R, ~S1,. . . ,~S`
• where ` is the number of ALCHIQ

axioms of form A(x)→ ∃y.R(x, y)∧B(y)

⇒We can represent sets as bit vectors and store types as facts Type(1, 0, 1, 0, 1, 0, . . .︸ ︷︷ ︸
suitably long bit vector

)

An ALCHIQ ontology is satisfiable iff it admits a consistent set of types.

⇒ Datalog∨ encoding: axiomatise required types and consistency conditions

Markus Krötzsch Rewriting ALCHIQ to Disjunctive Existential Rules slide 6 of 9

From ALCHIQ to Datalog∨∃ by simulating tableau

We construct a tableau-like structure:

c

A

,A

d

B

,B

S

,S

n1

A¬,

B

S¬,

R, Succ

n2 A¬,B

Succ,R¬,S

n3A,B

Succ,R,S

n4A,B

Succ,R,S

n5 A¬,B

Succ,R¬,S

n6A,B¬

Succ,R,S¬ SameTyp

Succ,R,S¬

Markus Krötzsch Rewriting ALCHIQ to Disjunctive Existential Rules slide 7 of 9

From ALCHIQ to Datalog∨∃ by simulating tableau

We construct a tableau-like structure:

c

A,A

d

B,B
S,S

A(x)→ A(x)
B(x)→ B(x)
S(x, y)→ S(x, y)

n1

A¬,

B

S¬,

R, Succ

n2 A¬,B

Succ,R¬,S

n3A,B

Succ,R,S

n4A,B

Succ,R,S

n5 A¬,B

Succ,R¬,S

n6A,B¬

Succ,R,S¬ SameTyp

Succ,R,S¬

Markus Krötzsch Rewriting ALCHIQ to Disjunctive Existential Rules slide 7 of 9

From ALCHIQ to Datalog∨∃ by simulating tableau

We construct a tableau-like structure:

c

A,A

d

B,B
S,S

n1

A¬,

B

S¬,

R, Succ

A(x)→ ∃y.R(x, y) ∧ B(y) ∧ Succ(x, y) A v ∃R.B

n2 A¬,B

Succ,R¬,S

n3A,B

Succ,R,S

n4A,B

Succ,R,S

n5 A¬,B

Succ,R¬,S

n6A,B¬

Succ,R,S¬ SameTyp

Succ,R,S¬

Markus Krötzsch Rewriting ALCHIQ to Disjunctive Existential Rules slide 7 of 9

From ALCHIQ to Datalog∨∃ by simulating tableau

We construct a tableau-like structure:

c

A,A

d

B,B
S,S

n1A¬,B

S¬,R, Succ

Succ(x, y)→ S(x, y) ∨ S¬(x, y)
Unnamed(x)→ A(x) ∨ A¬(x)

n2 A¬,B

Succ,R¬,S

n3A,B

Succ,R,S

n4A,B

Succ,R,S

n5 A¬,B

Succ,R¬,S

n6A,B¬

Succ,R,S¬ SameTyp

Succ,R,S¬

Markus Krötzsch Rewriting ALCHIQ to Disjunctive Existential Rules slide 7 of 9

From ALCHIQ to Datalog∨∃ by simulating tableau

We construct a tableau-like structure:

c

A,A

d

B,B
S,S

n1A¬,B

S¬,R, Succ

n2 A¬,B

Succ,R¬,S

n3A,B

Succ,R,S

n4A,B

Succ,R,S

n5 A¬,B

Succ,R¬,S

n6A,B¬

Succ,R,S¬ SameTyp

Succ,R,S¬

Markus Krötzsch Rewriting ALCHIQ to Disjunctive Existential Rules slide 7 of 9

From ALCHIQ to Datalog∨∃ by simulating tableau

We construct a tableau-like structure:

c

A,A

d

B,B
S,S

n1A¬,B

S¬,R, Succ

n2 A¬,B

Succ,R¬,S

n3A,B

Succ,R,S

n4A,B

Succ,R,S

n5 A¬,B

Succ,R¬,S

n6A,B¬

Succ,R,S¬ SameTyp

Succ,R,S¬

Markus Krötzsch Rewriting ALCHIQ to Disjunctive Existential Rules slide 7 of 9

From ALCHIQ to Datalog∨∃ by simulating tableau

We construct a tableau-like structure:

c

A,A

d

B,B
S,S

n1A¬,B

S¬,R, Succ

n2 A¬,B

Succ,R¬,S

n3A,B

Succ,R,S

n4A,B

Succ,R,S

n5 A¬,B

Succ,R¬,S

n6A,B¬

Succ,R,S¬ SameTyp

Succ,R,S¬

Markus Krötzsch Rewriting ALCHIQ to Disjunctive Existential Rules slide 7 of 9

From ALCHIQ to Datalog∨∃ by simulating tableau

We construct a tableau-like structure:

c

A,A

d

B,B
S,S

n1A¬,B

S¬,R, Succ

n2 A¬,B

Succ,R¬,S

n3A,B

Succ,R,S

n4A,B

Succ,R,S

n5 A¬,B

Succ,R¬,S

n6A,B¬

Succ,R,S¬ SameTyp

Succ,R,S¬

Markus Krötzsch Rewriting ALCHIQ to Disjunctive Existential Rules slide 7 of 9

From ALCHIQ to Datalog∨∃ by simulating tableau

We construct a tableau-like structure:

c

A,A

d

B,B
S,S

n1A¬,B

S¬,R, Succ

n2 A¬,B

Succ,R¬,S

n3A,B

Succ,R,S

n4A,B

Succ,R,S

n5 A¬,B

Succ,R¬,S

n6A,B¬

Succ,R,S¬

SameTyp

Succ,R,S¬

Markus Krötzsch Rewriting ALCHIQ to Disjunctive Existential Rules slide 7 of 9

From ALCHIQ to Datalog∨∃ by simulating tableau

We construct a tableau-like structure:

c

A,A

d

B,B
S,S

n1A¬,B

S¬,R, Succ

n2 A¬,B

Succ,R¬,S

n3A,B

Succ,R,S

n4A,B

Succ,R,S

n5 A¬,B

Succ,R¬,S

n6A,B¬

Succ,R,S¬ SameTyp

Succ,R,S¬

Markus Krötzsch Rewriting ALCHIQ to Disjunctive Existential Rules slide 7 of 9

From ALCHIQ to Datalog∨∃ by simulating tableau

We construct a tableau-like structure:

c

A,A

d

B,B
S,S

n1A¬,B

S¬,R, Succ

n2 A¬,B

Succ,R¬,S

n3A,B

Succ,R,S

n4A,B

Succ,R,S

n5 A¬,B

Succ,R¬,S

n6A,B¬

Succ,R,S¬ SameTyp

Succ,R,S¬

Markus Krötzsch Rewriting ALCHIQ to Disjunctive Existential Rules slide 7 of 9

Further Results and Outlook

Result Summary: There are polynomial time, fact-preserving
rewritings from

• ALCHIQ to Datalog∨

• ALCHIQ to Datalog∨∃

• Horn-ALCHIQ to Datalog∃ (not shown here)

where all translations with ∃ use rules of bounded size on which the (disjunctive)
restricted chase will terminate when prioritising rules without ∃

Open Challenges

• Can a chase-based system be worst-case optimal for non-Horn logics?

• Rewritings for more DLs (ALCHOIQ anyone?)

• Further exploitation in implementations

Markus Krötzsch Rewriting ALCHIQ to Disjunctive Existential Rules slide 8 of 9

