SEMANTIC COMPUTING

Lecture 8: Introduction to Deep Learning

Dagmar Gromann
International Center For Computational Logic

TU Dresden, 7 December 2018
Overview

- Introduction Deep Learning
- General Neural Networks
- Feedforward Neural Networks
Introduction Deep Learning
Machine Learning Refresher

• Statistical machine learning algorithms rely on human-crafted representations of raw data and hand-designed features (e.g. POS tag, previous word, next word, TF-IDF, character n-gram, etc.)

• Main goal is to discover a mapping from the representation to the output

• Optimization of weights in the target function to optimize final prediction

• Most time has to be invested into finding the optimal features for your task and optimizing the parameter settings of your algorithm
Deep Learning

- A subfield of machine learning
- Representation learning attempts to automatically learn good features from raw data
- Multiple levels of representations (here: 3 layers)
- Builds complex representations from simpler ones

Representation Learning

http://www.deeplearningbook.org/

Dagmar Gromann, 7 December 2018
Brief History

• Speech recognition breakthrough in 2010

• Computer vision breakthrough in 2012 (halving the error rate to 16%)

• Today: vast amounts of papers published on a daily basis; some help: http://www.arxiv-sanity.com/
Application Examples of Deep Learning

- Neural Machine Translation
- Text summarization
- Text generation preserving the style
- Linguistic analysis (syntactic parsing, semantic parsing, etc.)
Image Captioning

Automatically generating image descriptions:

Lip Sync from Audio

Dagmar Gromann, 7 December 2018 Semantic Computing
Winning Atari Breakout

Google’s DeepMind learns to play the Atari game Breakout without any prior knowledge based on deep reinforcement learning.
General Neural Network Example
Architecture: 2-Layer Feedforward NN

Input Layer $\in \mathbb{R}^{284}$
Hidden Layer $\in \mathbb{R}^{12}$
Output Layer $\in \mathbb{R}^{10}$
Why “neural”?

- inspired by neuroscience
- neurons: highly connected and perform computations by combining signals from other neurons
- deep learning: densely interconnected set of simple units (e.g. sigmoid units depending on activation function computed based on inputs from other units)
- vector-based representation:
 - X features space: (vector of) continuous or discrete variables
 - Y output space: (vector of) continuous or discrete variables
 - many layers of vector-valued representations, each unit: vector-to-scalar function
- more function approximation machine than model of the brain
Why “network”?

- compose together many different activation functions across different layers in a chain format (directed, acyclic graph)
- connection of layers: **input** - **hidden** (number of layers specified) - **output**
- training algorithm decides itself how to use the neurons of each layer between input and output, which is always called **hidden** layer
- **depth** of a network is specified by the number of its layers
- **width** of a layer is specified by the predefined number of units (can only be defined for a hidden layer)
Neural Network: Main Design Decisions

You have to decide on the selection of or number of the following when building a neural network:

- form of units
- cost or loss function
- optimizer
- architecture design:
 - number of units in each layer
 - number of layers
 - type of connection between layers
Input: Handwritten Digits (MNIST dataset)

Input images:

28 x 28
784 pixels

Dataset: http://yann.lecun.com/exdb/mnist/
Form of Hidden Units

The type of unit is defined by its activation function; Activation functions decide whether a neuron should be activated ("fire") or not, that is, whether the received information is relevant or should be ignored (= nonlinear transformation over the input signal)

- Sigmoid
- Tanh
- Rectified Linear Unit (ReLU)
- Leaky ReLU
- Softmax
- ...

Hidden units: frequently ReLU

Dagmar Gromann, 7 December 2018
Semantic Computing
Sigmoid Unit

- sigmoid function: $\sigma(x) = \frac{1}{1+e^{-x}}$
- non-linear activation function (0 to 1 in the S-Shape)
- $g(x) = \frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$ => high between values of -3 and 3: in this range small changes of x would bring about large changes of y (highly desirable property)
- with non-linear functions we can backpropagate (update weights) and have several layers (no difference with linear function)
Rectified Linear Unit (ReLU)

- function: \(f(x) = \max(0, x) \)
- not all neurons are activated at the same time
- if input is negative => conversion to zero and neuron inactive
- advantage: more efficient computation
Overview Output Layer

<table>
<thead>
<tr>
<th>Output Type</th>
<th>Output Distribution</th>
<th>Output Layer</th>
<th>Cost Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>Gaussian</td>
<td>Linear</td>
<td>Gaussian cross-entropy (MSE)</td>
</tr>
<tr>
<td>Binary</td>
<td>Bernoulli (binary variable)</td>
<td>Sigmoid</td>
<td>Binary cross-entropy</td>
</tr>
<tr>
<td>Discrete</td>
<td>Multinoulli</td>
<td>Softmax</td>
<td>Discrete cross-entropy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Details Softmax Output Units

• As output unit: squishes a general vector z of arbitrary real values to a vector $\sigma(z)$ of real values where each entry is in the range of [0,1] and entries add up to 1.

• Objective: all neurons representing important features for a specific input (e.g. loop and line for a “9”) should be activated, i.e., fire, when that input is passed through the network.

• Notation: $\sigma(z)_j = \frac{\exp(z_j)}{\sum_j \exp(z_j)}$

• Used for: **multiclass** classification, e.g. multinominal logistic regression and neural networks.
Forward Propagation

- input to hidden layer 1: \(H_1 = W_1^T x + b_1 \)
- hidden 1 to hidden 2: \(H_2 = W_2^T H_1 + b_2 \)
- in other words: weighted sum of activation of previous layer and weights of current layer:
 \[w_1 h_1^{(1)} + w_2 h_2^{(1)} + w_3 h_3^{(1)} + \ldots + w_n h_n^{(1)} \text{ where } h_{1-n}^{(1)} \in H_1 \text{ and } w_{1-n} \in W_2 \]
- all bright pixels are set to a positive value, direct neighbors to negative and the rest to zero
- maybe we only want to consider weighted sums that are greater than 10: such constraints are introduced by means of the bias \((b_2) w_1 h_1^{(1)} + w_2 h_2^{(1)} + w_3 h_3^{(1)} + \ldots + w_n h_n^{(1)} - 10 \)
- weights: what pixel pattern the layer is picking up on
- bias: how high the weighted sum needs to be before the neuron starts getting active
Cost or loss function

• similar to linear models: our model defines a distribution $p(y|x; \theta)$ and we use the principle of maximum likelihood (negative log-likelihood)

• cost function is frequently cross-entropy between training data and predictions

\[
\text{binary} : - (y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}))
\]

\[
\text{multiclass} : - \sum_{i=1}^{M} y_i \log(\hat{y}_i)
\]

M ... number of classes; y ... correct label; \hat{y} ... prediction
Cross-entropy cost function

Example:

Of this neuron, the output $a = (z)$ where $z = \sum_j w_j x_j + b$ is the weighted sum of inputs. Then the cross entropy cost function for this neuron is

$$C = -\sum y \log(a)$$
Backpropagation

Backpropagation, also called backprop, allows information from the cost to flow backward through the network to compute the gradient. NOT a learning method, but a very efficient method to compute gradients that are used in learning methods (optimizers).

- “Just the chain rule” of derivatives ($z = W^T h + b$ and $h^l = \sigma(z^l)$ and $J = (h^l - \hat{y})^2$):
 \[
 \frac{\partial J}{\partial w^l} = \frac{\partial z^l}{\partial w^l} \frac{\partial h^l}{\partial z^l} \frac{\partial J}{\partial h^l} = h^{l-1} \sigma'(z^l) 2 (h^l - \hat{y})
 \]

- average over all training examples:
 \[
 \frac{\partial J}{\partial w^l} = \frac{1}{n} \sum_{k=0}^{n-1} \frac{\partial J_k}{\partial w^l} = \text{one value of the vector that represent the gradient of the cost function (repeat for all weights and biases)}
 \]
What is optimization?

If we knew the distribution of our data, the training would be an optimization problem. However, we only have a sample of training data and do not know the full distribution of the data in machine learning.

Task: minimize the expected loss on the training set
Usual algorithm: (Mini-batch) Gradient Descent
Optimization

Optimization
Minimizing or maximizing some objective function $f(x)$ by altering x; when minimizing, the function is also called cost function, loss function, or error function; value that minimizes or maximizes a function usually denoted with *, e.g. x^*

How to optimize? Many different options. Most important: take the derivative $f'(x)$ because it gives you the slope of $f(x)$ at the point x; specifies which small change is needed in the input to obtain a small improvement in the prediction
Gradient Descent

Global minimum at $x = 0$. Since $f'(x) = 0$, gradient descent halts here.

For $x < 0$, we have $f'(x) < 0$, so we can decrease f by moving rightward.

For $x > 0$, we have $f'(x) > 0$, so we can decrease f by moving leftward.

Gradient

Functions with multiple inputs require partial derivatives. The gradient of f is a vector containing all the partial derivatives denoted $\nabla_x f(x)$.

1: Set initial parameters $\theta_1^0, \ldots, \theta_k^0$

2: $\epsilon = \text{learning rate (step size)}$

3: while not converged calculate ∇f do

4: $\theta_1 = \theta_1 - \epsilon \frac{\partial f}{\partial \theta_1}$.

5: ...

6: $\theta_k = \theta_k - \epsilon \frac{\partial f}{\partial \theta_k}$

7: end while

8: small enough ϵ ensures that $f(\theta_1^i, \ldots, \theta_k^i) \leq f(\theta_1^{i-1}, \ldots, \theta_k^{i-1})$
Learning Rate

Also called step size which is more intuitive:

0.06 = 138 steps to reach the minimum; 0.60 = 12 steps needed
1.60 = 1 step; 1.70 = 2 steps

Overview: Gradient Descent

Definition Gradient Descent in NN

Method to (step-wise) **converge** to a local minimum of a cost function by iteratively calculating the gradient and adapting the weights of the neural network accordingly in order to minimize the loss.

- **(Batch) gradient descent**: update weights after having passed through the whole dataset (use all examples at once); that is \(\sum \frac{\partial J}{\partial W} \)
- **Stochastic gradient descent**: update weights incrementally with each training input \(\frac{\partial J}{\partial W} \) (one example at a time)
- **Mini-batch gradient descent**: 10-1000 training examples in a batch; loss and gradient are averaged over the batch (equivalent to one step)
SGD

- needs more steps than GD but each step is cheaper (computation)
- there is not always a decrease for each step
- **minibatch**:
 - common way to uniformly draw examples from the training data
 - usually very small between one and a few hundred examples
 - batch size is held fixed even with an increasing training set size
- SGD outside of deep learning: e.g. main way to train linear models on large datasets
Architecture Design

- number of units: dependent on presumed number of characteristics for each feature (e.g. how many different loops in MNIST task?) that layer should represent; deeper networks (more layers) = potentially fewer units

- number of layers: dependent on the presumed different types of features (e.g. contours, edges, etc. in image classification); start out with simplest solution and then slowly increase

- interconnections: fully connected means each input is connected to every output; reducing the number of connections reduces the number of parameters that have to be computed (more later)
Feedforward Neural Networks
Feedforward Neural Networks

- approximate a function f^*
- defines a mapping $y = f(x, \theta)$ and learns the value of θ that represents the best function approximation
- feedforward means information flows from function being evaluated from x through intermediate computation to define f to output \hat{y}
- no feedback connections from output that are fed back - no cycles, no loops
- with feedback connections = recurrent neural network
- special kind of feedforward: Convolutional Neural Networks (CNN)
Review of Lecture 8

• How does deep learning differ from statistical machine learning?
• What are some typical application scenarios of deep learning?
• Why is it called a network? And why neural?
• Which optimizer do you know and how does it work?
• What other design decisions are central in deep learning?
• How do you choose the correct number of layers?