
Journal of Artificial Intelligence Research 81 (2024) 1-40 Submitted 11/2023; published 10/2024

Proof Theory and Decision Procedures
for Deontic STIT Logics

Tim S. Lyon timothy stephen.lyon@tu-dresden.de
Technische Universität Dresden,
Nöthnitzer Str. 46, 01069 Dresden, Germany

Kees van Berkel kees@logic.at

TU Wien, Institute for Logic and Computation

Favoritenstraße 9, 1040, Vienna, Austria

Abstract

This paper provides a set of cut-free complete sequent-style calculi for deontic STIT (‘See
To It That’) logics used to formally reason about choice-making, obligations, and norms in
a multi-agent setting. We leverage these calculi to write a proof-search algorithm deciding
deontic, multi-agent STIT logics with (un)limited choice and introduce a loop-checking
mechanism to ensure the termination of the algorithm. Despite the acknowledged potential
for deontic reasoning in the context of autonomous, multi-agent scenarios, this work is
the first to provide a syntactic decision procedure for this class of logics. Our proof-
search procedure is designed to provide verifiable witnesses/certificates of the (in)validity
of formulae, which permits an analysis of the (non)theoremhood of formulae and act as
explanations thereof. We show how the proof system and decision algorithm can be used
to automate normative reasoning tasks such as duty checking (viz. determining an agent’s
obligations relative to a given knowledge base), compliance checking (viz. determining if
a choice, considered by an agent as potential conduct, complies with the given knowledge
base), and joint fulfillment checking (viz. determining whether under a specified factual
context an agent can jointly fulfill all their duties).

1. Introduction

The logic of ‘Seeing To It That’, commonly referred to as STIT, is a formal framework
developed by Belnap, Perloff, and Xu (2001) for the analysis of agential choice in multi-agent
settings. Next to its philosophical merits, the formalism has acquired a central position in
the investigation of agency within the domain of artificial intelligence (AI). The framework
has been adopted and applied to temporal (Ciuni & Lorini, 2017) and epistemic (Broersen,
2011) reasoning, as well as to the investigation of legal concepts in AI (Lorini & Sartor,
2015). Most notably, STIT has been employed for the analysis of normative choice, viz.
multi-agent choice on the basis of obligations, prohibitions, and permissions. Logics dealing
with such concepts are commonly referred to as deontic, i.e. relating to duty. In fact, the
potential of applying STIT to the deontic setting was recognized from the outset (Bartha,
1993; Horty & Belnap, 1995). More recently, the potential of deontic STIT for reasoning in
the context of autonomous vehicles has been identified and explored (Arkoudas, Bringsjord,
& Bello, 2005; Shea-Blymyer & Abbas, 2021).

The work by Horty (2001) set the stage for the investigation of deontic STIT as a study
in its own right. Horty’s deontic STIT continues to receive considerable attention in the

©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Lyon & van Berkel

literature, and it is often recognized that the framework could serve as a suitable basis for
developing automated reasoning tools within the context of agent-based, normative reason-
ing. Despite an increasing demand for automated normative reasoning tools for artificial
agents (Arkoudas et al., 2005; van Berkel & Lyon, 2019a; Shea-Blymyer & Abbas, 2020),
such tools have yet to be satisfactorily developed for modal logics of agency. Although
Arkoudas et al. (2005) obtained preliminary results on automated reasoning for deontic
STIT, three essential components were left unaddressed: correct termination of the imple-
mentation, constructive generation of explicit proofs, and explainability in the case of failed
proof-search. In response, this article provides reasoning tools for deontic STIT logics, which
address all three components. In particular, we focus on Horty’s (2001) deontic STIT logic
for dominance ought, which deals with a utilitarian evaluation of agent-dependent obliga-
tions. The well-grounded philosophical motivation of dominance ought made the framework
the most extensively studied deontic STIT logic with a wide variety of applications.

Murakami (2004) provided a sound a complete axiomatization for the logic of domi-
nance ought and van Berkel and Lyon (2019b) showed how utilitarian STIT models—those
initially provided for dominance ought by Horty (2001)—can be transformed into equiva-
lent relational models. The first upshot of the latter result is that we can safely deal with
deontic STIT in the more modular relational setting, omitting reference to utilities. The
second upshot is that the alternative semantics facilitates the development of an effective
proof-theory for deontic STIT, i.e. the formulation of a set of rules (called a calculus or
proof system) capable of deriving all and only the theorems of a particular deontic STIT
logic, and which may be leveraged for applications or to study (meta-)logical properties.
Preliminary works in the proof-theory of (deontic) STIT logics, provided in (Wansing, 2006;
van Berkel & Lyon, 2019a; Lyon & van Berkel, 2019; Negri & Pavlović, 2020; van Berkel
& Lyon, 2021; Lyon, 2021), show the potential of proof theory in relation to automated
reasoning for deontic STIT logics, which is the primary concern of this article.

Our work is of a twofold nature, reflected by the following two aims. The first aim is
our central aim and constitutes the main contribution of this article:

(AIM I) Supply automated reasoning procedures for the deontic STIT logic
of dominance ought (and variations thereof) which produce certificates of the
(in)validity of input formulae.

As mentioned above, the automation of STIT reasoning is motivated by the need for explicit
normative reasoning in agentive settings. For this reason, aim I explicates the need for
certificates, i.e. the reasoning procedure must generate explicit proofs of successful proof-
search and counter-models in the case of failed proof-search. Such certificates can be seen
as explicit reasons that explain an input’s (in)validity. This relates to our second aim:

(AIM II) Illustrate how the obtained calculi and proof-search algorithm can be
utilized for agent-based normative reasoning tasks.

We demonstrate how the developed proof systems and accompanying proof-search algorithm
can be employed for reasoning tasks concerning obligations and choices. The constructed
proofs and counter-models will serve as certificates that provide reasons for an agent’s
obligations and choices. The upshot of this approach, is that such certificates can be

2

Proof Theory and Decision Procedures for Deontic STIT Logics

accessed, analyzed, and assessed, which are important aspects of more transparent and
explainable normative reasoning in AI.

Let us discuss these two aims in more detail.

1.1 Aim I: Proof Theory

Modern proof theory has its roots in the work of Gerhard Gentzen (1935a, 1935b) who intro-
duced the sequent calculus framework for classical and intuitionistic logic. The characteristic
feature of the sequent calculus framework is the utilization of sequents in defining inference
rules and deriving theorems (sequents are formulae of the form φ1, . . . , φn ⇒ ψ1, . . . , ψk,
interpreted as stating that if all formulae φi in the antecedent hold, then some formula ψj

in the conclusion holds). The framework proved to be well-suited for the construction of
analytic calculi (i.e. calculi that possess the subformula property), meaning that every for-
mula used to reach the conclusion of a proof, occurs as a subformula in the conclusion of the
proof. The analyticity of a calculus is highly valuable in designing proof-search algorithms
that take a formula as input and attempt to construct a proof by applying inference rules
in reverse (typically allowing for a counter-model to be constructed if a proof is not found).

Despite its success and utility, it was found that the sequent calculus framework is often
not expressive enough to construct analytic calculi for many logics of interest, e.g. see (Wans-
ing, 2002). In response, a diverse number of proof-theoretic formalisms extending Gentzen’s
sequent calculus framework were introduced, allowing for the construction of analytic cal-
culi for larger classes of logics. Such formalisms include (prefixed) tableaux (Fitting, 1972,
2014), display calculi (Belnap, 1982; Wansing, 1994), hypersequent calculi (Avron, 1996;
Lahav, 2013), labeled calculi (Gabbay, 1996; Simpson, 1994; Viganò, 2000), and nested
calculi (Bull, 1992; Kashima, 1994; Brünnler, 2009; Poggiolesi, 2009).

In this paper, we utilize proof systems for deontic STIT logics within the labeled sequent
formalism (Simpson, 1994; Gabbay, 1996; Viganò, 2000; Hein, 2005; Negri, 2005). This
formalism is particularly suitable for handling modal logics, since it allows for semantic
information to be explicitly represented in the syntax of sequents. Its name refers to the
use of labels, representing worlds in a relational model, that prefix formulae. The proof
systems used in this paper first appeared in the PhD thesis of Lyon (2021) and are exten-
sions/variants of the labeled calculi for (deontic) STIT logics provided by both authors in
a sequence of papers (van Berkel & Lyon, 2019a; Lyon & van Berkel, 2019; van Berkel &
Lyon, 2021). In these works, the problem of designing proof-search algorithms for deontic
STIT logics was left open; this problem will be addressed in this paper.

We adopt the labeled formalism since it offers a variety of advantages. First, building
calculi within the labeled formalism is straightforward as calculi are easily obtained by trans-
forming the semantic clauses and frame properties associated with the relational semantics
of a logic into inference rules (Simpson, 1994; Schmidt & Tishkovsky, 2011). Additionally,
the labeled formalism provides uniform and modular presentations for many classes of log-
ics, where the addition, deletion, or modification of inference rules from one calculus yields
a calculus for another logic within the considered class (Simpson, 1994; Viganò, 2000). This
modularity proves useful in our setting as the addition/deletion of inference rules transforms
our proof systems into sound and complete proof systems for various (non-)deontic STIT
logics, including the non-deontic traditional STIT logics developed by Belnap, Perloff, and

3

Lyon & van Berkel

Xu (2001). Consequently, all of our results straightforwardly transfer to the non-deontic,
multi-agent setting. Last, labeled calculi typically exhibit favorable proof-theoretic proper-
ties such as the height-preserving invertibility of rules and cut admissibility (Simpson, 1994;
Viganò, 2000; Negri, 2005). We leverage such properties to successfully realize aim I.

1.2 Aim II: Normative Reasoning Tasks and Explanations

The constructive stance taken in this work is deliberate. As our proof-search algorithm
also supports counter-model extraction, we automate the construction of explicit proofs
of derivability and underivability. Our approach, thus, yields insight into the reasons for a
formula’s (non-)theoremhood, providing information that explains logical inferences relative
to agents, choices, and obligations. This is essential for the secondary aim of our work.

Explanation is a critically important topic in AI (Biran & Cotton, 2017; Miller, Howe,
& Sonenberg, 2017; Gunning, Stefik, Choi, Miller, Stumpf, & Yang, 2019; Miller, 2019). It
allows us to understand and evaluate why intelligent systems—such as artificial agents—
produce particular decisions, predictions, and actions. An often observed consequence of
improved explainability is that it increases our trust in such systems. Especially in light of
the rapid increase of autonomous intelligent systems, we also find an increasing demand for
formal approaches to explainable agency, which is the ability of intelligent agents to explain
their choices and actions (Langley, Meadows, Sridharan, & Choi, 2017). Similarly, the de-
mand for explanatory methods for normative reasoning has increased (van Berkel & Straßer,
2022). In particular, the work by van Berkel and Straßer (2024) proposes dialogue models
to construct, what are called, deontic explanations for defeasible normative reasoning. The
deontic formalisms in these works do not contain explicit concepts of agency.

Explanation is strongly connected to notions such as justification and interpretability
(Biran & Cotton, 2017). Following Ye and Johnson (1995), a ‘justification’ denotes a type
of explanation that gives an “explicit description of the causal argument or rationale behind
each inferential step taken” (p. 158)1 and ‘interpretability’ signifies, in the words of Biran
and Cotton (2017) that a system’s “operations can be understood by a human, either
through introspection or through a produced explanation” (p. 8). Hence, it can be seen
that constructive proof-search procedures have explanatory value by yielding justifications
in terms of proofs—i.e. transparent representations of a step-by-step inferential procedure—
and facilitating interpretability via explicit inferential operations that can be inspected.

Logical reasoning is suitable for transparent reasoning tasks, avoiding the opaqueness
issues of black box reasoning as often ascribed to machine learning procedures (Gunning
et al., 2019). Although such logical methods might not be optimal for real-time reasoning
in which decisions must be made fast, they are particularly useful for transparent reasoning
procedures for which we can formally specify various reasoning tasks and facilitate expla-
nation in the way defined above. For instance, in this paper, we illustrate how the proof
theory of deontic STIT can generate certificates of potential (non-)compliance of agents’ be-
havior with respect to a set of obligations. By providing procedural proof-search algorithms
with automated counter-model extraction, we address three core demands for automated

1. This is a common definition in AI. In ethics, however, ‘explanation’ and ‘justification’ are often considered
distinct, namely, the former providing reasons for why something happened in the way it happened and
the latter providing reasons for why it is good that it happened (Alvarez, 2017).

4

Proof Theory and Decision Procedures for Deontic STIT Logics

agent-based normative reasoning: correctness and termination, transparency of reasoning,
and explainability in terms of justification and interpretability.

We also apply our deontic STIT calculi to address three normative reasoning tasks: First,
our formalism can be applied to determine an agent’s obligations given a certain situation in
which the agent resides. That is, given a situation—i.e. a given knowledge base consisting of
obligations and facts—the agent can check whether they are bound by certain obligations.
We refer to this application as duty checking. Second, the calculi can be used to determine
whether a certain choice, considered by the agent as potential conduct, complies with the
given knowledge base of obligations and facts. We refer to this second application as com-
pliance checking. Third, the calculi can be employed to check whether under a specified
factual context an agent can (still) jointly fulfill all of their obligations. We call this ap-
plication joint fulfillment checking. These three applications of the framework demonstrate
three conceptually different normative reasoning tasks. Furthermore, we discuss the formal
similarities between these applications from the perspective of proof theory.

1.3 Related Work

There have been previous attempts to automate or mechanize reasoning with (deontic) STIT
logics. An important first step was made by Arkoudas et al. (2005) who encoded a natural
deduction system for Horty’s deontic STIT in Athena, allowing for the formal verification
of proofs, but omitting the specification of a terminating proof-search algorithm. Shea-
Blymyer and Abbas (2021) wrote a model-checking algorithm for a variant of Horty’s deontic
STIT combined with CTL∗, which takes a model and obligation as input and determines
whether the obligation holds. This significantly differs from our algorithm which takes an
arbitrary formula as input and decides the formula, outputting either a proof or counter-
model thereof. Proof-theoretic approaches to formal reasoning with non-deontic STIT logics
include the tableau systems of Wansing (2006) and the labeled systems of Negri and Pavlović
(2020). The former work leaves the specification of a tableau-based decision algorithm open,
while the latter work takes a similar approach to the authors’ work in this and previous
papers (Lyon & van Berkel, 2019), providing a labeled calculus for non-deontic STIT logic
and attempting to secure decidability via terminating proof-search. Dalmonte et al. (2021)
develop proof-search with counter-model extraction for a class of non-STIT deontic logics.

As the work of Negri and Pavlović (2020) shares similarities with ours, the authors would
like to emphasize the main differences between the labeled calculi applied in this paper and
those defined by Negri and Pavlović (2020) for non-deontic multi-agent STIT logic: (i)
We consider a more general class of STIT calculi, which includes the deontic extension of
traditional multi-agent STIT (Horty, 2001; Murakami, 2004) with and without the STIT
principle for limiting the amount of choices available to agents (Belnap et al., 2001, Ch.
17). (ii) In contrast to (Negri & Pavlović, 2020), our calculi adopt a relational semantics
for STIT, forgoing the more involved—yet redundant (Herzig & Schwarzentruber, 2008)—
branching-time structures in the context of atemporal STIT logics. As a consequence of
using relational semantics, our calculi are syntactically simpler and more economical which,
for instance, significantly decreases the number of rules in the calculi. (iii) We implement
an explicit loop-checking mechanism for our proof-search algorithm to ensure correct and
terminating proof-search for (deontic) multi-agent STIT logics (with a limited as well as

5

Lyon & van Berkel

unlimited choice constraint). At the end of Section 3, we provide an argument as to why
proof-search algorithms for (non-deontic) STIT logics without loop-checking are susceptible
to problematic cases (i.e. termination may fail; e.g. in Negri and Pavlović (2020)).

Last, (non-)deontic STIT logics were shown decidable via the finite model property
by Belnap et al. (2001) and Murakami (2004), respectively. Balbiani, Herzig, and Tro-
quard (2008) studied the complexity of deciding traditional STIT logics, finding that single-
agent STIT logic is NP-complete and multi-agent STIT is NEXPTIME-complete. These
approaches are model-theoretic, whereas our work is the first to establish the decidability
of (non-)deontic STIT logics syntactically by means of terminating proof-search.

1.4 Outline of the Paper

Section 2 introduces deontic STIT logics and Section 3 introduces their cut-free labeled
sequent calculi. Section 4 is dedicated to a discussion of our proof-search algorithm, and
the proposed loop-checking mechanism, which lets us decide (non-)deontic multi-agent STIT
logics with (un)limited choice. In Section 5, we apply proof-search to the three agent-based
normative reasoning tasks. We conclude and discuss future work in Section 6.

2. Logical Preliminaries

Deontic STIT logics enable reasoning about agents’ choices and obligations in multi-agent
scenarios by employing a variety of modal operators. In this section, we discuss the inter-
pretation of our deontic STIT languages and provide a formal semantics for its formulae.

Choices. Different choices may be available to different agents at different moments in
time. The characteristic feature of traditional STIT logic is the use of an instantaneous
choice operator [i] for each agent i, which informally expresses that “agent i sees to it that”
(some proposition holds). The operator is instantaneous in the sense that choice refers to
what an agent can directly see to at a given moment. In a multi-agent world, a single agent
cannot uniquely determine the future by acting. For instance, when I decide to go to a
concert, it may be that my friends join me, but also they may stay at home. Nevertheless,
if I see to it that I go to the concert, this excludes a future continuation where I stayed
at home. Hence, what an agent can do via exercising choice is to constrain or limit the
possible courses of events; the modal operator [i] models this idea.

Settledness. Certain states of affairs cannot be altered by any of the agents’ (joint)
choices at a given moment. Such states of affairs are settled true for that moment. Basic
STIT logic includes a settledness operator □. For instance, that it is currently settled true
that it is Tuesday, means that no choice is available to any of the agents to see to it that
today is not Tuesday. In such cases, we sometimes say that what is settled true is realized
independently of any of the agents’ choices. The settledness operator plays an essential
role in characterizing the relations between different choices of agents. Following Horty and
Belnap (1995), we focus on single-moment scenarios.

Obligations. In the context of STIT, obligations prescribe certain choices over others and
are captured by an agent-specific deontic choice operator ⊗i for each agent i. We interpret
⊗i as “agent i ought to see to it that” (some proposition holds) (Horty, 2001). To illustrate,
the formula ⊗iconcert is informally read as “agent i ought to see to it that she attends the
concert” (e.g. because she made a promise to a friend).

6

Proof Theory and Decision Procedures for Deontic STIT Logics

For each of the above modal operators (viz. [i], □, and ⊗i, respectively), we include
the duals (viz. ⟨i⟩, ♢, and ⊖i). We read ⟨i⟩φ as ‘the state of affairs φ may result from
a choice made by agent i’ and take ♢φ to express that ‘the state of affairs φ is currently
possible’. We read ⊖iφ as ‘agent i is permitted to see to it that the state of affairs φ
holds’ (cf. permission as the dual of obligation (Hilpinen & McNamara, 2013)). Beyond the
aforementioned modalities, our languages also include disjunction ∨, conjunction ∧, and
classical negation. The multi-agent language Ln with n ∈ N is defined as follows:

Definition 1 (The Language Ln). Let Ag := {0, 1, . . . , n} ⊂ N be a finite set of agent
labels and let V ar := {p0, p1, p2, . . .} be a denumerable set of propositional variables. The
language Ln is defined via the following grammar in BNF:

φ ::= p | ¬p | φ ∨ φ | φ ∧ φ | □φ | ♢φ | [i]φ | ⟨i⟩φ | ⊗i φ | ⊖i φ

where i ∈ Ag and p ∈ V ar.

Our formulae in Ln are in negation normal form, which allows us to simplify the sequents
employed in our calculi and reduce the number of rules. This means that we restrict
applications of negation to propositional variables. Then, we define the negation ¬φ of an
arbitrary formula φ ∈ Ln to be the formula where every operator ∨, ∧, □, ♢, [i], ⟨i⟩, ⊗i,
⊖i is replaced with its dual ∧, ∨, ♢, □, ⟨i⟩, [i], ⊖i, ⊗i (respectively), every propositional
variable p is replaced with its negation ¬p, and ¬p is replaced with its positive version p.
We define φ→ ψ := ¬φ ∨ ψ, φ↔ ψ := (φ→ ψ) ∧ (ψ → φ), ⊤ := p ∨ ¬p, and ⊥ := p ∧ ¬p.
In what follows, we refer to the complexity of a formula in the usual way, corresponding to
the number of symbols in a formula.

To illustrate Ln, let Jade (j) be an agent cycling to her office in London. Then, the
formula ⊗jleft jade∧♢left jade∧ [j]¬left jade describes that “Jade is obliged to cycle
on the left-hand side of the road, it is realizable that she cycles on the left side, and she
chooses not to do so,” in other words, Jade sees to it that her obligation is violated.

We interpret Ln formulae over special types of relational models, called DSkn-models.
The parameter n refers to the number of agents involved and k to the maximal number
of choices for each agent at each moment, and which imposes no maximum when k = 0.
Since our logic concerns instantaneous (i.e. atemporal) choice-making, it suffices to consider
single-moment frameworks (Balbiani et al., 2008), forgoing the use of traditional branching
time structures often employed in atemporal STIT logics (Belnap et al., 2001) (the STIT
language Ln is not expressive enough to reason about branching time structures).

Definition 2 (DSkn-frames, -models). Let n ∈ N and for each agent label i ∈ Ag, let us
define R[i](w) := {v ∈ W | (w, v) ∈ R[i]}. A DSkn-frame is defined to be a tuple of the form
F := (W, {R[i] | i ∈ Ag}, {I⊗i | i ∈ Ag}) with W a non-empty set of worlds w, v, u, . . . and:

(C1) For all i ∈ Ag, R[i] ⊆W×W is an equivalence relation.

(C2) For all u1, . . . , un ∈W ,
⋂

i∈Ag R[i](ui) ̸= ∅.
(C3) If k > 0, then for all i ∈ Ag and w0, w1, . . . , wk ∈W ,∨

0≤m≤k−1, m+1≤j≤k

R[i]wmwj .

7

Lyon & van Berkel

(D1) For all i ∈ Ag, I⊗i ⊆W .
(D2) For all i ∈ Ag, I⊗i ̸= ∅.
(D3) For all i ∈ Ag and w, v ∈W , if w ∈ I⊗i and v ∈ R[i](w), then v ∈ I⊗i.

A DSkn-model is a tupleM := (F, V) where F is a frame and V : V ar → P(W) is a valuation
function mapping propositional variables to subsets of W .

Following Definition 2, a DSkn-model consists of a set W representing a single moment
in time at which the agents from Ag are making decisions and where each world in W
designates a different configuration of states of affairs that could hold at that moment.
Conditions (Ci) and (Di) refer, respectively, to the choice properties and deontic properties.
Condition (C1) partitions W into choice-cells (i.e. equivalence classes) for each i ∈ Ag,
where each choice-cell represents a choice available to agent i at the considered moment.
The partition imposed on W must satisfy the independence of agents condition, and may
satisfy a limited choice condition (Belnap et al., 2001). Independence of agents, expressed
by condition (C2), stipulates that no agent can keep another agent from exercising an
available choice at the moment of choice, i.e. regardless of the choices made by the agents,
some set of possible states of affairs ensues. Formally, (C2) ensures that any combination
of choices made by the agents is consistent, i.e. if we select a choice-cell for each agent, their
intersection is non-empty. The limited choice condition, captured by (C3), stipulates that
each agent has a maximum of k choices available to choose from at each moment and is only
enforced when k > 0 (i.e. imposing no limitation on the number of choices when k = 0).
Formally, (C3) states that if the limit is k, then for k + 1 many worlds at least two worlds
must be in the same choice-cell.2 The condition (D1) ensures that all deontically optimal
worlds at the present moment for any agent i (which are those worlds contained in I⊗i) are
realizable. Condition (D2) ensures that, for each agent i, at least one deontically optimal
world exists at a moment, and (D3) states that if a deontically optimal world exists in a
choice, then every world in that choice is deontically optimal. In other words, (D1)–(D3)
ensure the existence of an obligatory choice for each agent i at a given moment. Last,
each DSkn-model contains a valuation function V mapping propositional variables to sets of
worlds.

Definition 3 (Semantics). Let M be a DSkn-model and let w ∈ W of M . The satisfaction
of a formula φ ∈ Ln in M at w is recursively defined accordingly:

1. M,w ⊩ p iff w ∈ V (p)

2. M,w ⊩ ¬p iff w ̸∈ V (p)

3. M,w ⊩ φ ∧ ψ iff M,w ⊩ φ and M,w ⊩ ψ

4. M,w ⊩ φ ∨ ψ iff M,w ⊩ φ or M,w ⊩ ψ

5. M,w ⊩ □φ iff ∀u ∈W , M,u ⊩ φ

2. Belnap et al. (2001, Ch. 9) argue that one may want to limit the amount of choices due to the possibility
of ‘busy choosers’, which are agents making infinitely many choices in a finite period. For some STIT
logics, busy choosers have undesirable effects, e.g. where refraining from refraining does not equal doing.

8

Proof Theory and Decision Procedures for Deontic STIT Logics

6. M,w ⊩ ♢φ iff ∃u ∈W , M,u ⊩ φ

7. M,w ⊩ [i]φ iff ∀u ∈ R[i](w), M,u ⊩ φ

8. M,w ⊩ ⟨i⟩φ iff ∃u ∈ R[i](w), M,u ⊩ φ

9. M,w ⊩ ⊗iφ iff ∀u ∈ I⊗i, M,u ⊩ φ

10. M,w ⊩ ⊖iφ iff ∃u ∈ I⊗i, M,u ⊩ φ

A formula φ is DSkn-valid (written ⊩DSkn
φ) iff for every DSkn-modelM , it is satisfied at every

world in the domain W of M . We define the logic DSkn as the set of DSkn-valid formulae.

The semantic evaluation of the propositional connectives implies that our logic extends
classical propositional logic. We note in passing that sound and complete axiomatizations
of DSkn with respect to the above semantic characterization are provided by Lyon (2021).

Let us consider an example. Suppose there are two agents, Jade and Kai (where Ag :=
{j, k}), who are cycling toward each other on a two lane road. Both have two choices:
keep cycling left or keep cycling right. Let left jade and right jade, and left kai and
right kai denote the states of affairs in which Jade and Kai cycle left and right, respectively.
In the graphical illustration of this model (see Figure 2), the set W = {w1, w2, w3, w4}
represents a moment in time with four possible situations, e.g. w1 denotes the situation in
which both Jade and Kai cycle on the left. The model in Figure 2 shows that Jade has two
choices, one consisting of the worlds w1 and w3, and one consisting of w2 and w4, whereas
Kai has one choice consisting of w1 and w2, and one consisting of w3 and w4. Graphically,
the horizontal choice-cells outlined with dotted lines ‘· · ·’ represent Kai’s choices and the
vertical choice-cells outlined with dashed lines ‘- - -’ represent Jade’s choices. There are
two cases in which a collision between Jade and Kai can be avoided: when both keep
cycling left and when both keep cycling right. These two scenarios are represented by the
intersecting choices leading to w1, respectively w4 in Figure 2. A collision coll holds at
those intersecting choices where one of the two cycles left and the other right.3 In Figure 2
the propositional variable left jade is mapped to the set {w1, w3}, meaning that in these
possible worlds Jade cycles left. The negation ¬p of a propositional variable p holds at
those worlds where p does not hold (e.g. ¬coll holds at w1 and w3 in our example model).

Although there are two outcomes in the cycling scenario of Figure 2 in which a collision
is avoided, we assume that UK traffic law obliges cyclists to always cycle on the left-hand
side of the road. In Figure 2, Jade’s choice consisting of w1 and w3 is obligatory for Jade
and Kai’s choice consisting of w1 and w2 is obligatory for Kai. Thus, based on the assumed
traffic laws, if both Jade and Kai commit to their obligatory choices, they jointly see to it
that a collision is avoided. In Figure 2, obligatory choices are shaded. In relation to this,
due to fact that DSkn-models ensure that at least one obligatory choice exists for each agent
i ∈ Ag, each agent’s set of obligations is consistent, i.e. no agent is obliged to see to it that
φ and ¬φ for some proposition φ. It can be straightforwardly checked that the example
DSkn-model in Figure 2 satisfies all properties from Definition 2.

3. Avoiding a collision is expressed as: □(¬coll → ((right jade∧right kai)∨ (left jade∧left kai)))).

9

Lyon & van Berkel

w1 w2

w3 w4

w1 w2

w3 w4

10

left jade

left kai

right jade

left kai

coll
left jade

right kai
coll

right jade

right kai

Figure 1: An illustration of the DSn-model M := (F, V) built atop the DSn-frame F :=
(W, {R[j], R[y]}, {I⊗j , I⊗y}) such thatW := {w1, w2, w3, w4}, R′ := {(wi, wi) | 1 ≤
i ≤ 4}, Jade’s relation R[j] := {(w1, w3), (w3, w1), (w2, w4), (w4, w2)} ∪ R′, Kai’s
relation R[k] := {(w1, w2), (w2, w1), (w3, w4), (w4, w3)} ∪ R′, I⊗j := {w1, w3},
I⊗k

:= {w1, w2}, and V := {(left jade, {w1, w3}), (right jade, {w2, w4}),
(left kai, {w1, w2}), (right kai, {w3, w4}), (coll, {w2, w3})}.

3. Proof Theory for Deontic STIT Logics

We present a class of labeled sequent calculi, which generalize Gentzen-style sequent systems
by including semantic information directly in the syntax of sequents. The calculi are vari-
ations of the calculi given by van Berkel and Lyon (2021), and were first defined by Lyon
(2021). The syntactic expressions in our calculi, called labeled sequents—or sequents for
short—encode semantic information by prefixing formulae with labels (representing worlds
in a relational model) and include relational atoms (encoding the accessibility relations).

Definition 4 (Sequent). Let Ag = {0, 1, . . . , n} be a finite set of agent labels and let Lab :=
{w, u, v, . . .} be a denumerable set of labels. A sequent is defined to be an expression of the
form Λ := R ⇒ Γ, where R is a (potentially empty) finite set of relational atoms of the
form R[i]wu and I⊗iw, and Γ is a (potentially empty) finite set of labeled formulae of the
form w : φ, where i ranges over Ag, φ ranges over Ln, and w, u range over Lab.

We useR, Q, . . . (potentially annotated) to denote sets of relational atoms, and use Γ, ∆,
. . . (potentially annotated) to denote sets of labeled formulae. We often use Λ := R ⇒ Γ to
denote an entire sequent, where we refer toR as the antecedent of Λ, and Γ as the consequent
of Λ. Intuitively, a sequent R ⇒ Γ is interpreted as stating that if all relational atoms in
R hold, then some labeled formula w : φ ∈ Γ holds (see Definition 6 for the semantic
interpretation of a sequent). We use the notation Lab(R), Lab(Γ), and Lab(Λ) to represent
the set of labels contained inR, Γ, and Λ, respectively; e.g. Lab(R[2]wv ⇒ u : p) = {w, u, v}.
Furthermore, for a label w and set of labeled formulae Γ, we define Γ ↾ w := {φ | w : φ} to
be the set of formulae prefixed with the label w.

10

Proof Theory and Decision Procedures for Deontic STIT Logics

The G3DSkn calculi for each logic DSkn, where |Ag| = n ∈ N and k ∈ N, are given a uniform
presentation in Figure 2. The (id) rule encodes the fact that at any world in a DSkn-model,
either a propositional atom p holds or ¬p holds, and acts as a closure rule during proof-
search. We refer to any sequent that is the conclusion of (id) as an initial sequent. The (∨),
(∧), (♢), (□), (⊖i), (⊗i), (⟨i⟩), and ([i]) rules are obtained by transforming the semantic
clauses of the corresponding logical connectives into inference rules (Definition 3). The
structural rules (Refi) and (Euci), taken together, encode the fact that each R[i] relation is
an equivalence relation (i.e. is both reflexive and Euclidean) as dictated by condition (C1).
The conditions (C2), (C3), (D2), and (D3) are transformed into the rules (IOA), (APCk

i),
(D2i), and (D3i), respectively, with (D1) encoded in the (⊖i) rule.

We note that (APCk
i) is a rule schema encoding that agent i is limited to at most k

choices; APC stands for ‘axiom scheme for possible choices’ (Belnap et al., 2001, p. 437).
When k = 0, (APCk

i) is omitted from the calculus thus enforcing no upper-bound on the
number of choices. When k > 0, (APCk

i) contains k(k + 1)/2 premises R, R[i]xmxj ⇒ Γ

with 0 ≤ m ≤ k− 1 and m+ 1 ≤ j ≤ k. For instance, if k = 1, then (APCk
i) takes the form

R, R[i]w0w1 ⇒ Γ
(APC1

i)R ⇒ Γ

and if k = 2, then (APCk
i) takes the form

R, R[i]w0w1 ⇒ Γ R, R[i]w0w2 ⇒ Γ R, R[i]w1w2 ⇒ Γ
(APC2

i).R ⇒ Γ

A derivation (or, proof) is built by sequentially applying instances of the rules in G3DSkn
to initial sequents (or to assumptions in certain cases), and if a sequent Λ is derivable in
G3DSkn, i.e. Λ is the conclusion, then we write G3DSkn ⊢ Λ. Each derivation has the form of
a tree with the conclusion acting as the root and initial sequents forming the leaves. The
height of a derivation is the longest path of sequents from the conclusion to an initial sequent
in the derivation. The relational atoms and labeled formulae that are explicitly presented
in the conclusion of a rule are called principal, and those that are explicitly presented in the
premises and are not principal are called auxiliary. Let us consider an example derivation.

Example 5. We show how to derive ⊗ip→ ♢[i]p = ⊖i¬p ∨ ♢[i]p in G3DSkn.

(id)
I⊗iu, I⊗iz,R[i]zu⇒ u : ¬p, x : ⊖i¬p, x : ♢[i]p, z : [i]p, u : p

(⊖i)
I⊗iu, I⊗iz,R[i]zu⇒ x : ⊖i¬p, x : ♢[i]p, z : [i]p, u : p

(D3i)
I⊗iz,R[i]zu⇒ x : ⊖i¬p, x : ♢[i]p, z : [i]p, u : p

([i])
I⊗iz ⇒ x : ⊖i¬p, x : ♢[i]p, z : [i]p

(♢)
I⊗iz ⇒ x : ⊖i¬p, x : ♢[i]p

(D2i)⇒ x : ⊖i¬p, x : ♢[i]p
(∨)

⇒ x : ⊖i¬p ∨ ♢[i]p

We point out that ⊗ip→ ♢[i]p is an instance of the principle of Ought-implies-Can, which
is a central theorem of deontic STIT (Horty, 2001; van Berkel & Lyon, 2021).

Since the syntax of our sequents explicitly incorporates semantic information, such ob-
jects can be interpreted as abstractions of a DSkn-model (Lyon, 2021). This interpretation
(given below) gives a correspondence between the semantics of Section 2 and our calculi.

11

Lyon & van Berkel

(id)R ⇒ w : p, w : ¬p,Γ
R ⇒ w : φ,Γ R ⇒ w : ψ,Γ

(∧)R ⇒ w : φ ∧ ψ,Γ

R ⇒ w : φ,w : ψ,Γ
(∨)R ⇒ w : φ ∨ ψ,Γ

R, R[1]w1u, . . . , R[n]wnu⇒ Γ
(IOA)†R ⇒ Γ

R ⇒ u : φ,Γ
(□)†R ⇒ w : □φ,Γ

R ⇒ w : ♢φ, u : φ,Γ
(♢)R ⇒ w : ♢φ,Γ

R, R[i]ww ⇒ Γ
(Refi)R ⇒ Γ

R, I⊗iu⇒ w : ⊖iφ, u : φ,Γ
(⊖i)R, I⊗iu⇒ w : ⊖iφ,Γ

R, R[i]wu⇒ w : ⟨i⟩φ, u : φ,Γ
(⟨i⟩)

R, R[i]wu⇒ w : ⟨i⟩φ,Γ

R, R[i]wu⇒ u : φ,Γ
([i])†R ⇒ w : [i]φ,Γ

R, I⊗iu⇒ u : φ,Γ
(⊗i)

†
R ⇒ w : ⊗iφ,Γ

R, I⊗iu⇒ Γ
(D2i)

†
R ⇒ Γ

R, R[i]wu,R[i]wv,R[i]uv ⇒ Γ
(Euci)R, R[i]wu,R[i]wv ⇒ Γ

R, R[i]wu, I⊗iw, I⊗iu⇒ Γ
(D3i)R, R[i]wu, I⊗iw ⇒ Γ{

R, R[i]wmwj ⇒ Γ
∣∣∣ 0 ≤ m ≤ k − 1, m+ 1 ≤ j ≤ k

}
(APCk

i)R ⇒ Γ

Figure 2: The G3DSkn calculi (Lyon, 2021), where |Ag| = n ∈ N and k ∈ N. The superscript
† on (□), ([i]), (⊗i), (IOA), and (D2i) indicates that u is a eigenvariable, i.e. it
does not occur in the conclusion. We have (⟨i⟩), ([i]), (⊖i), (⊗i), (Refi), (Euci),
(APCk

i), (D2i), and (D3i) rules for each i ∈ Ag. (APCk
i) is omitted when k = 0.

Definition 6 (Sequent Semantics). Let M = (W, {R[i] | i ∈ Ag}, {I⊗i | i ∈ Ag}, V) be

a DSkn-model with I : Lab 7→ W an interpretation function mapping labels to worlds.
The satisfaction of a relational atom R[i]wu or I⊗iw (written M, I |= R[i]wu, respectively
M, I |= I⊗iw) and a labeled formula w : φ (written M, I |= w : φ) is defined as:

• M, I |= R[i]wu iff (wI , uI) ∈ R[i]

• M, I |= I⊗iw iff wI ∈ I⊗i

• M, I |= w : φ iff M,wI ⊩ φ

A labeled sequent Λ := R ⇒ Γ is satisfied in M with I (written, M, I |= Λ) iff if
M, I |= R[i]wu and M, I |= I⊗iw for all R[i]wu, I⊗iw ∈ R, then M, I |= w : φ for some
w : φ ∈ Γ. We say that a labeled sequent Λ is falsified in M with I iff M, I ̸|= Λ, that is,
Λ is not satisfied by M with I. Last, a labeled sequent Λ is DSkn-valid (written |= Λ) iff it
is satisfiable in every DSkn model M with every interpretation function I. We say that a
labeled sequent Λ is DSkn-invalid iff ̸|= Λ, i.e. Λ is not DSkn-valid.

12

Proof Theory and Decision Procedures for Deontic STIT Logics

R ⇒ Γ (Sub)
R(w/u) ⇒ Γ(w/u)

R ⇒ Γ (Wk)
R,R′ ⇒ Γ,Γ′

R ⇒ w : φ,Γ R ⇒ w : ¬φ,Γ
(Cut)R ⇒ Γ

Figure 3: The set StrR of structural rules consists of the rules above.

As shown in Theorem 7 below, the G3DSkn calculi for deontic STIT logics possess fun-
damental properties such as the height-preserving (hp) admissibility of label substitutions
(Sub) and weakenings (Wk) (see Figure 3). Moreover, all rules of the calculi are height-
preserving invertible, and each calculus admits a syntactic proof of cut admissibility. We
briefly clarify the meaning of these properties, which will recur throughout the course of
this paper, and after, list the properties possessed by each G3DSkn calculus.

Let the rule (r) be of the form:

Λ1 . . . Λn (r)
Λ

We say that the rule (r) is (hp-)admissible in a calculus iff if Λ1, . . . ,Λn have proofs (with
heights h1, . . . , hn, respectively), then Λ has a proof (with a height h ≤ max{h1, . . . , hn}).
We let the i-inverse of (r), written (r̂i), be the rule obtained by taking the conclusion of
(r) to be the premise of (r̂i) and the ith premise of (r) to be the conclusion of (r̂i). We
say that an n-ary rule (r) is (hp-)invertible in a calculus iff (r̂i) is (hp-)admissible for each
1 ≤ i ≤ n. Last, a label substitution (w/u) is defined in the usual way, that is, for a labeled
sequent Λ, Λ(w/u) is obtained by replacing each occurrence of u by w in Λ. For example,
(R[i]wu, I⊗iu⇒ u : φ)(v/u) = (R[i]wv, I⊗iv ⇒ v : φ).

Admissibility and invertibility properties serve a twofold purpose: first, such properties
are useful in establishing the completeness of the G3DSkn calculi (Theorem 7), and second,
they are useful in showing the decidability of our logics via proof-search (Section 4).

Theorem 7 (G3DSkn Properties (Lyon, 2021, Ch. 3.4)). Let |Ag| = n ∈ N and k ∈ N.

1. For all φ ∈ Ln, G3DS
k
n ⊢ R ⇒ w : φ,w : ¬φ,Γ;

2. The (Sub) and (Wk) rules are hp-admissible in G3DSkn;

3. All rules in G3DSkn are hp-invertible;

4. The rule (Cut) is admissible in G3DSkn;

5. G3DSkn is sound, i.e. if ⊢G3DSkn
Λ, then |= Λ;

6. G3DSkn is complete, i.e. ⊩DSkn
φ, then ⊢G3DSkn

w : φ.

4. Proof-search and Decidability

We now put the G3DSkn calculi to use and demonstrate that each system serves as a basis
for automated reasoning with the corresponding logic DSkn. In particular, we design a proof-
search procedure, referred to as Provekn (see Algorithm 1 below), that decides the validity

13

Lyon & van Berkel

of each formula φ ∈ Ln, and which additionally provides witnesses for the answers it yields.
That is to say, Provekn bottom-up applies rules from G3DSkn to the input formula, and when
a proof is found (i.e. proof-search succeeds), it follows that the input formula is valid; when
a proof is not found (i.e. proof-search fails), we show that a counter-model witnessing the
invalidity of the formula can be extracted.

An interesting feature of our proof-search algorithm is the inclusion of a novel loop-
checking mechanism, which ensures that proof-search avoids entering an infinite loop. Al-
though our loop-checking mechanism is sophisticated, it is necessary. In fact, at the end
of the section, we give a counter-example to terminating proof-search in the absence of
loop-checking, illustrating the need for such a mechanism.

The first tool we introduce, to be used during proof-search, is the notion of an Ri-path.
Intuitively, an Ri-path exists between two labels in a set R of relational atoms when one
label can be reached from the other by means of an undirected sequence of relational atoms
of the form R[i]wu. Semantically, an Ri-path existing between two labels w and u means
that both are interpreted as worlds within the same choice-cell.

Definition 8 (Ri-Path). Let w ∼i u ∈ {R[i]wu,R[i]uw} and let R be a set of relational

atoms. An Ri-path of relational atoms from a label w to u occurs in R (written w ∼R
i u) iff

w = u, w ∼i u, or there exist labels vi (with i ∈ {0, . . . , n}) such that w ∼i v0, . . . , vn ∼i u
occurs in R.

By making use of the above definition, it is straightforward to verify the following:

Lemma 9. If Λ = R ⇒ Γ is a sequent, then ∼R
i is an equivalence relation over Lab(Λ).

The use of Ri-paths is uniquely beneficial in managing bottom-up rule applications
of (IOA) during proof-search. In essence, given a sequent Λ and n = |Ag| many labels
w1, . . . , wn ∈ Lab(Λ), we check to see if a label u ∈ Lab(Λ) exists such that wi ∼R

i u for
every i ∈ {1, . . . , n}, and if not, then (IOA) is applied bottom-up to the sequent during
proof-search. This avoids unnecessary applications of the (IOA) rule during proof-search
since if such a label u ∈ Lab(Λ) exists, then u is interpreted as a world in the intersection
of the n = |Ag| many choice-cells that respectively contain w1, . . . , wn, meaning (IOA) need
not be bottom-up applied relative to these labels as they already satisfy (C2).

We introduce a second helpful notion in the management of applications of the (IOA)
rule, namely, the notion of a thread, which is defined below.

Definition 10 (Thread). We define a thread from R0 ⇒ Γ0 to Rh ⇒ Γh to be a sequence
T = (Ri ⇒ Γi)

h
i=0 of sequents such that

1. for each i ∈ {0, . . . , h− 1}, each sequent Ri+1 ⇒ Γi+1 is obtained from Ri ⇒ Γi by a
bottom-up application of a rule in G3DSkn with the former sequent serving as a premise
and the latter serving as the conclusion, and

2. if a sequent Ri+1 ⇒ Γi+1 is obtained from Ri ⇒ Γi by a bottom-up application
of (IOA), meaning that Ri+1 = Ri, R[1]w1u, . . . , R[n]w1u, then none of the labels
w1, . . . , wn were introduced via a prior application of (IOA).

14

Proof Theory and Decision Procedures for Deontic STIT Logics

Occasionally, we say that a thread T is from R0 ⇒ Γ0 or to Rh ⇒ Γh if we only aim
to indicate the first or last element of T . Last, we call h the height of the thread T and
Rh ⇒ Γh a top sequent.

The first condition in the above definition states that a thread corresponds to a single
path in a ‘partial’ G3DSkn proof, i.e. the path may not necessarily end at an initial sequent.
The second condition stipulates that bottom-up applications of (IOA) are only applied
to labels not introduced by prior (IOA) applications. We shall see that our proof-search
procedure always constructs threads with this second property by definition as this ensures
the termination of proof-search (see Lemma 25 and Theorem 26 below).

Rather than considering single bottom-up applications of the (IOA) rule during proof-
search, we define an operation, referred to as IoaOp, which sequentially applies (IOA) to
certain collections of labels from a given sequent.

Definition 11 (IOAT-tuple, IOAT-satisfied, IoaOp). Let Λ = R ⇒ Γ be a sequent, |Ag| = n,
and T = (Ri ⇒ Γi)

h
i=0 be a thread from R0 ⇒ Γ0 to Λ, i.e. R = Rh and Γ = Γh.

We define an IOAT-label in Λ to be a label introduced by a bottom-up application of
(IOA) in T , and a non-IOAT-label to be a label in Λ that is not an IOAT-label. A tuple
(w1, . . . , wn) ∈ Lab(Λ) of length n is defined to be an IOAT-tuple iff for each i ∈ {1, . . . , n},
the label wi is a non-IOAT-label.

We say that a tuple (w1, . . . , wn) ∈ Lab(Λ)n is IOAT-satisfied iff there exists an IOAT-
label u ∈ Lab(Λ) such that wi ∼R

i u for all i ∈ Ag. We say that Λ is IOAT-satisfied iff each
tuple in Lab(Λ)n is IOAT-satisfied.

Let I be the set of all IOAT-tuples of Λ that are not IOAT-satisfied. We define

IoaOp(Λ) := R,
⋃
w⃗∈I

R[i]wiu⇒ Γ

with u fresh for each IOAT-tuple w⃗ = (w1, . . . , wn) ∈ I.

There are two reasons for the introduction of the above operation: first, after an applica-
tion of IoaOp we are ensured that if we transform our labeled sequent into a counter-model,
the model will satisfy condition (C2) (independence of agents) which is required in proving
our proof-search procedure correct (see Lemma 12). Second, this operation limits bottom-
up applications of (IOA) to only certain labels, namely, labels that were not introduced by
bottom-up applications of (IOA). This ensures that bottom-up applications of (IOA) do not
enter into an infinite loop during proof-search, introducing a fresh label ad infinitum.

We may disregard proofs where the ([i]) rule is applied to IOAT-labels, and so, IOAT-
labels will never give rise to new relational atoms of the form R[i]uv during proof-search,
ultimately facilitating termination. This point is discussed in more detail in Remark 19.

Lemma 12. Let T = (Ri ⇒ Γi)
h
i=0 be a thread where Λ = Rh−1 ⇒ Γh−1 and Λ′ = Rh ⇒

Γh = IoaOp(Λ). If (w1, . . . , wn) ∈ Lab(Λ′)n, then (w1, . . . , wn) is IOAT-satisfied in Λ′.

Proof. Let (w1, . . . , wn) ∈ Lab(Λ′). We have two cases: either (i) (w1, . . . , wn) ∈ Lab(Λ)n,
or (ii) (w1, . . . , wn) ̸∈ Lab(Λ)n.

(i) Suppose that (w1, . . . , wn) ∈ Lab(Λ)n and let {i1, . . . , im} ⊆ {1, . . . , n} such that each
wij with j ∈ {1, . . . ,m} is an IOAT-label. Then, since each IOAT-label wij was introduced via

15

Lyon & van Berkel

a bottom-up application of (IOA), there exists a label uij such that R[ij]uijwij ∈ Rh−1. Let
(v1, . . . , vn) be the tuple obtained by replacing each occurrence of wij in (w1, . . . , wn) with

uij . Observe that (v1, . . . , vn) is an IOAT-tuple since no vi with i ∈ {1, . . . , n} is an IOAT-
label by Definition 10 (i.e. threads only allow bottom-up applications of the (IOA) rule to
non-IOAT-labels). Then, (v1, . . . , vn) is IOAT-satisfied in Λ′ as IoaOp was applied, implying
the existence of a label z such that vi ∼Rh

i z for all i ∈ {1, . . . , n}. Since R[ij]uijwij ∈
Rh−1 ⊆ Rh, we also have that uij ∼Rh

i wij for all j ∈ {1, . . . ,m}, implying that uij ∼Rh
i z

for each uij by Lemma 9. It therefore follows that (w1, . . . , wn) is IOA
T-satisfied in Λ′.

(ii) Let us assume that (w1, . . . , wn) ̸∈ Lab(Λ)n, meaning that the following set

N1 := {i ∈ {1, . . . , n} | wi ∈ Lab(Λ′) \ Lab(Λ)}

is non-empty. We define N2 := {1, . . . , n} \ N1, and note that N1 contains the indicies of
all fresh labels wi introduced by IoaOp to Λ′ and N2 contains the indicies of all labels wj

occurring in Λ. Since each wi with i ∈ N1 was introduced by IoaOp, we know that there
exists a label ui ∈ Lab(Λ) such that R[i]uiwi ∈ Rh, i.e. wi ∼Rh

i ui. If we consider the tuple
(v1, . . . , vn) obtained by replacing each occurrence of wi in (w1, . . . , wn) with each such ui,
then (v1, . . . , vn) ∈ Lab(Λ), implying that (v1, . . . , vn) is IOAT-satisfied by case (i) above.
Hence, there exists a label z such that vi ∼R

i z for each i ∈ {1, . . . , n}. For any label wi in

(w1, . . . , wn) with i ∈ N1, we have that wi ∼Rh
i ui and ui ∼Rh

i z, meaning that wi ∼R
i z

for each i ∈ N1 by Lemma 9. Since wj ∼Rh
j z holds for each j ∈ N2 as well, we have that

(w1, . . . , wn) is indeed IOAT-satisfied in Λ′.

We now introduce and prove the admissibility of a selection of inference rules (shown
in Figure 4). The (□∗), (⊗∗

i), and ([i]∗) rules are particularly helpful in controlling how □,
⊗i, and [i] formulae are processed during proof-search. The (□∗) and (⊗∗

i) rules allow for
the label of the principal formula to be changed, and the ([i]∗) rule allows for the principal
formula u : [i]φ to be ‘unpacked’ at a label w so long as a relational atom of the form R[i]wu
is present in the sequent. The (⟨i⟩∗) rule plays a crucial role in ensuring the correctness of
our proof-search algorithm (see Theorem 23, the ⟨i⟩ξ case, case (ii*) of the inductive step
on p. 26). Last, the (Symi) rule is helpful in showing the admissibility of (Trai), which is
used in establishing the admissibility of (⟨i⟩∗).

Such rules will be used to change the functionality of proof-search so that labels are
only introduced via the (□∗), (⊗∗

i), ([i]), and ([i]∗) rules in a “treelike manner” as witnessed
by Lemma 15 below and which gives rise to a loop-checking mechanism (see Definition 16)
employed in proof-search to ensure termination. We come back to this later, in Remark 19.

Lemma 13. All rules in Figure 4 are admissible in G3DSkn.

Proof. We first show the admissibility of the rules (Symi), (Trai), (□∗), and (⊗∗
i). The

first two rules leverage the hp-admissibility of (Wk) and the latter two rules rely on the
hp-invertibility of (□) and (⊗i).

R, R[i]wu,R[i]uw ⇒ Γ
(Wk)R, R[i]ww,R[i]wu,R[i]uw ⇒ Γ
(Euci)R, R[i]ww,R[i]wu⇒ Γ

(Refi)R, R[i]wu⇒ Γ

R ⇒ w : □φ,Γ
Theorem 7-3R ⇒ v : φ,Γ
(□)R ⇒ u : □φ,Γ

16

Proof Theory and Decision Procedures for Deontic STIT Logics

R, R[i]wu,R[i]uw ⇒ Γ
(Symi)R, R[i]wu⇒ Γ

R, R[i]wu,R[i]uv,R[i]wv ⇒ Γ
(Trai)R, R[i]wu,R[i]uv ⇒ Γ

R, R[i]wu,R[i]wv ⇒ u : [i]φ, v : φ,Γ
([i]∗)†R, R[i]wu⇒ u : [i]φ,Γ

R ⇒ w : □φ,Γ
(□∗)R ⇒ u : □φ,Γ

R, R[i]wu⇒ w : ⟨i⟩φ, u : ⟨i⟩φ, u : φ,Γ
(⟨i⟩∗)

R, R[i]wu⇒ w : ⟨i⟩φ,Γ
R ⇒ w : ⊗iφ,Γ (⊗∗

i)R ⇒ u : ⊗iφ,Γ

Figure 4: Admissible rules. The side condition † stipulates that v must be an eigenvariable.

R, R[i]wu,R[i]uv,R[i]wv ⇒ Γ
(Wk)R, R[i]wu,R[i]uw,R[i]uv,R[i]wv ⇒ Γ
(Euci)R, R[i]wu,R[i]uw,R[i]uv ⇒ Γ

(Symi)R, R[i]wu,R[i]uv ⇒ Γ

R ⇒ w : ⊗iφ,Γ
Theorem 7-3R, I⊗iv ⇒ v : φ,Γ
(⊗i)R ⇒ u : ⊗iφ,Γ

To show the admissibility of ([i]∗), we invoke the hp-admissibility of (Wk) as well as (Cut)
admissibility (Theorem 7).

Π1 =

{ Theorem 7R, R[i]wu,R[i]ww ⇒ u : ⟨i⟩[i]φ, u : ⟨i⟩¬φ, u : [i]φ,w : [i]φ,Γ
(⟨i⟩)

R, R[i]wu,R[i]ww ⇒ u : ⟨i⟩[i]φ, u : ⟨i⟩¬φ,w : [i]φ,Γ
(Refi)R, R[i]wu⇒ u : ⟨i⟩[i]φ, u : ⟨i⟩¬φ,w : [i]φ,Γ

Π2 =

{
R, R[i]wu,R[i]wv ⇒ u : [i]φ, v : φ,Γ

([i])
R, R[i]wu⇒ w : [i]φ, u : [i]φ,Γ

(Wk)
R, R[i]wu⇒ w : [i]φ, u : [i]φ, u : ⟨i⟩[i]φ,Γ Π1

(Cut)
R, R[i]wu⇒ w : [i]φ, u : ⟨i⟩[i]φ,Γ

(⟨i⟩)
R, R[i]wu⇒ u : ⟨i⟩[i]φ,Γ

(Wk)
R, R[i]wu⇒ u : ⟨i⟩[i]φ, u : [i]φ,Γ

Π3 =

{ Theorem 7R, R[i]wu,R[i]uz,R[i]uv,R[i]zv ⇒ z : ⟨i⟩¬φ, v : φ, v : ¬φ,Γ
(⟨i⟩)

R, R[i]wu,R[i]uz,R[i]uv,R[i]zv ⇒ z : ⟨i⟩¬φ, v : φ,Γ
(Euci)R, R[i]wu,R[i]uz,R[i]uv ⇒ z : ⟨i⟩¬φ, v : φ,Γ

([i]) · 2
R, R[i]wu⇒ u : [i]⟨i⟩¬φ, u : [i]φ,Γ

Π3 Π2 (Cut)
R, R[i]wu⇒ u : [i]φ,Γ

The admissibility of (⟨i⟩∗) follows from the hp-admissibility of (Wk) and cut admissibility.

17

Lyon & van Berkel

Π1 =

{ R, R[i]wu⇒ w : ⟨i⟩φ, u : ⟨i⟩φ, u : φ,Γ
(⟨i⟩)

R, R[i]wu⇒ w : ⟨i⟩φ, u : ⟨i⟩φ,Γ
(Wk)

R, R[i]wu⇒ w : ⟨i⟩φ,w : ⟨i⟩⟨i⟩φ, u : ⟨i⟩φ,Γ
(⟨i⟩)

R, R[i]wu⇒ w : ⟨i⟩φ,w : ⟨i⟩⟨i⟩φ,Γ

Π2 =

{ Theorem 7R, R[i]wu,R[i]wv
′, R[i]wu

′, R[i]u
′v′ ⇒ v′ : ¬φ, v′ : φ,w : ⟨i⟩φ,Γ

(⟨i⟩)
R, R[i]wu,R[i]wv

′, R[i]wu
′, R[i]u

′v′ ⇒ v′ : ¬φ,w : ⟨i⟩φ,Γ
(Trai)R, R[i]wu,R[i]wu

′, R[i]u
′v′ ⇒ v′ : ¬φ,w : ⟨i⟩φ,Γ

([i]) · 2
R, R[i]wu⇒ w : [i][i]¬φ,w : ⟨i⟩φ,Γ

Π1 Π2 (Cut)
R ⇒ w : ⟨i⟩φ,Γ

We now introduce the fundamental component of our loop-checking mechanism, i.e. the
notion of a generation tree. A generation tree is a graph that tracks how certain labels are
introduced within a thread, and can be used to check if a label w has an ancestor u associated
with the same set of formulae (in which case we say that w is blocked ; see Definition 16
below). In such a case, the ([i]) rule need not be applied to the leaf of the path containing w
and u in the tree. As discussed in Lemma 25 below, this loop-checking mechanism bounds
the depth of the generation tree, ultimately securing terminating proof-search.

Definition 14 (Generation Tree). Let T = (Ri ⇒ Γi)
h
i=0 be a thread from ∅ ⇒ w : φ to Λ.

We define the generation tree GT
Λ = (V,E) as follows:

• w ∈ V ;

• if (□) is applied bottom-up in T with w : □φ principal and u : φ auxiliary, then add
u to V and (w, u) to E;

• if (⊗i) is applied bottom-up in T with w : ⊗iφ principal, and I⊗iu and u : φ auxiliary,
then add u to V and (w, u) to E;

• if (D2i) is applied bottom-up in T with I⊗iu auxiliary, add u to V and (w, u) to E;

• if ([i]) is applied bottom-up in T with u : [i]φ principal and v : φ auxiliary, then add
v to V and (u, v) to E;

• if ([i]∗) is applied bottom-up in T with R[i]uv and v : [i]φ principal, and R[i]uz and
z : φ auxiliary, then add z to V and (u, z) to E.4

Note that in the (□) and (⊗i) cases, the edge (w, u) added to E always ensures that u is a
child of the root w. The significance of this is explained later on in Remark 19.

Lemma 15. Let T = (Ri ⇒ Γi)
h
i=0 be a thread from ∅ ⇒ w : φ. The generation tree

GT
Λ = (V,E) is a tree.

4. We note that u must already occur in V , so we are indeed permitted to add (u, z) to E (see Lemma 15).

18

Proof Theory and Decision Procedures for Deontic STIT Logics

Proof. We prove the result by induction on the height of the thread T .
Base case. If h = 0, then T = ∅ ⇒ w : φ, implying that GT

Λ = (V,E) with V = {w}
and E = ∅, which is a tree.

Inductive step. Let T = (Ri ⇒ Γi)
h+1
i=0 be a thread to Λ with T ′ = (Ri ⇒ Γi)

h
i=0 a thread

to Λ′. By IH, we know that GT ′
Λ′ = (V ′, E′) is a tree. If Λ′ was obtained from Λ by a rule

other than (□), (⊗i), (D2i), ([i]), or ([i]
∗) then GT

Λ = GT ′
Λ′ by Definition 14. Alternatively, if

Λ′ was obtained from Λ by (□), (⊗i), (D2i), or ([i]), then due to the eigenvariable condition
imposed on each rule, GT

Λ = (V,E) where V = V ′ ∪ {v} and E = E′ ∪ {(u, v)} with u ∈ V ′

and v fresh. Last, concerning the ([i]∗) case, recall that the (IOA) rule is never applied to an
IOAT-label in a thread T by Definition 10 and 11. As such, if ([i]∗) is bottom-up applied to
the sequent R, R[i]uv ⇒ v : [i]φ,Γ to obtain the sequent R, R[i]uv,R[i]uz ⇒ v : [i]φ, z : φ,Γ,

then u cannot be an IOAT-label, meaning, either u = w or the label was introduced by
a prior bottom-up application of (□), (⊗i), (D2i), ([i]), or ([i]∗). Therefore, u ∈ V ′ and
GT

Λ = (V,E) where V = V ′ ∪ {z} and E = E′ ∪ {(u, z)} with z fresh. Hence, in the (□),
(⊗i), (D2i), ([i]), and ([i]∗) cases, GT

Λ is nothing more than GT ′
Λ′ with a new edge protruding

from a vertex to a fresh node, showing that GT
Λ is indeed a tree.

We adopt a notion of blocking in our setting, used to bound the number of labels
introduced during proof-search. It is based on the work of Horrocks and Sattler (2004), who
introduced loop-checking by means of (in)direct blocking in tableaux for description logics,
and Tiu, Ianovski, and Goré (2012), who applied a loop-checking mechanism for grammar
logics in the context of nested sequent calculi. Both methods work in fundamentally the
same way: in the former, a tableau is constructed, which is a tree whose nodes are sets
of description logic formulae, and in the latter, a proof of nested sequents is constructed,
where each nested sequent is a tree whose nodes are sets of grammar logic formulae. In both
cases, the trees ‘grow’ throughout proof-search and when two nodes are encountered along
the same branch with the same set of formulae, one stops growing the branch, thus limiting
the size of the tableau or nested sequent. In our setting, although our labeled sequents do
not form a tree, we may leverage generation trees to employ a similar mechanism.

Definition 16 (Blocking). Let Λ = R ⇒ Γ be a sequent and T = (Ri ⇒ Γi)
h
i=0 be a thread

from ∅ ⇒ w : φ to Λ. We say that u is directly blocked by its proper ancestor v in the
generation tree GT

Λ iff (i) v is not the root of GT
Λ , (ii) I⊗iu ∈ R iff I⊗iv ∈ R, for all i ∈ Ag,

and (iii) Γ ↾ u = Γ ↾ v. We refer to such a u that is directly blocked as a loop node, and to
such a v as a loop ancestor. We say that u is indirectly blocked iff it has a proper ancestor
in the generation tree GT

Λ that is directly blocked. Last, we say that u is blocked in Λ iff it is
directly or indirectly blocked in the generation tree GT

Λ , and that u is unblocked otherwise.

Remark 17. By the definition of a generation tree (Definition 14), no label introduced via
a bottom-up application of (IOA) (i.e. an IOAT-label) will occur as a node in the generation
tree. Hence, all IOAT-labels will be considered unblocked by Definition 16 above.

Next, we introduce saturation conditions, used to determine when the remaining rules
of G3DSkn are no longer applicable during proof-search and ‘enough’ information has been
introduced to ensure that a counter-model can be extracted in the case of failure. Our
conditions are motivated by conditions enforced in proof-search algorithms for description
logics (Horrocks & Sattler, 2004) and multi-modal grammar logics (Tiu et al., 2012).

19

Lyon & van Berkel

Definition 18 (Saturation Conditions). Let T be a thread to Λ. We define the saturation
conditions accordingly:

(Cid) for each w ∈ Lab(Λ), if w : φ ∈ Γ, then w : ¬φ ̸∈ Γ;

(C∨) for each w ∈ Lab(Λ), if w : φ ∨ ψ ∈ Γ, then w : φ,w : ψ ∈ Γ;

(C∧) for each w ∈ Lab(Λ), if w : φ ∧ ψ ∈ Γ, then either w : φ or w : ψ ∈ Γ;

(C♢) for each w, u ∈ Lab(Λ), if w : ♢φ ∈ Γ, then u : φ ∈ Γ;

(C□) for each w ∈ Lab(Λ), if w : □φ ∈ Γ, then there exists an unblocked u in the generation
tree GT

Λ such that u : φ ∈ Γ;

(C⟨i⟩) for each w, u ∈ Lab(Λ) and i ∈ Ag, if w : ⟨i⟩φ ∈ Γ and R[i]wu ∈ R, then u : φ, u :
⟨i⟩φ ∈ Γ;

(C[i]) for each w ∈ Lab(Λ) and i ∈ Ag, if w : [i]φ ∈ Γ with w unblocked in the generation

tree GT
Λ , then there exists a u ∈ Lab(Λ) such that R[i]wu ∈ R and u : φ ∈ Γ;

(Cref) for each w ∈ Lab(Λ), R[i]ww ∈ R;

(Ceuc) for each w, u, v ∈ Lab(Λ), if R[i]wu,R[i]wv ∈ R, then R[i]uv ∈ R;

(C⊖i
) for each w, u ∈ Lab(Λ) and i ∈ Ag, if w : ⊖iφ ∈ Γ and I⊗iu ∈ R, then u : φ ∈ Γ;

(C⊗i
) for each w ∈ Lab(Λ) and i ∈ Ag, if w : ⊖iφ ∈ Γ, then there exists an unblocked u in
the generation tree GT

Λ such that I⊗iu ∈ R and u : φ ∈ Γ;

(CD2) for each i ∈ Ag there exists an unblocked w in the generation tree GT
Λ such that

I⊗iw ∈ R;

(CD3) for each w, u ∈ Lab(Λ) and i ∈ Ag, if I⊗iw,R[i]wu ∈ R, then I⊗iu ∈ R;

(CAPC) for each w0, . . . , wk ∈ Lab(Λ) and i∈Ag, R[i]wjwm ∈ R for some j,m ∈ {0, . . . , k}
with j ̸= m.

We refer to Λ as stable iff it satisfies all above conditions and every IOAT-tuple of the sequent
is IOAT-satisfied.

Our proof-search algorithm Provekn is shown in Algorithm 1 below, and decides if a
formula is DSkn-valid, meaning we take n and k to be fixed, input parameters. Provekn
is split into three parts due to its length. We note that the algorithm applies rules from
G3DSkn and admissible rules from Figure 4 bottom-up on an input of the form ∅ ⇒ w0 : φ
with φ ∈ Ln. Each recursive call of the algorithm corresponds to a bottom-up application
of a rule, and at any given step, Provekn has generated a finite number of threads from
∅ ⇒ w0 : φ that form a ‘partial proof’ of the input. As we will see below, if the input is
valid, then eventually a proof in G3DSkn may be extracted from successful proof-search, and
if the input is invalid, then a counter-model may be extracted from failed proof-search. We
also note that if k = 0, i.e. we do not bound the number of choices available to an agent,
then we omit lines 15–20 and do not enforce the saturation condition (CAPC).

20

Proof Theory and Decision Procedures for Deontic STIT Logics

The saturation conditions, along with IOAT-satisfiability, are used to guide the compu-
tation of Provekn. Such conditions serve a twofold role: first, they are used to determine
the (in)applicability of a rule during proof-search, thus letting us control when rules are
bottom-up applied, and yielding termination of the algorithm (Theorem 26). Second, such
conditions ensure that enough information has entered into a sequent during proof-search
to be able to extract a counter-model in the case where the input formula is invalid (Theo-
rem 23). In particular, if a stable sequent is encountered during proof-search, then it can be
transformed into a finite DSkn-model (see Definition 20 and Lemma 22 below). We remark
that it is decidable to check if a sequent (which is a finite object) is stable.

The proof-search strategy of our algorithm Provekn is, intuitively, as follows: First,
Provekn is split into three parts, namely, lines 5-20, lines 21-40, and lines 41-60. Lines 5-20
bottom-up apply the inference rules (Refi), (Euci), (D3i), and (APCk

i), which only affect
relational atoms. Lines 21-40 bottom-up apply the inference rules (∨), (∧), (♢), (⟨i⟩∗),
and (⊖i), which only affect labeled formulae. All rules in lines 5-20 and 21-40 are non-
generating in the sense that they do not introduce new labels. Conversely, lines 41-60
apply the generating rules (□), (⊗i), (D2i), ([i]), ([i]

∗), and IoaOp (i.e. a sequence of (IOA)
applications) that bottom-up introduce new, fresh labels to sequents. We note that (□)
and (⊗i) are preceded by applications of (□∗) and (⊗∗

i), respectively, as discussed in more
detail in the remark below. Since all rules of G3DSkn are hp-invertible (Theorem 7-3), we
can bottom-up apply our rules in any order. However, we find it conceptually easier to
prove facts about Provekn by grouping rules of a similar functionality together.

Remark 19. As it is important for understanding Provekn, we discuss our use of the ad-
missible rules (□∗), (⊗∗

i), and ([i]∗). Lines 41-43 bottom-up apply (□∗) followed by (□) and
lines 44-47 bottom-up apply (⊗∗

i) followed by (⊗i). In each case, the label w of w : □ψ and
w : ⊗iψ is changed (via the (□∗) and (⊗∗

i) rules) to the ‘source’ label w0 before bottom-up
applying (□) and (⊗i), respectively. (NB. We always assume that the input to Provekn is
a sequent of the form ∅ ⇒ w0 : φ, meaning w0 will be the root of every generation tree
constructed throughout proof-search.) This has the effect that each label introduced by the
bottom-up application of the subsequent (□) or (⊗i) is a child of the root of the generation
tree. Observe that by the definition of a blocked node (Definition 16), that a node in the
generation tree cannot be blocked by the root of the generation tree. This means that fresh
labels generated by (□) and (⊗i) are unblocked by definition, which is crucial for construct-
ing a counter-model when proof-search fails (see Definition 20 and Lemma 22 below) as
our counter-model is built using only unblocked labels. Hence, labels generated by bottom-up
applications of (□) and (⊗i) will always exist within our counter-model, which will be vital
in proving the correctness of Provekn (see Theorem 23 below).

Lines 52-57 bottom-up apply ([i]) to unblocked non-IOAT-labels and ([i]∗) to IOAT-labels.
Applying ([i]) to only unblocked non-IOAT-labels limits the growth of sequents during proof-
search since repeated bottom-up applications of ([i]) will eventually produce blocked non-
IOAT-labels as discussed in the proof of termination (see Theorem 26 below). Our reason
for the use of ([i]∗) however, is that since if a sequent R, R[i]wu⇒ Γ is encountered during

proof-search with u : [i]φ ∈ Γ and u an IOAT-label, then applying ([i]∗) lets us ‘unpack’ u : [i]φ
and obtain R, R[i]wu,R[i]wv ⇒ Γ, v : φ with v fresh rather than R, R[i]wu,R[i]uv ⇒ Γ, v : φ.
This prevents chains of relational atoms from being introduced that protrude outward from

21

Lyon & van Berkel

Algorithm 1: Provekn
Input: A Labeled Sequent: Λ = R ⇒ Γ
Output: A Boolean: True, False

1 if w : φ,w : ¬φ ∈ Γ then
2 return True;
3 if R ⇒ Γ is stable then
4 return False;
5 if for some w ∈ Lab(Λ), R[i]ww ̸∈ R then

6 Let R′ := R[i]ww,R;

7 return Provekn(R′ ⇒ Γ)

8 if for some w, u, v ∈ Lab(Λ), R[i]wu,R[i]wv ∈ R, but R[i]uv ̸∈ R then

9 Let R′ := R[i]uv,R;

10 return Provekn(R′ ⇒ Γ);

11 if for some w, u ∈ Lab(Λ), I⊗iw,R[i]wu ∈ R, but I⊗iu ̸∈ R then

12 Let R′ := I⊗iu,R;

13 return Provekn(R′ ⇒ Γ);

14 if for some w0, . . . , wk ∈ Lab(Λ), R[i]wjwm ̸∈ R for each j,m ∈ {0, . . . , k} with

j ̸= m then
15 Let Rm,j := R[i]wmwj ,R (with 0 ≤ m ≤ k − 1 and m+ 1 ≤ j ≤ k);

16 if Provekn(Rm,j ⇒ Γ) = False for some m and j then
17 return False;
18 else
19 return True;
20 end

IOAT-labels. In fact, none of the generating rules are ever applied to an IOAT-label, meaning
such labels can be ignored in our generation tree, and thus do not give rise to infinite loops
during proof-search, as they never give rise to fresh labels during proof-search.

We now explain how a counter-model (which we call a stability model) can be obtained
from failed proof-search, and then show the correctness of the proof-search algorithm.

Definition 20 (Stability Model). Let T be a thread from ∅ ⇒ w0 : φ to Λ := R ⇒ Γ
generated by Provekn(∅ ⇒ w0 : φ). We define the stability model relative to Λ to be MΛ :=
(WΛ, {RΛ

[i] | i ∈ Ag}, {IΛ⊗i
| i ∈ Ag}, V Λ) such that

• WΛ is the set of unblocked labels in Λ;

• RΛ
[i] is the Euclidean closure of the set SΛ

[i], where (w, u) ∈ SΛ
[i] iff (i) R[i]wu ∈ R with

w and u both unblocked in GT
Λ , or (ii) R[i]wv ∈ R with w unblocked, and v directly

blocked by u in GT
Λ ;

5

5. Since Λ is stable, we know it satisfies the saturation condition (Cref), meaning (w,w) ∈ SΛ
[i] for each

w ∈ WΛ. Hence, taking the Euclidean closure of SΛ
[i] implies that RΛ

[i] will be both reflexive and Euclidean,
i.e. it will be an equivalence relation.

22

Proof Theory and Decision Procedures for Deontic STIT Logics

Algorithm 1: Provekn (Continued)

21 if there exists a w : φ ∨ ψ ∈ Γ, but either w : φ ̸∈ Γ or w : ψ ̸∈ Γ then
22 Let Γ′ := w : φ,w : ψ,Γ;

23 return Provekn(R ⇒ Γ′);

24 if there exists a w : φ ∧ ψ ∈ Γ, but w : φ,w : ψ ̸∈ Γ then
25 Let Γ1 := w : φ,Γ;
26 Let Γ2 := w : ψ,Γ;

27 if Provekn(R ⇒ Γi) = False for some i ∈ {1, 2} then
28 return False;
29 else
30 return True;
31 end

32 if w : ♢φ ∈ Γ, but u : φ ̸∈ Γ for some u ∈ Lab(Λ) then
33 Let Γ′ := u : φ,Γ;

34 return Provekn(R ⇒ Γ′);

35 if w : ⟨i⟩φ ∈ Γ, but u : φ, u : ⟨i⟩φ ̸∈ Γ for some u ∈ Lab(Λ) such that R[i]wu ∈ R
then

36 Let Γ′ := u : φ, u : ⟨i⟩φ,Γ;
37 return Provekn(R ⇒ Γ′);

38 if w : ⊖iφ ∈ Γ, but u : φ ̸∈ Γ for some u ∈ Lab(Λ) such that I⊗iu ∈ R then
39 Let Γ′ := u : φ,Γ;

40 return Provekn(R ⇒ Γ′);

• IΛ⊗i
= {w | I⊗iw ∈ R and w is unblocked.};

• w ∈ V Λ(p) iff w : ¬p ∈ Γ and w is unblocked.

Lemma 21. Let Λ := R ⇒ Γ be a stable sequent with w, u ∈WΛ. If w ∼R
i u, then RΛ

[i]wu.

Proof. If w ∼R
i u, then since Λ is stable, and satisfies both (Cref) and (Ceuc), it follows

that RΛ
[i]wu.

We now show that any stability model is indeed a DSkn-model of Definition 2.

Lemma 22. Let T be a thread from ∅ ⇒ w0 : φ to the stable sequent Λ := R ⇒ Γ generated
by Provekn(∅ ⇒ w0 : φ) = false. Then, the stability model MΛ is a finite DSkn-model.

Proof. First, since Λ is a stable sequent generated from Provekn(∅ ⇒ w0 : φ), w0 ∈ WΛ

ensures its non-emptiness. We show that the model satisfies (C1)–(C3) and (D1)–(D3).

(C1) To prove that (C1) holds, we show that for all i ∈ Ag, RΛ
[i] ⊆ WΛ × WΛ is an

equivalence relation. By Definition 20, we know that RΛ
[i] is the Euclidean closure of

the SΛ
[i] relation. Since Λ is stable, we know that it satisfies the saturation condition

(Cref), implying that RΛ
[i] is reflexive and Euclidean, and so, is an equivalence relation.

23

Lyon & van Berkel

Algorithm 1: Provekn (Continued)

41 if w : □φ ∈ Γ, but u : φ ̸∈ Γ for all u ∈ Lab(Λ) then
42 Replace w : □φ ∈ Γ with w0 : □φ and let Γ′ := v : φ,Γ with v fresh;

43 return Provekn(R ⇒ Γ′);

44 if w : ⊗iφ ∈ Γ, but u : φ ̸∈ Γ for all u ∈ Lab(Λ) with I⊗iu ∈ R then
45 Replace w : ⊗iφ ∈ Γ with w0 : ⊗iφ;
46 Let R′ := I⊗iv,R and Γ′ := v : φ,Γ with v fresh;

47 return Provekn(R′ ⇒ Γ′);

48 if for all w ∈ Lab(Λ), I⊗iw ̸∈ R then
49 Let R′ := I⊗iu,R with u fresh;

50 return Provekn(R′ ⇒ Γ);

51 if w : [i]φ ∈ Γ with w unblocked in GT
Λ , but u : φ ̸∈ Γ for all u ∈ Lab(Λ) such that

R[i]wu ∈ R then

52 if w is not an IOAT-label then
53 Let R′ := R[i]wv,R and Γ′ := v : φ,Γ with v fresh;

54 return Provekn(R′ ⇒ Γ′);

55 if w is an IOAT-label then

// As w is an IOAT-label, R is of the form R[i]vw,R′.

56 Let R′′ := R[i]vz,R[i]vw,R′ and Γ′ := z : φ,Γ with z fresh;

57 return Provekn(R′′ ⇒ Γ′);

58 if for some non-IOAT-labels w1, . . . , wn ∈ Lab(Λ), there does not exist an IOAT-label
u ∈ Lab(Λ) such that wi ∼R

i u for each i ∈ Ag then
59 Let Λ′ := IoaOp(Λ);

60 return Provekn(Λ
′);

(C2) Suppose that w1, . . . , wn ∈WΛ. Since Λ is saturated, we know that it is IOAT-satisfied,
meaning that an IOAT-label u ∈ Lab(Λ) exists such that wi ∼R

i u for each i ∈ Ag.
By Remark 17, we know that u is unblocked, and so, u ∈ WΛ. By the (Cref) and
(Ceuc) saturation conditions, it follows from the fact that wi ∼R

i u for each i ∈ Ag
that R[i]wiu ∈ R for each i ∈ Ag. Since w1, . . . , wn ∈WΛ, each label is unblocked by

Definition 20, and as mentioned above, u is unblocked as well, implying that RΛ
[i]wiu

for each i ∈ Ag. Thus, (C2) is satisfied in this case.

(C3) Suppose that w0, . . . , wk ∈WΛ and let i ∈ Ag. Since Λ is stable and satisfies (CAPC),
we know that R[i]wjwm ∈ R holds for some j,m ∈ {0, . . . , k}. By definition, RΛ

[i]wjwm

holds, implying the desired result.

(D1) Follows immediately from the definition of IΛ⊗i
.

(D2) Let i ∈ Ag. Since Λ is stable, we know that Λ satisfies (CD2), meaning that there
exists an unblocked w ∈ WΛ such that I⊗iw ∈ R. Hence, by the definition of IΛ⊗i

,
w ∈ IΛ⊗i

, implying that IΛ⊗i
is non-empty.

24

Proof Theory and Decision Procedures for Deontic STIT Logics

(D3) Let i ∈ Ag, w, u ∈ WΛ, and suppose that w ∈ IΛ⊗i
and RΛ

[i]wu. Let us define v ∼S
i z

iff (v, z) or (z, v) ∈ SΛ
[i]. (NB. See Definition 20 above for the definition of SΛ

[i].)

We prove the claim by induction on the minimal length of an undirected path w ∼S
i

v1, . . . , vn ∼S
i u from w to u in SΛ

[i] and omit the case when the path is of length zero

(i.e. w = u) as the case is trivial.

Base case. Suppose that (w, u) ∈ SΛ
[i]; the case when (u,w) ∈ SΛ

[i] is shown similarly.

We have two cases to consider: either (i) R[i]wu ∈ R, or (ii) R[i]wu ̸∈ R.

(i) If R[i]wu ∈ R, then since w ∈ IΛ⊗i
, we know that I⊗iw ∈ R by Definition 20. By

the saturation condition (CD3), it follows that I⊗iu ∈ R, and since u ∈WΛ, we know
that u is unblocked, implying that u ∈ IΛ⊗i

.

(ii) If R[i]wu ̸∈ R, then (w, u) ∈ SΛ
[i] must hold due to clause (ii) of the definition

of SΛ
[i] (see Definition 20 above). Therefore, there is a loop node v with u its loop

ancestor such that R[i]wv ∈ R. Since w ∈ IΛ⊗i
, we know that I⊗iw ∈ R, implying

that I⊗iv ∈ R by the saturation condition (CD3). By Definition 16, it follows that
I⊗iu ∈ R since u is the loop ancestor of v. Since u is unblocked, we have that u ∈ IΛ⊗i

.

Inductive step. Let w ∼S
i v1, . . . , vn ∼S

i u be a minimal undirected path between w
and u whose length is n+1. By IH, we know that vn ∈ IΛ⊗i

, implying that I⊗ivn ∈ R
since vn is unblocked. (NB. Every label participating in SΛ

[i] and R
Λ
[i] is unblocked by

definition.) Suppose that (u, vn) ∈ SΛ
[i]; the case when (vn, u) ∈ SΛ

[i] is shown similarly.

We have two cases to consider: either (i) R[i]uvn ∈ R, or (ii) R[i]uvn ̸∈ R.

(i) If R[i]uvn ∈ R, then by conditions (Cref) and (Ceuc), we know R[i]vnu ∈ R. We

may conclude that u ∈ IΛ⊗i
by an argument similar to case (i) of the base case above.

(ii) Suppose that R[i]uvn ̸∈ R. Then, (u, vn) ∈ SΛ
[i] must hold due to clause (ii) of the

definition of SΛ
[i], implying the existence of a loop node z with vn its loop ancestor

such that R[i]uz ∈ R. Since I⊗ivn ∈ R and vn is the loop ancestor of z, we have
that I⊗iz ∈ R. By the fact that R[i]uz ∈ R and by saturation conditions (Cref) and

(Ceuc), we know that R[i]zu ∈ R, showing that I⊗iu ∈ R. It follows that u ∈ IΛ⊗i
.

Last, we note that by condition (Cid), the valuation V Λ is well-defined, and since MΛ was
extracted from Λ, which is a finite object, MΛ will be finite.

We are now in the position to prove correctness.

Theorem 23 (Correctness). Let n, k ∈ N and φ ∈ Ln.

(i) If Provekn(∅ ⇒ w0 : φ) = true, then there is a proof of ∅ ⇒ w0 : φ in G3DSkn
witnessing that φ is DSkn-valid.

(ii) If Provekn(∅ ⇒ w0 : φ) = false, then there is finite DSkn-model witnessing that φ is
DSkn-invalid.

Proof. (i) Every instruction in Provekn can be seen as a bottom-up application of a rule in
G3DSkn or of an admissible rule from Figure 4 with IoaOp equivalent to a series of bottom-up
(IOA) applications. We can invoke Theorem 7-1 to obtain proofs of all top sequents.

25

Lyon & van Berkel

(ii) Let us suppose that Provekn(∅ ⇒ w0 : φ) = false. It follows that Provekn(∅ ⇒ w0 :
φ) generated a thread T = (Ri ⇒ Γi)

h
i=0 from ∅ ⇒ w0 : φ to Λ := R ⇒ Γ with Λ stable.

We may construct the stability model MΛ as specified in Definition 20. By Lemma 22,
we know that MΛ is a finite DSkn-model. Let us now prove that for any u ∈ WΛ with
u : ψ ∈ Γ, MΛ, u ̸⊩ ψ. We show this by induction on the complexity of ψ and note that
since w0 : φ ∈ Γ, the above claim implies that MΛ, w0 ̸⊩ φ, meaning that w0 : φ is not
provable in G3DSkn by soundness (Theorem 7). We only consider the inductive step when
ψ is of the form ⟨i⟩ξ, ⊖iξ, [i]ξ, and ⊗iξ since all remaining cases are simple or similar.

⟨i⟩ξ. Suppose u : ⟨i⟩ξ ∈ Γ and assume that for some arbitrary v ∈ WΛ, RΛ
[i]uv. We

aim to show that MΛ, v ⊩ ξ, and have two cases to consider: either (i) R[i]uv ∈ R, or (ii)
R[i]uv ̸∈ R.

(i) If R[i]uv ∈ R, then since Λ is stable, we know that v : ξ ∈ Γ. Hence, by IH and the

definition of RΛ
[i] we have that MΛ, v ̸⊩ ξ.

(ii) Suppose that R[i]uv ̸∈ R. We define u ∼S
i v iff (u, v) or (v, u) ∈ SΛ

[i], and prove

that v : ξ, v : ⟨i⟩ξ ∈ Γ by induction on the minimal length of an undirected path u ∼S
i

z1, . . . , zn ∼S
i v from u to v in SΛ

[i]. (NB. See Definition 20 above for the definition of SΛ
[i].)

Note that the path cannot be of length 0, since then u = v, implying that R[i]uu ̸∈ R by our
assumption, which contradicts the fact that R[i]uu ∈ R by the saturation condition (Cref).

Base case. Suppose that (u, v) ∈ SΛ
[i]; the case when (v, u) ∈ SΛ

[i] is shown similarly.

Then, (u, v) ∈ SΛ
[i] must hold due to clause (ii) of the definition of SΛ

[i] (Definition 20). Hence,

there is a loop node z with v its loop ancestor such that R[i]uz ∈ R. Since u : ⟨i⟩ξ ∈ Γ, we
know that z : ξ, z : ⟨i⟩ξ ∈ Γ, implying that v : ξ, v : ⟨i⟩ξ ∈ Γ as v is the loop ancestor of z.

Inductive step. Let u ∼S
i z1, . . . , zn ∼S

i v be a minimal undirected path between u and v
whose length is n+1. By IH, we know that zn : ξ, zn : ⟨i⟩ξ ∈ Γ. Suppose that (v, zn) ∈ SΛ

[i];

the case when (zn, v) ∈ SΛ
[i] is shown similarly. We have two cases to consider: either (i)

R[i]vzn ∈ R, or (ii) R[i]vzn ̸∈ R.

(i*) If R[i]vzn ∈ R, then by saturation conditions (Cref) and (Ceuc), we know R[i]znv ∈
R. We may conclude that v : ξ, v : ⟨i⟩ξ ∈ Γ since Λ satisfies the saturation condition (C⟨i⟩).

(ii*) Suppose that R[i]vzn ̸∈ R. Then, (v, zn) ∈ SΛ
[i] must hold due to clause (ii) of the

definition of SΛ
[i], implying the existence of a loop node z with zn its loop ancestor such

that R[i]vz ∈ R. Since zn is the loop ancestor of z, we have that z : ξ, z : ⟨i⟩ξ ∈ Γ. By
the fact that R[i]vz ∈ R and by saturation conditions (Cref) and (Ceuc), we know that
v : ξ, v : ⟨i⟩ξ ∈ Γ.6

Hence, regardless of the length of a minimal path between u and v, we have that v : ξ, v :
⟨i⟩ξ ∈ Γ, showing that MΛ, v ̸⊩ ξ by IH. As v is arbitrary, may conclude that MΛ, u ̸⊩ ⟨i⟩ξ.

⊖iξ. Suppose u : ⊖iξ ∈ Γ. Since Λ is stable we know that v : ξ ∈ Γ for all v such that
I⊗iv ∈ R. Hence, by IH and the definition of IΛ⊗i

we have that MΛ, v ̸⊩ ξ for all v ∈ WΛ

such that IΛ⊗i
v, implying MΛ, u ̸⊩ ⊖iξ.

[i]ξ. Suppose u : [i]ξ ∈ Γ. Since Λ is stable, we know that there exists a v ∈ Lab(Λ)
such that R[i]uv ∈ R and v : ξ ∈ Γ. There are two cases: (i) v is a loop node or (ii) v is not.

6. This case of our proof demonstrates the utility of the (⟨i⟩∗) rule. Since z : ⟨i⟩ξ occurs in Γ, and R[i]vz ∈ R
implies R[i]zv ∈ R by the saturation conditions (Cref) and (Ceuc), we know that v : ξ, v : ⟨i⟩ξ ∈ Γ. If
we utilized the (⟨i⟩) rule rather than (⟨i⟩∗), we would not immediately have that z : ⟨i⟩ξ ∈ Γ.

26

Proof Theory and Decision Procedures for Deontic STIT Logics

(i) If v is a loop node, then there exists a loop ancestor z (which is therefore unblocked)
such that z : ξ ∈ Γ and RΛ

[i]uz. Hence, by IH, we have that for some z ∈WΛ, MΛ, z ̸⊩ ξ.

(ii) By IH, the definition of WΛ, and the definition of RΛ
[i], it follows that there exists a

v ∈WΛ such that RΛ
[i]uv and MΛ, v ̸⊩ ξ.

Hence, MΛ, u ̸⊩ [i]ξ.
⊗iξ. Suppose u : ⊗iξ ∈ Γ. Since Λ is stable, we know that there exists an unblocked

v ∈ Lab(Λ) such that I⊗iv ∈ R and v : ξ ∈ Γ. By IH, the definition of WΛ, and the
definition of IΛ⊗i

, it follows that there exists a v ∈ IΛ⊗i
such that IΛ⊗i

v andMΛ, v ̸⊩ ξ. Hence,
MΛ, u ̸⊩ ⊗iξ.

Let us now argue that Provekn terminates regardless of its input ∅ ⇒ w0 : φ for φ ∈ Ln.
We first define the set of subformulae of a given formula φ (Definition 24), which due to its
finiteness limits the formulae that can occur during proof-search. We then prove that only
a finite number of labels can be created during proof-search, implying that only a finite
number of sequents can be generated, and yielding the termination of Provekn.

Definition 24 (Subformula). Let φ be a formula in Ln. We define the set sufo(φ) of
subformulae of φ recursively as follows:

• sufo(φ) = {φ} for φ ∈ {p,¬p | p ∈ V ar};

• sufo(▽ψ) = {▽ψ} ∪ sufo(ψ) for ▽ ∈ {□,♢} ∪ {⊗i, [i],⊖i, ⟨i⟩ | i ∈ Ag};

• sufo(ψ ◦ χ) = sufo(ψ) ∪ sufo(χ) for ◦ ∈ {∧,∨}.

Lemma 25. Let n, k ∈ N and φ ∈ Ln.

1. For each □ψ ∈ sufo(φ), (□∗) and (□) are applied bottom-up at most once in any
thread during the computation of Provekn(∅ ⇒ w0 : φ);

2. For each ⊗iψ ∈ sufo(φ), (⊗∗
i) and (⊗i) are applied bottom-up at most once in any

thread during the computation of Provekn(∅ ⇒ w0 : φ);

3. For each i ∈ Ag, (D2i) is applied bottom-up at most once in any thread during the
computation of Provekn(∅ ⇒ w0 : φ);

4. ([i]) and ([i]∗) will be applied only a finite number of times in any thread of the com-
putation of Provekn(∅ ⇒ w0 : φ);

5. IoaOp will be applied only a finite number of times in any thread of the computation
of Provekn(∅ ⇒ w0 : φ).

Proof. Claims 1 and 2 are straightforward since once (□) and (⊗i) are applied bottom-
up (which is preceded by an application of (□∗) and (⊗∗

i), respectively, as discussed in
Remark 19) with w0 : □ψ or w0 : ⊗iψ principal, then the saturation conditions (C□) and
(C⊗i

) will hold for any labeled formula of the form u : □ψ or u : ⊗iψ for the remainder of
proof-search. Similarly, once (D2i) is applied bottom-up for an agent i ∈ Ag, it never need
be applied for that agent again as (CD2) will continue to be satisfied for the remainder of
proof-search. We therefore dedicate the remainder of the proof to showing claims 4 and 5.

27

Lyon & van Berkel

4. Observe that any generation tree defined relative to a thread T generated during the
computation of Provekn(∅ ⇒ w0 : φ) has a finite branching factor bounded by the number
of agents plus the number of □, ⊗i, and [i] subformulae of φ. Moreover, since each label u
can only be associated with formulae from {I⊗iu | i ∈ Ag} ∪ sufo(φ), which is a finite set,
we know the depth of the generation tree is bounded by a finite number as eventually a loop
node must occur along any given path in the generation tree. Hence, since each bottom-up
application of ([i]) and ([i]∗) corresponds to an edge in a generation tree, we have that ([i])
and ([i]∗) can be bottom-up applied only a finite number of times in any thread.

5. Note that only IoaOp and bottom-up applications of (□), (⊗i), (D2i), ([i]), and ([i]∗)
add fresh labels during proof-search. By claims 1–4 above, we know that if we consider any
thread of proof-search then eventually all possible labels that could be added via (□), (⊗i),
(D2i), ([i]), and ([i]∗) will have been added. After such a point, IoaOp will eventually be
applied if the top sequent of a thread is not yet IOAT-satisfied, yielding an IOAT-satisfied
sequent Λ due to Lemma 12. Since no other bottom-up applications of rules introduce labels
that could violate the IOAT-satisfiability of a sequent, all sequents generated after Λ will be
IOAT-satisfied as well, meaning that IoaOp will never be applied again. Hence, IoaOp will
only be applied a finite number of times in any thread during proof-search.

Theorem 26 (Termination). For each n, k ∈ N and φ ∈ Ln, Prove
k
n(∅ ⇒ w0 : φ) termi-

nates.

Proof. By Lemma 25 above we know that only a finite number of labels will be introduced
during the computation of Provekn(∅ ⇒ w0 : φ). Furthermore, each label will only be
associated with a finite number of formulae from sufo(φ) and a finite number of relational
atoms. Hence, only a finite number of possible sequents can be generated during proof-
search. Since each recursive call of proof-search, i.e. bottom-up application of a rule, creates
a strictly larger sequent (as each recursive call introduces at least one new relational atom
or labeled formula to a sequent), Provekn never generates the same sequent twice in any
given thread, implying that the algorithm will eventually terminate due to the finite space
of sequents that can be generated.

Last, as a consequence of the above we obtain decidability and the finite model property.

Corollary 27 (Decidability and FMP). For each n, k ∈ N, the logic DSkn is decidable and
has the finite model property.

4.1 Necessity of Loop-Checking in Proof-Search

We show that proof-search is not guaranteed to terminate without loop-checking, thus
motivating its introduction and use. We provide an example of a (non-deontic) STIT formula
♢[1]p ∨ ♢[2]q, such that proof-search in G3DS22 does not terminate if we disregard loop-
checking. In order to improve readability, we represent labeled sequents as labeled graphs,
and explain how these graphs are expanded during proof-search:

Definition 28 (Graph of Labeled Sequent). Let Λ = R ⇒ Γ be a labeled sequent. We
define its corresponding graph to be the triple G(Λ) = (V,E, L) such that V = Lab(Λ),
E = {(w, u, i) | R[i]wu ∈ R}, and L(w) = Γ ↾ w.

28

Proof Theory and Decision Procedures for Deontic STIT Logics

♢[1]p,♢[2]q, [1]p, [2]q
w

p, [1]p, [2]q
u0

q, [1]p, [2]q
u1

q, [1]p, [2]q
u2

p, [1]p, [2]q
u3

q, [1]p, [2]q
u4

...

...

1 2

2

1

1

2

2

1

S1

S2

S3

Figure 5: Three ‘snapshots’ of proof-search without loop-checking, showing that proof-
search will continue ad infinitum if loop-checking is not enforced.

Now, let us suppose that our proof-search algorithm omits loop-checking, meaning that
lines 51–57 (see p. 24) are removed from Provekn and replaced with the following lines of
pseudo-code that simply apply the ([i]) rule bottom-up when the condition is met.

Algorithm 2: Applying the ([i]) Rule without Loop-checking

1 if w : [i]φ ∈ Γ, but u : φ ̸∈ Γ for all u ∈ Lab(Λ) such that R[i]wu ∈ R then

2 Let R′ := R[i]wv,R and Γ′ := v : φ,Γ with v fresh;

3 return Provekn(R′ ⇒ Γ′);

4 end

Now, suppose our proof-search algorithm takes ⇒ w : ♢[1]p ∨ ♢[2]q as an input. Then,
the derivation shown below will initially be constructed yielding the labeled node w shown
at the top of the graph in Figure 5 (which corresponds to the top sequent in the derivation).
The loops/relational atoms R[1]ww,R[2]ww have been omitted in the graph. For simplicity,
we always omit the presentation of loops in Figure 5 and assume their presence.

29

Lyon & van Berkel

R[1]ww,R[2]ww ⇒ w : ♢[1]p,♢[2]q, w : [1]p, w : [2]q
(♢)

R[1]ww,R[2]ww ⇒ w : ♢[1]p,♢[2]q, w : [1]p
(♢)

R[1]ww,R[2]ww ⇒ w : ♢[1]p,♢[2]q
(∨)

R[1]ww,R[2]ww ⇒ w : ♢[1]p ∨ ♢[2]q
(Ref2)

R[1]ww ⇒ w : ♢[1]p ∨ ♢[2]q
(Ref1)⇒ w : ♢[1]p ∨ ♢[2]q

As the top sequent in the derivation above is not stable, our algorithm will continue
proof-search, thus yielding the derivation shown below, whose top sequent corresponds to
the graph shown in ‘snapshot 1’, i.e. the dashed rectangle S1 in Figure 5, though without
the horizontal 1-edge between u0 and u1. We refer to this graph as G1. To improve
readability, and due to the size of the labeled sequents occurring in the derivation below, we
have included ellipses to indicate the side formulae that are inherited from lower sequents.
In Figure 5, we have opted to denote pairs of relational atoms that form a 2-cycle (e.g.
R[1]wu0, R[1]u0w and R[1]wu1, R[2]u1w) as a single, undirected edge to simplify presentation.

R[1]wu1, . . .⇒ u1 : q, u1 : [1]p, u1 : [2]q, . . .
(♢)

R[1]wu1, . . .⇒ u1 : q, u1 : [1]p, . . .
(♢)

R[1]wu1, R[2]u1w, . . .⇒ u1 : q, . . . , w : [2]q
(Euc2)

R[1]wu1, R[1]u1u1, R[2]u1u1, . . .⇒ u1 : q, . . . , w : [2]q
(Ref2)

R[1]wu1, R[1]u1u1, . . .⇒ u1 : q, . . . , w : [2]q
(Ref1)

R[2]wu1, . . .⇒ u1 : q, . . . , w : [2]q
([2])

R[1]wu0, . . .⇒ u0 : p, u0 : [1]p, u0 : [2]q, . . . , w : [2]q
(♢)

R[1]wu0, . . .⇒ u0 : p, u0 : [1]p, . . . , w : [2]q
(♢)

R[1]wu0, R[1]u0w, . . .⇒ u0 : p, . . . , w : [2]q
(Euc1)

R[1]wu0, R[1]u0u0, R[2]u1u1, . . .⇒ u0 : p, . . . , w : [2]q
(Ref2)

R[1]wu0, R[1]u0u0, . . .⇒ u0 : p, . . . , w : [2]q
(Ref1)

R[1]wu0, . . .⇒ u0 : p, . . . , w : [2]q
([1])

R[1]ww,R[2]ww ⇒ w : ♢[1]p,♢[2]q, w : [1]p, w : [2]q

One can see that (C[1]) and (C[2]) are unsatisfied in G1 due to the occurrence of [1]p at
u1 and [2]q at u0, respectively. We assume w.l.o.g. that proof-search applies ([2]) bottom-
up, creating a new label/vertex u2 emanating from u0, which can be seen in Figure 5.
Proof-search will then apply (Ref1) and (Ref2), introducing loops at u2, followed by an
application of (Euc2), introducing a 2-edge between u2 and u0. Recall that k = 2, that
is, each agent has a maximum of two choices. Since no relational atom of the form R[1]vz
with v, z ∈ {u0, u1, u2} and v ̸= z exists within our labeled sequent/graph constructed
thus far, i.e. there is no 1-edge between u0, u1, or u2, the (CAPC) saturation condition is
not satisfied. Hence, proof-search will apply (APC2

1) bottom-up, yielding a premise with
R[1]u1u0, followed by an application of (Euc1), introducing R[1]u0u1. After applying the (♢)
rule bottom-up twice, introducing the formulae [1]p and [2]q at u2, we obtain the labeled
sequent/graph shown in ‘snapshot 2’ in Figure 5, i.e. the graph in the dashed rectangle S2,
though without the diagonal 2-edge between u1 and u2. We refer to this graph as G2.

30

Proof Theory and Decision Procedures for Deontic STIT Logics

Observe that the (C[1]) saturation condition is not satisfied due to the occurrence of
[1]p at u2 in G2. Hence, the algorithm will apply the ([1]) rule bottom up, introducing
the label u3 protruding from u2, followed by applications of (Ref1), (Ref2), and (Euc1).
One can see that (CAPC) is not satisfied since a 2-edge does not exist between u1, u2, or
u3, and so, (APC2

2) will be applied bottom-up. This rule application, in conjunction with
an application of (Euc2), introduces R[2]u1u2 and R[2]u2u1, which are represented as an
undirected 2-edge between u1 and u2. After two applications of the (♢) rule, we obtain the
labeled sequent/graph in ‘snapshot 3’ in Figure 5, i.e. the graph in the dashed rectangle S3,
although without the diagonal 1-edge between u1 and u3. We call this graph G3.

The (C[1]) saturation condition is not satisfied in G3 due to the occurrence of [2]q at
u3. As a consequence, our proof-search algorithm will apply the ([2]) rule bottom up,
introducing the label u4 protruding from u3, followed by applications of (Ref1), (Ref2), and
(Euc2). At this stage, (CAPC) is not satisfied in the graph since a 1-edge does not exist
between u1, u3, or u4, and so, (APC2

1) will be applied bottom-up. This rule application yields
a premise that, in conjunction with an application of (Euc1), will introduce R[1]u1u3 and
R[1]u3u1 (represented as the undirected 1-edge between u1 and u3). After two applications
of the (♢) rule, we obtain the labeled sequent/graph shown in Figure 5. By repeating the
above pattern, one can see that the left path in the labeled sequent/graph will continue to
grow through alternating bottom-up applications of the ([1]) and ([2]) rules, i.e. proof-search
does not terminate for the formula ♢[1]p ∨ ♢[2]q in the absence of loop-checking.

We emphasize that, since the chosen formula is ⊖i- and ⊗i-free, the above example
shows the importance of a loop-checking mechanism for (non-deontic) STIT as well.7

5. Applications: Duty, Compliance, and Joint Fulfillment Checking

Proof-search algorithms make a logic suitable for reasoning tasks. In this last section, we
discuss three tasks of particular interest to agent-based normative reasoning:

Duty Checking: Determine an agent’s obligations relative to a given knowledge base.

Compliance Checking : Determine if a choice, considered by an agent as potential conduct,
complies with the given knowledge base.

Joint Fulfillment Checking : Determine whether under a specified factual context an agent
can (still) jointly fulfill all their duties.

The referred knowledge base is a set consisting of obligations and facts and, in what follows,
we distinguish between the norm base and the factual context of the knowledge base. We
provide an example for each of these applications. For the sake of readability, we consider a
single-agent setting in all cases, but the approach generalizes to multi-agent reasoning. In
considering the first two tasks, we assume that the given knowledge base is consistent, unless
stated otherwise (we note that consistency can also be determined through proof-search).

7. Although the proof-search algorithm for non-deontic STIT logic by Negri and Pavlović (2020) is suscepti-
ble to the above counter-example, we conjecture that a modified version of our loop-checking mechanism
can be used to ensure termination in their algorithm.

31

Lyon & van Berkel

As argued for in Section 1, the derivations and (counter-)models obtained through our
applications have explanatory value8 since both provide justifications of (non-)theoremhood
by representing a constructive step-by-step reasoning process interpretable by the explainee.

5.1 Duty Checking

Consider the following scenario: Yara borrowed a hammer from a friend (Kai) in order to
repair a leaking shed. Furthermore, Yara promised to return the hammer to Kai before
noon. Let n be the proposition “Yara arrives at Kai’s place before noon (to return the
hammer).” We say that (due to the promise) Yara is under the obligation to return the
hammer before noon, i.e. ⊗yn. We assume that Yara is free to see to it that she arrives
before noon or not, represented as ♢[y]n ∧ ♢[y]¬n. Now, Yara knows that Kai lives around
the corner and considers her means of going there, e.g. she could go by foot or take the car.
Suppose Yara entertains the idea to go by foot, i.e. ♢[y]f. Moreover, let us assume that
Yara knows, as a fact, that walking will ensure that she arrives by noon, i.e. □(f → n).

The knowledge base for this scenario is the collection

Σ := {⊗yn,♢[y]n,♢[y]¬n,♢[y]f,♢[y]¬f,□(f → n)},

though we simplify it to Σ := {⊗yn,♢[y]¬n,♢[y]f,□(f → n)} as ♢[y]n and ♢[y]¬f are
implied by the other formulae. Since Yara is obliged to meet Kai, Yara wonders whether
she has the obligation to go by foot, i.e. ⊗yf. Accordingly, we check whether the formula

φ := (⊗yn ∧ ♢[y]¬n ∧ ♢[y]f ∧□(f → n)) → ⊗yf

is valid, i.e. we can check whether w : φ is derivable in G3DS01, where Ag = {y} and the
limited choice parameter k = 0 since we have not enforced an a priori limit on Yara’s
number of choices. Hence, we check whether the duty ⊗yf is implied by the context Σ.

To test the validity of φ, let us run our proof-search algorithm Prove01(∅ ⇒ w : φ). Doing
so, one finds that φ is invalid as the stable sequent Λ = R ⇒ Γ0,Γ1,Γ2,Γ3 is generated via
proof-search, where each set in Λ is as follows:

R := R[y]ww,R[y]uu,R[y]vv,R[y]zz, I⊗yz;

Γ0 := w : ⊖y¬n, w : □⟨y⟩n, w : □⟨y⟩¬f, w : ♢(f ∧ ¬n), w : f ∧ ¬n, w : f, w : ⊗yf;

Γ1 := u : ⟨y⟩n, u : n, u : f ∧ ¬n, u : f;

Γ2 := v : ⟨y⟩¬f, v : ¬f, v : f ∧ ¬n, v : ¬n;

Γ3 := z : f, z : f ∧ ¬n, z : ¬n.

As explained in the previous section, we may transform Λ into a counter-model MΛ for φ.
We define the stability modelM := (W,R[y], I⊗y , V) in accordance with Definition 20, where
W = {w, u, v, z}, R[y] = {(w,w), (u, u), (v, v), (z, z)}, I⊗y = {z}, and V (n) = {w, v, z} and

V (f) = {v}. A graphical representation of MΛ is presented in Figure 6.

8. For some purposes, formal proofs may be less explanatory than informal ones containing reasoning gaps.
This is especially true when the intended explainee is a layperson (Miller, 2019). For experts, derivations
and interpretable models serve as appropriate explanations; cf. (Biran & Cotton, 2017).

32

Proof Theory and Decision Procedures for Deontic STIT Logics

w : n,¬f v : n, f

u : ¬n,¬f z : n,¬fz : n,¬f

Figure 6: The stability modelMΛ falsifying φ := (⊗yn∧♢[y]¬n∧♢[y]f∧□(f → n)) → ⊗yf

in the logic DS01.

One may readily verify that φ is indeed falsified on MΛ at w, showing that Yara is not
obliged to go to Kai’s place by foot. This fact is explained by the above counter-model,
namely, by the world z which shows that Yara can consistently satisfy her obligation to
arrive before noon without going by foot (perhaps she can take the bus).

However, if going by foot is the sole means to ensure a timely arrival—i.e. if we addi-
tionally assume that □(n → f)—then it becomes obligatory for Yara to travel by foot. In
this case, we say that going by foot is a necessary and sufficient condition for Yara to fulfill
her duties. The following derivation in G3DS01 (which may be found by means of our proof-
search algorithm) witnesses her obligation to travel by foot under the assumption □(n → f)
as opposed to □(f → n). The right branch of the proof, denoted by Π, is a straightforward
adaptation of the left branch.

(id)
. . .⇒ . . . , w : n, u : f, u : n, u : ¬n

(⊖i). . .⇒ . . . , w : n, u : f, u : n
(id)

. . .⇒ . . . , w : n, u : f, u : ¬f
(∧)

R[y]ww,R[y]uu, I⊗yu⇒ . . . , w : n, u : f, u : n ∧ ¬f
(♢)

R[y]ww,R[y]uu, I⊗yu⇒ . . . , w : n, u : f
(Refy)

R[y]ww, I⊗yu⇒ . . . , w : n, u : f
(⊗i)R[y]ww,⇒ . . . , w : n

Π
R[y]ww,⇒ . . . , w : ¬f

(∧)
R[y]ww ⇒ w : ⊖y¬n, w : ♢(n ∧ ¬f), w : n ∧ ¬f, w : ⊗yf

(♢)
R[y]ww ⇒ w : ⊖y¬n, w : ♢(n ∧ ¬f), w : ⊗yf

(∨)× 2
R[y]ww ⇒ w : ⊖y¬n ∨ ♢(n ∧ ¬f) ∨ ⊗yf

(Refy)⇒ w : ⊖y¬n ∨ ♢(n ∧ ¬f) ∨ ⊗yf
=

⇒ w : (⊗yn ∧□(n → f)) → ⊗yf

We may transform the above into a proof of (⊗yn ∧ ♢[y]¬n ∧ ♢[y]f ∧□(n → f)) → ⊗yf

by weakening in the additional assumptions accordingly, using (Wk). Hence, Yara does
have the obligation to see to it that she goes by foot (i.e. ⊗yf) given the strengthened
assumption that going by foot is the only means by which Yara can get to Kai’s by noon
(i.e. □(n → f)). The above discussion generalizes to arbitrary finite scenarios.

33

Lyon & van Berkel

5.2 Compliance Checking

To determine whether a considered choice complies with a given knowledge base, consisting
of a norm base and a factual context, we must determine whether the considered choice does
not conflict with an obligation entailed by the norm base under the given factual context
(recall that we assume the knowledge base to be consistent in this scenario).

We emphasize that checking whether an agent’s conduct is consistent with a given
knowledge base does not define compliance checking. Consider the simple example where
Jade is obliged to drive on the left-hand side of the road, i.e. ⊗jleft jade and where
she considers driving on the right-hand side instead, i.e. [j]right jade. Furthermore, as-
sume that driving left and right are mutually exclusive, i.e. □(left jade → ¬right jade).
Such a scenario can be consistently modeled by a single-agent two-choice moment with one
choice—the obligatory one—representing Jade driving on the left and another choice with
Jade cycling on the right. The scenario is consistent, but there is no compliance: Jade
violates her obligation by driving on the right side of the road. A choice is not compliant
whenever its performance entails a norm violation. Therefore, we check compliance by de-
termining whether there is no explicit obligation to the contrary of what the agent considers
as potential conduct.

Reconsider the scenario where Yara promised Kai to return the borrowed hammer before
noon, i.e. ⊗yn. She considers going there by foot or by car and both are available choices,
i.e. ♢[y]f ∧ ♢[y]car. Yara wonders whether taking the car—i.e. [y]car—complies with her
promise. The knowledge base formalizing this situation is the following set of formulae:

Σ := {⊗yn,♢[y]f ∧ ♢[y]car}

To see if the choice [y]car complies with Σ we need to check whether the formula

(⊗yn ∧ ♢[y]f ∧ ♢[y]car) → ⊗y¬car

is derivable. If not, then this means there is no implicit obligation for Yara to not take the
car and, so, taking the car complies with the current normative situation expressed by Σ.

Clearly, [y]car complies due to the syntactic independence with ⊗yn. As can be seen,
compliance checking is a form of duty checking, where it checks for a duty to the contrary
of what the agent considers doing. Since we already discussed successful proof-search and
counter-model extraction in the context of duty checking, our discussion above suffices, and
we omit demonstration of failed proof-search.

5.3 Joint Fulfillment Checking

Last, we are interested in checking whether a consistent norm base together with a consistent
factual context preserve consistency when put together. If the resulting set of formulae is
consistent this tells us that given the context at hand the agents can jointly satisfy all of
their obligations. If the resulting set is inconsistent this means that the factual context
does not allow for jointly fulfilling all duties. We observe that, when taken together with
a specified factual context, a norm base may imply obligations that are not implied when
considering the norm base in isolation. Hence, in contrast to the first two reasoning tasks,
this particular task is about logical consistency.

34

Proof Theory and Decision Procedures for Deontic STIT Logics

The following example illustrates this third reasoning task. Suppose that Yara promised
her friend Lisa to pick up a package. That is, Yara has the obligation ⊗yp, where p is the
proposition “the package is picked up.” Let us assume that Yara knows the post-office
closes at noon and realizes that if she goes to pick up the package, she will not be able to
return the borrowed hammer to Kai at noon, i.e. □([y]p → ¬[y]n). We may formalize the
situation as follows:

{♢[y]n,♢[y]¬n,♢[y]p,♢[y]¬p,□([y]n → ¬[y]p),⊗yn,⊗yp}

The first four formulae describe Yara’s available choices, namely, Yara has the choice to
either return or not return the hammer to Kai before noon, and the choice to pick up or
not pick up the package for Lisa. The fifth formula expresses that the choices available to
Yara are mutually exclusive. The last two formulae encode the obligations applicable to
Yara. Are Yara’s obligations consistent with the facts of the situation?

We can utilize our proof-search algorithm to derive (⊗yn∧⊗yp∧□([y]p → ¬[y]n)) → ⊥
in G3DS01, where our set of agents is Ag = {y} and k = 0. By applying the hp-admissibility
of (Wk) to the derivation given below, we can indeed show that the above norm base is
inconsistent, that is, the following formula is a theorem in DS01:

(♢[y]n ∧ ♢[y]¬n ∧ ♢[y]p ∧ ♢[y]¬p ∧□([y]n → ¬[y]p) ∧ ⊗yn ∧ ⊗yp) → ⊥

Due to the size of the proof of (⊗yn ∧⊗yp ∧□([y]p → ¬[y]n)) → ⊥, we split the proof into
various sections and present each below. We denote the first proof shown below as Π0. The
sub-derivation Π′ constituting the right branch of Π0 is obtained in a similar way to the left
branch.

(id)
I⊗yv, I⊗yz, . . .⇒ . . . , v : [y]p, z : p, z : ¬p

(⊖y)
I⊗yv, I⊗yz, . . .⇒ . . . , v : [y]p, z : p

(D3y)
I⊗yv,R[y]vv,R[y]vz,R[y]zv,R[y]zz, . . .⇒ . . . , v : [y]p, z : p

(Refy), (Eucy)
I⊗yv,R[y]vv,R[y]vz, . . .⇒ . . . , v : [y]p, z : p

([y])
I⊗yv,R[y]vv,R[y]vz, . . .⇒ . . . , v : [y]p

Π′

I⊗yv,R[y]vv, . . .⇒ . . . , v : [y]n
(∧)

I⊗yv,R[y]vv, . . .⇒ . . . , v : [y]p ∧ [y]n
(♢)

I⊗yv,R[y]vv, . . .⇒ . . . , w : [y]p, u : p
(Refy)

I⊗yv, . . .⇒ . . . , w : [y]p, u : p
(D2y)

R[y]ww,R[y]wu,R[y]uw,R[y]uu, I⊗yv ⇒ . . . , w : [y]p, u : p
(Refy), (Eucy)

R[y]ww,R[y]wu⇒ . . . , w : [y]p, u : p
([y])

R[y]ww ⇒ . . . , w : [y]p

The derivation of R[y]ww ⇒ . . . , w : [y]n, referred to as Π1, is similar to the derivation
Π0 applying the same rules bottom-up in the same order. By making use of Π0 and Π1, we
can complete our proof as follows:

Π0 Π1 (∧)
R[y]ww ⇒ w : ⊖y¬n, w : ⊖y¬p, w : ♢([y]p ∧ [y]n), w : [y]p ∧ [y]n, w : ⊥

(♢)
R[y]ww ⇒ w : ⊖y¬n, w : ⊖y¬p, w : ♢([y]p ∧ [y]n), w : ⊥

(∨)× 3
R[y]ww ⇒ w : ⊖y¬n ∨ ⊖y¬p ∨ ♢([y]p ∧ [y]n) ∨ ⊥

(Refy)⇒ w : ⊖y¬n ∨ ⊖y¬p ∨ ♢([y]p ∧ [y]n) ∨ ⊥
=

⇒ w : (⊗yn ∧ ⊗yp ∧□([y]p → ¬[y]n) → ⊥

35

Lyon & van Berkel

The above proof illustrates how our proof-search algorithm may be used to check the
consistency of knowledge bases including obligations, possibly relative to a factual context.

As a final reflection, we observe that, from an abstract point of view, these specific reasoning
tasks can be reduced to variations of validity checking. That is, they all use proof-search
with automated counter-model extraction to check the validity of a specified formula. Nev-
ertheless, these three different applications conceptually highlight different reasoning tasks
with varying deontic value. If the agent’s considered behavior is not compliant we know
that there is a conflicting obligation implied by the norm base. If the agent’s considered
behavior is compliant this tells us that the action is permissible, but it does not tell us
anything about the deontic value of the action (the action may be merely compatible with
the agent’s obligatory actions). The third application is also different, checking whether
the obligations of a norm base can be consistently fulfilled in a specified factual context
irrespective of any considered actions.

6. Conclusion

In this paper, we demonstrated how to automate normative reasoning for deontic STIT logics
by means of proof-search algorithms founded upon proof systems developed in (Lyon, 2021)
and inspired by the proof systems for related logics introduced in (van Berkel & Lyon, 2019a,
2021; Lyon & van Berkel, 2019). In doing so, this work is the first to provide terminating
proof-search procedures for deontic as well as non-deontic multi-agent STIT logics with
(un)limited choice. The key to obtaining terminating proof-search was the introduction
of a loop-checking mechanism, which ensured the introduction of only finitely many labels
during proof-search. As argued for in Section 4, such a loop-checking mechanism is needed to
effectively handle the general case of STIT logics with unlimited and limited choice axioms.

The present work provides a promising outlook for future research. For instance, the
proof theory of (and automated reasoning with) extensions of deontic STIT logics remains
to be investigated: e.g. temporal (van Berkel & Lyon, 2019b; Ciuni & Lorini, 2017) and
epistemic extensions (Broersen, 2011). In particular, temporal extensions of deontic STIT
logics are of interest in the context of verification of obligations for autonomous vehicles
(Shea-Blymyer & Abbas, 2021). Decidability remains an open question for various temporal
extensions of deontic STIT (Ciuni & Lorini, 2017). Additionally, in relation to normative
reasoning tasks, an interesting direction would be to extend deontic STIT logic with con-
ditional obligations (Horty, 2001, Ch. 5). Such obligations are often used to consistently
model challenging contrary-to-duty scenarios which are scenarios in which a violation—
i.e. [i]φ ∧ ⊗i¬φ—has occurred and the agent needs to find out her obligations given the
sub-ideality of the situation (Hilpinen & McNamara, 2013).

From a technical point of view, we believe that an important step in automated agential
normative reasoning can be taken by writing and evaluating theorem provers based on our
proof-search algorithms for the logics in this paper. Due to the modularity of our approach
such results may be adapted to extensions of the deontic STIT logics discussed here. On
a related note, derivations generated by our proof-search algorithm are not necessarily
minimal and shorter proofs may exist. Optimization procedures may serve as a fruitful
future research direction.

36

Proof Theory and Decision Procedures for Deontic STIT Logics

In the context of explainable normative reasoning, we point out that this work provides
only a promising first step in showing how logical methods can be harnessed in the context
of STIT and Explainable AI. As argued, constructive proof-search procedures that yield
counter-models in case of failed proof-search have the advantage of providing a justification
of a formula’s (non-)theoremhood and make the reasons for the conclusion interpretable by
providing a step-by-step reasoning procedure. Such explanations take experts instead of
laypersons as the intended explainee. However, certain refinements can be made to increase
the perspicuity of our proofs and counter-models. For instance, relevance conditions can be
imposed on our proof calculi; when we derive the obligation ⊗yf from the knowledge base
{⊗yn,□(f → n),□(n → f)} the premise □(f → n) is not strictly needed in the derivation
and thus can be removed from the proof as it is irrelevant in explaining the derived duty.

Acknowledgments

This research was supported by the European Research Council (ERC) Consolidator Grant
771779 (DeciGUT) and the Austrian Science Fund (FWF) project W1255-N23.

References

Alvarez, M. (2017). Reasons for Action: Justification, Motivation, Explanation. In Zalta,
E. N. (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 edition). Meta-
physics Research Lab, Stanford University.

Arkoudas, K., Bringsjord, S., & Bello, P. (2005). Toward ethical robots via mechanized
deontic logic. In AAAI Fall Symposium on Machine Ethics, pp. 17–23. The AAAI
Press Menlo Park, CA.

Avron, A. (1996). The method of hypersequents in the proof theory of propositional non-
classical logics. In Hodges, W., Hyland, M., Steinhorn, C., & Truss, J. (Eds.), From
Foundations to Applications: European Logic Colloquium, p. 1–32. Clarendon Press.

Balbiani, P., Herzig, A., & Troquard, N. (2008). Alternative axiomatics and complexity of
deliberative STIT theories. Journal of Philosophical Logic, 37 (4), 387–406.

Bartha, P. (1993). Conditional obligation, deontic paradoxes, and the logic of agency. Annals
of Mathematics and Artificial Intelligence, 9 (1-2), 1–23.

Belnap, N. (1982). Display logic. Journal of Philosophical Logic, 11 (4), 375–417.

Belnap, N., Perloff, M., & Xu, M. (2001). Facing the future: agents and choices in our
indeterminist world. Oxford University Press, Oxford.

van Berkel, K., & Lyon, T. (2019a). Cut-free calculi and relational semantics for temporal
STIT logics. In Calimeri, F., Leone, N., & Manna, M. (Eds.), European Conference
on Logics in Artificial Intelligence (JELIA), pp. 803–819, Cham. Springer.

van Berkel, K., & Lyon, T. (2019b). A neutral temporal deontic STIT logic. In International
Workshop on Logic, Rationality and Interaction, pp. 340–354. Springer.

van Berkel, K., & Lyon, T. (2021). The varieties of ought-implies-can and deontic STIT
logic. In Liu, F., Marra, A., Portner, P., & Putte, F. V. D. (Eds.), Deontic Logic and

37

Lyon & van Berkel

Normative Systems: 15th International Conference (DEON2020/2021, Munich), pp.
57–76. College Publications.

van Berkel, K., & Straßer, C. (2022). Reasoning with and about norms in logical argu-
mentation. In Toni, F., Polberg, S., Booth, R., Caminada, M., & Kido, H. (Eds.),
Frontiers in Artificial Intelligence and Applications: Computational Models of Argu-
ment, proceedings (COMMA22), Vol. 353, pp. 332 – 343. IOS press.

van Berkel, K., & Straßer, C. (2024). Towards deontic explanations through dialogue. In
Čyras, K., Kampik, T., Cocarascu, O., & Rago, A. (Eds.), 2nd International Workshop
on Argumentation for eXplainable AI (ArgXAI). CEUR Workshop Proceedings (To
Appear).

Biran, O., & Cotton, C. (2017). Explanation and justification in machine learning: A survey.
In IJCAI-17 Workshop on Explainable AI (XAI), pp. 8–13.

Broersen, J. (2011). Deontic epistemic STIT logic distinguishing modes of mens rea. Journal
of Applied Logic, 9 (2), 137–152.

Brünnler, K. (2009). Deep sequent systems for modal logic. Archive for Mathematical Logic,
48 (6), 551–577.

Bull, R. A. (1992). Cut elimination for propositional dynamic logic without *. Mathematical
Logic Quarterly, 38 (1), 85–100.

Ciuni, R., & Lorini, E. (2017). Comparing semantics for temporal STIT logic. Logique et
Analyse, 61 (243), 299–339.

Dalmonte, T., Lellmann, B., Olivetti, N., & Pimentel, E. (2021). Hypersequent calculi for
non-normal modal and deontic logics: countermodels and optimal complexity. Journal
of Logic and Computation, 31 (1), 67–111.

Fitting, M. (1972). Tableau methods of proof for modal logics.. Notre Dame Journal of
Formal Logic, 13 (2), 237–247.

Fitting, M. (2014). Nested sequents for intuitionistic logics. Notre Dame Journal of Formal
Logic, 55 (1), 41–61.

Gabbay, D. M. (1996). Labelled deductive systems, Vol. 33 ofOxford Logic Guides. Clarendon
Press/Oxford Science Publications.

Gentzen, G. (1935a). Untersuchungen über das logische Schließen. I. Mathematische
Zeitschrift, 39 (1), 176–210.

Gentzen, G. (1935b). Untersuchungen über das logische Schließen. II. Mathematische
Zeitschrift, 39 (1), 405–431.

Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., & Yang, G.-Z. (2019).
Xai—explainable artificial intelligence. Science Robotics, 4 (37), eaay7120.

Hein, R. (2005). Geometric theories and proof theory of modal logic. Master’s thesis,
Technische Universität Dresden.

Herzig, A., & Schwarzentruber, F. (2008). Properties of logics of individual and group
agency. In Areces, C., & Goldblatt, R. (Eds.), Proceedings of the 7th Conference on
Advances in Modal Logic (AIML), Vol. 7, pp. 133–149. College Publications.

38

Proof Theory and Decision Procedures for Deontic STIT Logics

Hilpinen, R., & McNamara, P. (2013). Deontic logic: A historical survey and introduction.
In Handbook of Deontic Logic and Normative Systems, Vol. 1, pp. 3–136. College
Publications Milton Keynes.

Horrocks, I., & Sattler, U. (2004). Decidability of SHIQ with complex role inclusion axioms.
Artificial Intelligence, 160 (1-2), 79–104.

Horty, J. F. (2001). Agency and deontic logic. Oxford University Press.

Horty, J. F., & Belnap, N. (1995). The deliberative STIT: A study of action, omission,
ability, and obligation. Journal of Philosophical Logic, 24 (6), 583–644.

Kashima, R. (1994). Cut-free sequent calculi for some tense logics. Studia Logica, 53 (1),
119–135.

Lahav, O. (2013). From frame properties to hypersequent rules in modal logics. In 28th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 408–417.

Langley, P., Meadows, B., Sridharan, M., & Choi, D. (2017). Explainable agency for intel-
ligent autonomous systems. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, AAAI’17, p. 4762–4763. AAAI Press.

Lorini, E., & Sartor, G. (2015). Influence and responsibility: A logical analysis. In Rotolo,
A. (Ed.), Frontiers in Artificial Intelligence and Applications: Legal Knowledge and
Information Systems (JURIX 2015), Vol. 279, pp. 51–60.

Lyon, T. (2021). Refining Labelled Systems for Modal and Constructive Logics with Appli-
cations. Ph.D. thesis, Technische Universität Wien.

Lyon, T., & van Berkel, K. (2019). Automating agential reasoning: Proof-calculi and syn-
tactic decidability for STIT logics. In Baldoni, M., Dastani, M., Liao, B., Sakurai, Y.,
& Zalila Wenkstern, R. (Eds.), Principles and Practice of Multi-Agent Systems - 22nd
International Conference (PRIMA), Vol. 11873 of LNCS, pp. 202–218. Springer.

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences.
Artificial intelligence, 267, 1–38.

Miller, T., Howe, P., & Sonenberg, L. (2017). Explainable AI: Beware of inmates running
the asylum or: How I learnt to stop worrying and love the social and behavioural
sciences. arXiv preprint arXiv:1712.00547, abs/1712.00547.

Murakami, Y. (2004). Utilitarian deontic logic. In Schmidt, R. A., Pratt-Hartmann, I.,
Reynolds, M., & Wansing, H. (Eds.), Poceedings of the 5th Conference on Advances
in Modal Logic (AIML), pp. 211–230.

Negri, S. (2005). Proof analysis in modal logic. Journal of Philosophical Logic, 34, 507.

Negri, S., & Pavlović, E. (2020). Proof-theoretic analysis of the logics of agency: The
deliberative STIT. Studia Logica, 109, 1–35.

Poggiolesi, F. (2009). The method of tree-hypersequents for modal propositional logic. In
Makinson, D., Malinowski, J., & Wansing, H. (Eds.), Towards Mathematical Philoso-
phy, Vol. 28 of Trends in logic, pp. 31–51. Springer.

Schmidt, R. A., & Tishkovsky, D. (2011). Automated synthesis of tableau calculi. Logical
Methods in Computer Science, 7 (2).

39

Lyon & van Berkel

Shea-Blymyer, C., & Abbas, H. (2020). A deontic logic analysis of autonomous systems’
safety. In Proceedings of the 23rd International Conference on Hybrid Systems: Com-
putation and Control, pp. 1–11, New York. Association for Computing Machinery.

Shea-Blymyer, C., & Abbas, H. (2021). Algorithmic ethics: Formalization and verification
of autonomous vehicle obligations. ACM Transactions on Cyber-Physical Systems
(TCPS), 5 (4), 1–25.

Simpson, A. K. (1994). The proof theory and semantics of intuitionistic modal logic. Ph.D.
thesis, University of Edinburgh.

Tiu, A., Ianovski, E., & Goré, R. (2012). Grammar logics in nested sequent calculus: Proof
theory and decision procedures. In Proceedings of the 9th Conference on Advances in
Modal Logic (AIML), pp. 516–537.

Viganò, L. (2000). Labelled Non-Classical Logics. Springer Science & Business Media.

Wansing, H. (1994). Sequent calculi for normal modal propositional logics. Journal of Logic
and Computation, 4 (2), 125–142.

Wansing, H. (2002). Sequent systems for modal logics. In Gabbay, D. M., & Guenthner, F.
(Eds.), Handbook of Philosophical Logic: Volume 8, pp. 61–145. Springer, Dordrecht.

Wansing, H. (2006). Tableaux for multi-agent deliberative-STIT logic.. In Proceedings of
the 6th Conference on Advances in Modal Logic (AIML), pp. 503–520.

Ye, L. R., & Johnson, P. E. (1995). The impact of explanation facilities on user acceptance
of expert systems advice. Mis Quarterly, 19, 157–172.

40

