DATABASE THEORY

Lecture 10: Conjunctive Query Optimisation

David Carral
Knowledge-Based Systems

TU Dresden, 14th May 2019
Review

There are many well-defined static optimisation tasks that are independent of the database.

\[\Rightarrow \text{query equivalence, containment, emptiness} \]

Unfortunately, all of them are undecidable for FO queries.

\[\Rightarrow \text{Slogan: “all interesting questions about FO queries are undecidable”} \]

\[\Rightarrow \text{Let’s look at simpler query languages} \]
Optimisation is simpler for conjunctive queries

Example 10.1: Conjunctive query containment:

\[Q_1 : \exists x, y, z. R(x, y) \land R(y, y) \land R(y, z) \]

\[Q_2 : \exists u, v, w, t. R(u, v) \land R(v, w) \land R(w, t) \]

\(Q_1 \) find \(R \)-paths of length two with a loop in the middle
\(Q_2 \) find \(R \)-paths of length three

\(\leadsto \) in a loop one can find paths of any length
\(\leadsto Q_1 \subseteq Q_2 \)
Deciding Conjunctive Query Containment

Consider conjunctive queries $Q_1[x_1, \ldots, x_n]$ and $Q_2[y_1, \ldots, y_n]$.

Definition 10.2: A query homomorphism from Q_2 to Q_1 is a mapping μ from terms (constants or variables) in Q_2 to terms in Q_1 such that:

- μ does not change constants, i.e., $\mu(c) = c$ for every constant c.
- $x_i = \mu(y_i)$ for each $i = 1, \ldots, n$.
- If Q_2 has a query atom $R(t_1, \ldots, t_m)$ then Q_1 has a query atom $R(\mu(t_1), \ldots, \mu(t_m))$.

Theorem 10.3 (Homomorphism Theorem): $Q_1 \sqsubseteq Q_2$ if and only if there is a query homomorphism $Q_2 \rightarrow Q_1$.

\rightarrow decidable (only need to check finitely many mappings from Q_2 to Q_1)
Example

\[Q_1 : \quad \exists x, y, z. \ R(x, y) \land R(y, y) \land R(y, z) \]

\[Q_2 : \quad \exists u, v, w, t. \ R(u, v) \land R(v, w) \land R(w, t) \]
If \(\langle d_1, \ldots, d_n \rangle \) is a result of \(Q_1[x_1, \ldots, x_n] \) over database \(I \) then:

- there is a mapping \(\nu \) from variables in \(Q_1 \) to the domain of \(I \)
- \(d_i = \nu(x_i) \) for all \(i = 1, \ldots, m \)
- for all atoms \(R(t_1, \ldots, t_m) \) of \(Q_1 \), we find \(\langle \nu(t_1), \ldots, \nu(t_m) \rangle \in R^I \)
 (where we take \(\nu(c) \) to mean \(c \) for constants \(c \))

\(\sim I \models Q_1[d_1, \ldots, d_n] \) if there is such a homomorphism \(\nu \) from \(Q_1 \) to \(I \)

(Note: this is a slightly different formulation from the “homomorphism problem” discussed in a previous lecture, since we keep constants in queries here)
Proof of the Homomorphism Theorem

“⇐”: \(Q_1 \subseteq Q_2 \) if there is a query homomorphism \(Q_2 \to Q_1 \).

(1) Let \(\langle d_1, \ldots, d_n \rangle \) be a result of \(Q_1[x_1, \ldots, x_n] \) over database \(I \).

(2) Then there is a homomorphism \(\nu \) from \(Q_1 \) to \(I \).

(3) By assumption, there is a query homomorphism \(\mu : Q_2 \to Q_1 \).

(4) But then the composition \(\nu \circ \mu \), which maps each term \(t \) to \(\nu(\mu(t)) \), is a homomorphism from \(Q_2 \) to \(I \).

(5) Hence \(\langle \nu(\mu(y_1)), \ldots, \nu(\mu(y_n)) \rangle \) is a result of \(Q_2[y_1, \ldots, y_n] \) over \(I \).

(6) Since \(\nu(\mu(y_i)) = \nu(x_i) = d_i \), we find that \(\langle d_1, \ldots, d_n \rangle \) is a result of \(Q_2[y_1, \ldots, y_n] \) over \(I \).

Since this holds for all results \(\langle d_1, \ldots, d_n \rangle \) of \(Q_1 \), we have \(Q_1 \subseteq Q_2 \).

(See board for a sketch showing how we compose homomorphisms here)
Proof of the Homomorphism Theorem

“⇒”: there is a query homomorphism $Q_2 \rightarrow Q_1$ if $Q_1 \sqsubseteq Q_2$.

(1) Turn $Q_1[x_1, \ldots, x_n]$ into a database I_1 in the natural way:
 - The domain of I_1 are the terms in Q_1
 - For every relation R, we have $\langle t_1, \ldots, t_m \rangle \in R^{I_1}$ exactly if $R(t_1, \ldots, t_m)$ is an atom in Q_1

(2) Then Q_1 has a result $\langle x_1, \ldots, x_n \rangle$ over I_1
 (the identity mapping is a homomorphism – actually even an isomorphism)

(3) Therefore, since $Q_1 \sqsubseteq Q_2$, $\langle x_1, \ldots, x_n \rangle$ is also a result of Q_2 over I_1

(4) Hence there is a homomorphism ν from Q_2 to I_1

(5) This homomorphism ν is also a query homomorphism $Q_2 \rightarrow Q_1$.
Implications of the Homomorphism Theorem

The proof has highlighted another useful fact:

The following two are equivalent:

- Finding a homomorphism from Q_2 to Q_1
- Finding a query result for Q_2 over I_1

\sim all complexity results for CQ query answering apply

Theorem 10.4: Deciding if $Q_1 \sqsubseteq Q_2$ is NP-complete.

If Q_2 is a tree query (or of bounded treewidth, or of bounded hypertree width) then deciding if $Q_1 \sqsubseteq Q_2$ is polynomial (in fact LOGCFL-complete).

Note that even in the NP-complete case the problem size is rather small (only queries, no databases)
Definition 10.5: A conjunctive query Q is minimal if:
- for all subqueries Q' of Q (that is, queries Q' that are obtained by dropping one or more atoms from Q),
- we find that $Q' \neq Q$.

A minimal CQ is also called a core.

It is useful to minimise CQs to avoid unnecessary joins in query answering.
A simple idea for minimising Q:

- Consider each atom of Q, one after the other
- Check if the subquery obtained by dropping this atom is contained in Q
 (Observe that the subquery always contains the original query.)
- If yes, delete the atom; continue with the next atom

Example 10.6: Example query $Q[v, w]$:

$$\exists x, y, z. R(a, y) \land R(x, y) \land S(y, y) \land S(y, z) \land S(z, y) \land T(y, v) \land T(y, w)$$

\leadsto Simpler notation: write as set and mark answer variables

$$\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}$$
CQ Minimisation Example

\{R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, \bar{v}), T(y, \bar{w})\}

Can we map the left side homomorphically to the right side?

<table>
<thead>
<tr>
<th>Left</th>
<th>Right</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>R(a, y)</td>
<td>R(a, y)</td>
<td>Keep (cannot map constant a)</td>
</tr>
<tr>
<td>R(x, y)</td>
<td>R(x, y)</td>
<td>Drop; map R(x, y) to R(a, y)</td>
</tr>
<tr>
<td>S(y, y)</td>
<td>S(y, y)</td>
<td>Keep (no other atom of form S(t, t))</td>
</tr>
<tr>
<td>S(y, z)</td>
<td>S(y, z)</td>
<td>Drop; map S(y, z) to S(y, y)</td>
</tr>
<tr>
<td>S(z, y)</td>
<td>S(z, y)</td>
<td>Drop; map S(z, y) to S(y, y)</td>
</tr>
<tr>
<td>T(y, \bar{v})</td>
<td>T(y, \bar{v})</td>
<td>Keep (cannot map answer variable)</td>
</tr>
<tr>
<td>T(y, \bar{w})</td>
<td>T(y, \bar{w})</td>
<td>Keep (cannot map answer variable)</td>
</tr>
</tbody>
</table>

Core: \(\exists y. R(a, y) \land S(y, y) \land T(y, \bar{v}) \land T(y, \bar{w})\)
CQ Minimisation

Does this algorithm work?

- Is the result minimal?
 Or could it be that some atom that was kept can be dropped later, after some other atoms were dropped?

- Is the result unique?
 Or does the order in which we consider the atoms matter?

Theorem 10.7: The CQ minimisation algorithm always produces a core, and this result is unique up to query isomorphisms (bijective renaming of non-result variables).

Proof: exercise
How hard is CQ Minimisation?

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3-colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)

Let G be a connected, undirected graph. Let $<$ be an arbitrary total order on G’s vertices.

Query Q is defined as follows:
- Q contains atoms $R(r,g)$, $R(g,r)$, $R(r,b)$, $R(b,r)$, $R(g,b)$, and $R(b,r)$ (the colouring template)
- For every undirected edge $\{e,f\}$ in G with $e < f$, Q contains an atom $R(e,f)$
- For a single (arbitrarily chosen) edge $\{e,f\}$ in G with $e < f$, Q contains an atom $A = R(f,e)$

Claim: G is 3-colourable if and only if there is a homomorphism $Q \rightarrow Q \setminus \{A\}$
Proof

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \setminus \{A\}$.

- Then there is a homomorphism μ from G to the colouring template
- We can extend μ to the colouring template (mapping each colour to itself)
- Then μ is a homomorphism $Q \rightarrow Q \setminus \{A\}$

(\Leftarrow) If there is a homomorphism $Q \rightarrow Q \setminus \{A\}$ then G is 3-colourable.

- Let μ be such a homomorphism, and let $A = R(f, e)$.
- Since $Q \setminus \{A\}$ contains the pattern $R(s, t), R(t, s)$ only in the colouring template, $\mu(e) \in \{r, g, b\}$ and $\mu(f) \in \{r, g, b\}$.
- Since the colouring template is not connected to other atoms of Q, μ must therefore map all elements of Q to the colouring template.
- Hence, μ induces a 3-colouring.
CQ Minimisation: Complexity

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (summary): For an arbitrary connected graph G, we constructed a query Q with atom A, such that

- G is 3-colourable if and only if
- there is a homomorphism $Q \to Q \setminus \{A\}$.

Since the former problem is NP-hard, so is the latter. Inclusion in NP is obvious (just guess the homomorphism).

Checking minimality is the dual problem, hence:

Theorem 10.9: Deciding if a conjunctive query Q is minimal (that is: a core) is coNP-complete.

However, the size of queries is usually small enough for minimisation to be feasible.
Perfect query optimisation is possible for conjunctive queries

\[\leadsto \text{Homomorphism problem, similar to query answering} \]
\[\leadsto \text{NP-complete} \]

Using this, conjunctive queries can effectively be minimised

Coming up next:
- How to study expressivity of queries
- The limits of FO queries
- Datalog