Review: Datalog Evaluation

A rule-based recursive query language

- father(alice, bob)
- mother(alice, carla)
- Parent(x, y) ← father(x, y)
- Parent(x, y) ← mother(x, y)
- SameGeneration(x, y) ← Parent(x, v) ∧ Parent(y, w) ∧ SameGeneration(v, w)

Perfect static optimisation for Datalog is undecidable

Datalog queries can be evaluated bottom-up or top-down

Simplest practical bottom-up technique: semi-naive evaluation

Semi-Naive Evaluation: Example

\[T_0 = \emptyset \] initialisation
\[T_1^p = \{ (1, 2), (2, 3), (3, 4), (4, 5) \} \] \(4 \times (R1) \)
\[T_2^p = T_1^p \cup \{ T(1, 3), T(2, 4), T(3, 5) \} \] \(3 \times (R2.1) \)
\[T_3^p = T_2^p \cup \{ T(1, 4), T(2, 5), T(1, 5) \} \] \(3 \times (R2.1) , 2 \times (R2.2') \)
\[T_4^p = T_3^p \cup T(1, 5) \] \(1 \times (R2.1) , 1 \times (R2.2') \)

In total, we considered 14 matches to derive 11 facts
Semi-Naive Evaluation: Full Definition

In general, a rule of the form

\[H(\vec{x}) \leftarrow e_1(\vec{y}_1) \land \ldots \land e_n(\vec{y}_n) \land I_1(\vec{z}_1) \land I_2(\vec{z}_2) \land \ldots \land I_m(\vec{z}_m) \]

is transformed into \(m \) rules

\[H(\vec{x}) \leftarrow e_1(\vec{y}_1) \land \ldots \land e_n(\vec{y}_n) \land \Delta^1_{I_1}(\vec{z}_1) \land I_1'(\vec{z}_2) \land \ldots \land I'_m(\vec{z}_m) \]
\[H(\vec{x}) \leftarrow e_1(\vec{y}_1) \land \ldots \land e_n(\vec{y}_n) \land I'_1(\vec{z}_1) \land \Delta^1_{I_2}(\vec{z}_2) \land \ldots \land I'_m(\vec{z}_m) \]
\[\ldots \]
\[H(\vec{x}) \leftarrow e_1(\vec{y}_1) \land \ldots \land e_n(\vec{y}_n) \land I'_1(\vec{z}_1) \land \Delta^1_{I_m}(\vec{z}_m) \]

Advantages and disadvantages:

- Huge improvement over naive evaluation
- Some redundant computations remain (see example)
- Some overhead for implementation (store level of entailments)

Top-Down Evaluation

Idea: we may not need to compute all derivations to answer a particular query

Example:

\[e(1, 2) \quad e(2, 3) \quad e(3, 4) \quad e(4, 5) \]

\[(R1) \quad T(x, y) \leftarrow e(x, y) \]
\[(R2) \quad T(x, z) \leftarrow T(x, y) \land T(y, z) \]
\[\text{Query}(z) \leftarrow T(2, z) \]

The answers to Query are the T-successors of 2.

However, bottom-up computation would also produce facts like \(T(1, 4) \), which are neither directly nor indirectly relevant for computing the query result.

Query-Subquery (QSQ)

QSQ is a technique for organising top-down Datalog query evaluation

Main principles:

- Apply backward chaining/resolution: start with query, find rules that can derive query, evaluate body atoms of those rules (subqueries) recursively
- Evaluate intermediate results "set-at-a-time" (using relational algebra on tables)
- Evaluate queries in a "data-driven" way, where operations are applied only to newly computed intermediate results (similar to idea in semi-naive evaluation)
- "Push" variable bindings (constants) from heads (queries) into bodies (subqueries)
- "Pass" variable bindings (constants) "sideways" from one body atom to the next

Details can be realised in several ways.

Assumption

For all techniques presented in this lecture, we assume that the given Datalog program is safe.

- This is without loss of generality (as shown in exercise).
- One can avoid this by adding more cases to algorithms.
Adornments

To guide evaluation, we distinguish free and bound parameters in a predicate.

Example: if we want to derive atom $T(2, z)$ from the rule

$$T(x, z) \leftarrow T(x, y) \land T(y, z),$$

then x will be bound to 2, while z is free.

We use adornments to note the free/bound parameters in predicates.

Example:

$$T^{bf}(x, z) \leftarrow T^{bf}(x, y) \land T^{bf}(y, z)$$

- since x is bound in the head, it is also bound in the first atom
- any match for the first atom binds y, so y is bound when evaluating the second atom (in left-to-right evaluation)

Auxiliary Relations for QSQ

To control evaluation, we store intermediate results in auxiliary relations.

When we “call” a rule with a head where some variables are bound, we need to provide the bindings as input.

\leadsto for adorned relation R^a, we use an auxiliary relation $input^a_R$

\leadsto arity of $input^a_R$ = number of b in a

The result of calling a rule should be the “completed” input, with values for the unbound variables added.

\leadsto for adorned relation R^a, we use an auxiliary relation $output^a_R$

\leadsto arity of $output^a_R$ = arity of R (= length of α)

Adornments: Examples

The adornment of the head of a rule determines the adornments of the body atoms:

$$R^{bb}(x, y, z) \leftarrow R^{bf}(x, y, v) \land R^{bb}(x, v, z)$$

$$R^{bf}(x, y, z) \leftarrow R^{bf}(x, y, v) \land R^{bb}(x, v, z)$$

The order of body predicates matters affects the adornment:

$$S^{bf}(x, y, z) \leftarrow T^{bf}(x, v) \land T^{bf}(y, w) \land R^{bf}(v, w, z)$$

\leadsto For optimisation, some orders might be better than others

Auxiliary Relations for QSQ (2)

When evaluating body atoms from left to right, we use supplementary relations sup_i,

\leadsto bindings required to evaluate rest of rule after the ith body atom

\leadsto the first set of bindings sup_0 comes from $input^a_R$

\leadsto the last set of bindings sup_n go to $output^a_R$

Example:

$$T^{bf}(x, z) \leftarrow T^{bf}(x, y) \land T^{bf}(y, z)$$

$$input^{bf}_T \Rightarrow sup_0[x] \Rightarrow sup_1[x, y] \Rightarrow sup_2[x, z] \Rightarrow output^{bf}_T$$

\bullet $sup_0[x]$ is copied from $input^{bf}_T[x]$ (with some exceptions, see exercise)

\bullet $sup_1[x, y]$ is obtained by joining tables $sup_0[x]$ and $output^{bf}_T[x, y]$

\bullet $sup_2[x, z]$ is obtained by joining tables $sup_1[x, y]$ and $output^{bf}_T[y, z]$

\bullet $output^{bf}_T[x, z]$ is copied from $sup_2[x, z]$

(we use “named” notation like $\langle x, y \rangle$ to suggest what to join on; the relations are the same)
QSQR Algorithm

Given: a Datalog program P and a conjunctive query $q[\vec{x}]$ (possibly with constants)

1. Create an adorned program P^α:
 - Turn the query $q[\vec{x}]$ into an adorned rule $\text{Query}^{df}\left(\vec{x}\right) \leftarrow q[\vec{x}]$
 - Recursively create adorned rules from rules in P for all adorned predicates in P^α.

2. Initialise all auxiliary relations to empty sets.

3. Evaluate the rule $\text{Query}^{df}\left(\vec{x}\right) \leftarrow q[\vec{x}]$.
 Repeat until no new tuples are added to any QSQ relation.

4. Return output$^{df}_{\text{Query}}$

Recursive QSQ

Recursive QSQ (QSQR) takes a “depth-first” approach to QSQ

Evaluation of single rule in QSQR:
Given: adorned rule r with head predicate R^η; current values of all QSQ relations

1. Copy tuples input$^\alpha_r$ (that unify with rule head) to sup0_r
2. For each body atom A_1, \ldots, A_n, do:
 - If A_i is an EDB atom, compute supi as projection of $\text{sup}^i_{i-1} \leadsto A^\eta_i$
 - If A_i is an IDB atom with adorned predicate S^β:
 a. Add new bindings from sup^i_{i-1}, combined with constants in A_i, to input$^\beta_S$.
 b. If input$^\beta_S$ changed, recursively evaluate all rules with head predicate S^β.
 c. Compute sup^i_r as projection of $\text{sup}^i_{i-1} \leadsto \text{output}^\beta_S$.
3. Add tuples in sup^i_r to output$^\eta_r$

QSQR Transformation: Example

Predicates S (same generation), p (parent), h (human)

\[
\begin{align*}
S(x, x) & \leftarrow h(x) \\
S(x, y) & \leftarrow p(x, w) \land S(v, w) \land p(y, v)
\end{align*}
\]

with query $S(1, x)$.

\leadsto Query rule: $\text{Query}(x) \leftarrow S(1, x)$

Transformed rules:

\[
\begin{align*}
\text{Query}^\eta(x) & \leftarrow S^\beta(1, x) \\
S^\beta(x, x) & \leftarrow h(x) \\
S^\beta(x, y) & \leftarrow p(x, w) \land S^\beta(v, w) \land p(y, v) \\
S^\beta(h)(x, x) & \leftarrow h(x) \\
S^\beta(h)(x, y) & \leftarrow p(x, w) \land S^\beta(v, w) \land p(y, v)
\end{align*}
\]
Magic Sets

QSQ(R) is a goal directed procedure: it tries to derive results for a specific query.

Semi-naive evaluation is not goal directed: it computes all entailed facts.

Can a bottom-up technique be goal-directed?

→ yes, by magic

Magic Sets

- “Simulation” of QSQ by Datalog rules
- Can be evaluated bottom up, e.g., with semi-naive evaluation
- The “magic sets” are the sets of tuples stored in the auxiliary relations
- Several other variants of the method exist

Magic Sets as Simulation of QSQ

Idea: the information flow in QSQ(R) mainly uses join and projection → can we just implement this in Datalog?

Example:

\[\begin{align*}
T^{bf}(x, z) & \leftarrow T^{bf}(x, y) \land T^{bf}(y, z) \\
\Rightarrow & \\
\text{input}^{bf}_T & \Rightarrow \text{sup}^0[x] \quad \text{sup}^1[x, y] \quad \text{sup}^2[x, z] \Rightarrow \text{output}^{bf}_T
\end{align*} \]

Could be expressed using rules:

\[\begin{align*}
\text{sup}^0(x) & \leftarrow \text{input}^{bf}_T(x) \\
\text{sup}^1(x, y) & \leftarrow \text{sup}^0(x) \land \text{output}^{bf}_T(x, y) \\
\text{sup}^2(x, z) & \leftarrow \text{sup}^1(x, y) \land \text{output}^{bf}_T(y, z) \\
\text{output}^{bf}_T(x, z) & \leftarrow \text{sup}^2(x, z)
\end{align*} \]

A Note on Constants

Constants in rule bodies must lead to bindings in the subquery.

Example: the following rule is correctly adorned

\[R^{bf}(x, y) \leftarrow T^{bf}(x, a, z) \]

This leads to the following rules using Magic Sets:

\[\begin{align*}
\text{output}^{bf}_R(x, y) & \leftarrow \text{input}^{bf}_R(x) \land \text{output}^{bf}_T(x, a, y) \\
\text{input}^{bf}_T(x, a) & \leftarrow \text{input}^{bf}_R(x)
\end{align*} \]

Note that we do not need to use auxiliary predicates sup₀ or sup₁ here, by the simplification on the previous slide.
Magic Sets: Summary

A goal-directed bottom-up technique:
- Rewritten program rules can be constructed on the fly
- Bottom-up evaluation can be semi-naive (avoid repeated rule applications)
- Supplementary relations can be cached in between queries

Nevertheless, a full materialisation might be better, if
- Database does not change very often (materialisation as one-time investment)
- Queries are very diverse and may use any IDB relation (bad for caching supplementary relations)

~> semi-naive evaluation is still very common in practice

Datalog as a Special Case

Datalog is a special case of many approaches, leading to very diverse implementation techniques.
- **Prolog** is essentially “Datalog with function symbols” (and many built-ins).
- **Answer Set Programming** is “Datalog extended with non-monotonic negation and disjunction”
- **Production Rules** use “bottom-up rule reasoning with operational, non-monotonic built-ins”
- **Recursive SQL Queries** are a syntactically restricted set of Datalog rules

~> Different scenarios, different optimal solutions
~> Not all implementations are complete (e.g., Prolog)

Datalog Implementation in Practice

Dedicated Datalog engines as of 2015:
- **DLV** Answer set programming engine with good performance on Datalog programs (commercial)
- **LogicBlox** Big data analytics platform that uses Datalog rules (commercial)
- **Datomic** Distributed, versioned database using Datalog as main query language (commercial)

Several RDF (graph data model) DBMS also support Datalog-like rules, usually with limited IDB arity, e.g.:
- **OWLIM** Disk-backed RDF database with materialisation at load time (commercial)
- **RDFox** Fast in-memory RDF database with runtime materialisation and updates (academic)

~> Extremely diverse tools for very different requirements

Summary and Outlook

Several implementation techniques for Datalog
- bottom up (from the data) or top down (from the query)
- goal-directed (for a query) or not

Top-down: Query-Subquery (QSQ) approach (goal-directed)

Bottom-up:
- naive evaluation (not goal-directed)
- semi-naive evaluation (not goal-directed)
- Magic Sets (goal-directed)

Next topics:
- Graph databases and path queries
- Applications