Chapter 4

Declarative Interpretation
Outline

- Algebras (which provide a semantics of terms)
- Interpretations (which provide a semantics of programs)
- Soundness of SLD-resolution
- Completeness of SLD-resolution
- Least Herbrand models
- Computing least Herbrand models
What is an Interpretation?

direct(frankfurt, san_francisco).
direct(frankfurt, chicago).
direct(san_francisco, honolulu).
direct(honolulu, maui).

collection(X, Y) :- direct(X, Y).
collection(X, Y) :- direct(X, Z), collection(Z, Y).

\[D = \{FRA, DRS, ORD, SFO, \ldots\} \]
\[\text{frankfurt}_j = FRA, \text{chicago}_j = ORD, \text{san-francisco}_j = SFO, \ldots \]
\[\text{direct}_i = \{(FRA, SFO), (FRA, ORD), \ldots\} \]
\[\text{collection}_i = \{(FRA, SFO), (FRA, ORD), (FRA, HNL), \ldots\} \]
What is an Interpretation?

\[
\begin{align*}
\text{add} (X, 0, X) . \\
\text{add} (X, s(Y), s(Z)) & : \text{add} (X, Y, Z) . \\
D & = \mathbb{N} \\
0_J & = 0 \\
s_J : \mathbb{N} & \to \mathbb{N} \text{ such that } s_J(n) = n + 1 \\
\text{add}_J & = \{(0, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 2), \ldots\}
\end{align*}
\]
Another Example

\[
\begin{align*}
\text{add}(X, 0, X). \\
\text{add}(X, \text{s}(Y), \text{s}(Z)) & : \text{add}(X, Y, Z).
\end{align*}
\]

\[D = \{0, \text{s}(0), \text{s}(\text{s}(0)), \ldots\}\]

\[0_J = 0\]

\[s_J : D \rightarrow D \text{ such that } s_J(t) = \text{s}(t)\]

\[\text{add}_J = \{(0, 0, 0), (\text{s}(0), 0, \text{s}(0)), (0, \text{s}(0), \text{s}(0)), (\text{s}(0), \text{s}(0), \text{s}(\text{s}(0))), \ldots\}\]

(This will be called a “Herbrand model”.)
Algebras

V set of variables, F ranked alphabet of function symbols: An algebra J for F (or pre-interpretation for F) consists of:

1. domain \iff non-empty set D
2. assignment of a mapping $f_J : D^n \rightarrow D$

$\text{to every } f \in F^{(n)} \text{ with } n \geq 0$

State σ over D \iff mapping $\sigma : V \rightarrow D$

Extension of σ to $TU_{F,V}$ \iff $\sigma : TU_{F,V} \rightarrow D$ such that for every $f \in F^{(n)}$

$\sigma(f(t_1, ..., t_n)) = f_J(\sigma(t_1), ..., \sigma(t_n))$
Interpretations

F ranked alphabet of function symbols, Π ranked alphabet of predicate symbols:

An interpretation I for F and Π consists of:

1. algebra J for F (with domain D)
2. assignment of a relation $p_I \subseteq \underbrace{D \times \ldots \times D}_n$

... to every $p \in \Pi^{(n)}$ with $n \geq 0$
Herbrand Universes and Bases

Recall $TU_{F,V} :\iff$ term universe over function symbols F, variables V

$TB_{\Pi,F,V} :\iff$ term base (i.e., all atoms) over predicate symbols Π and F, V

- Herbrand universe $HU_F :\iff TU_{F,\emptyset}$
- Herbrand base $HB_{\Pi,F} :\iff TB_{\Pi,F,\emptyset}$
Interpretations (Example)

Let P_{add} “add-program”.

$I_1, I_2, I_3, I_4, I_5,$ and I_6 are interpretations for \{s, 0\} and \{\text{add}\}:

I_1: $D_{I_1} = \mathbb{N}, \ 0_{I_1} = 0, \ s_{I_1}(n) = n + 1$ for each $n \in \mathbb{N}, \ add_{I_1} = \{(m, n, m + n) \mid m, n \in \mathbb{N}\}$

I_2: $D_{I_2} = \mathbb{N}, \ 0_{I_2} = 0, \ s_{I_2}(n) = n + 1$ for each $n \in \mathbb{N}, \ add_{I_2} = \{(m, n, m \ast n) \mid m, n \in \mathbb{N}\}$

I_3: $D_{I_3} = \text{HU}_\{s, 0\}, \ 0_{I_3} = 0, \ s_{I_3}(t) = s(t)$ for each $t \in \text{HU}_\{s, 0\}$,

\[add_{I_3} = \{(s^m(0), s^n(0), s^{m+n}(0)) \mid m, n \in \mathbb{N}\} \]

I_4: $D_{I_4} = \text{HU}_\{s, 0\}, \ 0_{I_4} = 0, \ s_{I_4}(t) = s(t)$ for each $t \in \text{HU}_\{s, 0\}, \ add_{I_4} = \emptyset$

I_5: $D_{I_5} = \text{HU}_\{s, 0\}, \ 0_{I_5} = 0, \ s_{I_5}(t) = s(t)$ for each $t \in \text{HU}_\{s, 0\}, \ add_{I_5} = (\text{HU}_\{s, 0\})^3$

I_6: $D_{I_6} = \{0, 1\}, \ 0_{I_6} = 0, \ s_{I_6}(n) = n$ for each $n \in \{0, 1\}, \ add_{I_6} = \{(m, n, m) \mid m, n \in \{0, 1\}\}$
Logical Truth (I)

E expression $\iff E$ atom, query, clause, or resultant

E expression, I interpretation, σ state:

E true in I under σ, written: $I \models_{\sigma} E$

\iff

by case analysis on E:

- $I \models_{\sigma} p(t_1, \ldots, t_n) \iff (\sigma(t_1), \ldots, \sigma(t_n)) \in p_I$
- $I \models_{\sigma} A_1, \ldots, A_n \iff I \models_{\sigma} A_i$ for every $i = 1, \ldots, n$
- $I \models_{\sigma} A \leftarrow B \iff \text{if } I \models_{\sigma} B \text{ then } I \models_{\sigma} A$
- $I \models_{\sigma} A \leftarrow B \iff \text{if } I \models_{\sigma} B \text{ then } I \models_{\sigma} A$
Logical Truth (II)

E expression, I interpretation:
Let $x_1, ..., x_k$ be the variables occurring in E.

- $\forall x_1, ..., \forall x_k E$ universal closure of E (abbreviated $\forall E$)
- $\exists x_1, ..., \exists x_k E$ existential closure of E (abbreviated $\exists E$)
- $I \models \forall E :\iff I \models_\sigma E$ for every state σ
- $I \models \exists E :\iff I \models_\sigma E$ for some state σ
- E true in I (or: I model of E), written: $I \models E :\iff I \models \forall E$
Logical Truth (III)

S, T sets of expressions, I interpretation:
- I model of S, written: $I \models S :\iff I \models E$ for every $E \in S$
- T semantic (or: logical) consequence of S, written $S \models T$:
 $:\iff$ every model of S is a model of T

P program, Q_0 query, θ substitution:
- $\theta \mid_{\text{Var}(Q_0)}$ correct answer substitution of Q_0 :
 $\iff P \models Q_0\theta$
- $Q_0\theta$ correct instance of Q_0 :
 $\iff P \models Q_0\theta$
Models (Example)

Let P_{add} “add-program” and let $I_1, I_2, I_3, I_4, I_5, \text{ and } I_6$ be the interpretations from slide 8.

- $I_1 \models P_{\text{add}}$ (since $I_1 \models_\sigma c$ for every clause $c \in P_{\text{add}}$ and state $\sigma: V \rightarrow \mathbb{N}$:
 (i) $(\sigma(x), \sigma(0), \sigma(x)) \in \text{add}_{I_1}$ and
 (ii) if $(\sigma(x), \sigma(y), \sigma(z)) \in \text{add}_{I_1}$ then $(\sigma(x), \sigma(y)+1, \sigma(z)+1) \in \text{add}_{I_1}$

- $I_2 \not\models P_{\text{add}}$ (e.g. let $\sigma(x) = 1$, then $I_2 \not\models_\sigma \text{add}(x, 0, x)$
 since $(\sigma(x), \sigma(0), \sigma(x)) = (1, 0, 1) \not\in \text{add}_{I_2}$

- $I_3 \models P_{\text{add}}$ (like for I_1; we call I_3 a (least) Herbrand model)

- $I_4 \not\models P_{\text{add}}$ (e.g. let $\sigma(x) = s(0)$, then $I_4 \not\models_\sigma \text{add}(x, 0, x)$
 since $(\sigma(x), \sigma(0), \sigma(x)) = (s(0), 0, s(0)) \not\in \text{add}_{I_4}$

- $I_5 \models P_{\text{add}}$ (like for I_1; we call I_5 a Herbrand model)

- $I_6 \models P_{\text{add}}$ (like for I_1)
Semantic Consequences (Example)

Let P_{add} “add-program”.

- $P_{\text{add}} \models add(x, 0, x)$
 (for every interpretation I: if $I \models P_{\text{add}}$ then $I \models add(x, 0, x)$, since $add(x, 0, x) \in P_{\text{add}}$)

- $P_{\text{add}} \models add(x, s(0), s(x))$
 (for every interpretation I: if $I \models P_{\text{add}}$ then $I \models add(x, 0, x)$
 and $I \models add(x, s(0), s(x)) \leftarrow add(x, 0, x)$ (instance of clause), thus $I \models add(x, s(0), s(x))$)

- $P_{\text{add}} \not\models add(0, x, x)$
 (consider interpretation I_6 from slide 8 with $I_6 \models P_{\text{add}}$:
 $I_6 \not\models add(0, x, x)$, since e.g. $I_6 \not\models_{\sigma} add(0, x, x)$ for $\sigma(x) = 1$,
 since $(\sigma(0), \sigma(x), \sigma(x)) = (0, 1, 1) \not\in add_{I_6}$)
Towards Soundness of SLD-Resolution (I)

Lemma 4.3 (i)

Let \(Q \xrightarrow{c} Q' \) be an SLD-derivation step and \(Q\theta \leftarrow Q' \) the resultant associated with it. Then

\[c \models Q\theta \leftarrow Q' \]

Proof.

Let \(Q = A, B, C \) with selected atom \(B \). Let \(H \leftarrow B \) be the input clause and \(Q' = (A, B, C)\theta \). Then

\[c \models H \leftarrow B \]

(variant of \(c \))

implies \(c \models H\theta \leftarrow B\theta \) (instance)

implies \(c \models B\theta \leftarrow B\theta \) (\(\theta \) unifier)

implies \(c \models (A, B, C)\theta \leftarrow (A, B, C)\theta \) (“context” unchanged)
Towards Soundness of SLD-Resolution (II)

Lemma 4.3 (ii)

Let ξ be an SLD-derivation of $P \cup \{Q_0\}$. For $i \geq 0$ let R_i be the resultant of level i of ξ. Then $P \models R_i$

Proof.

Let $\xi = Q_0 \Rightarrow Q_1 \ldots Q_n \Rightarrow Q_{n+1} \ldots$ Induction on $i \geq 0$:

- $i = 0$: $R_0 = Q_0 \leftarrow Q_0 = "true", \text{ thus } P \models R_0$
- $i = 1$: $R_1 = Q_0 \theta_1 \leftarrow Q_1; \text{ by Lemma 4.3 (i): } P \models R_1$
- $i \geq i + 1$: $R_{i+1} = Q_0 \theta_1 \ldots \theta_i \leftarrow Q_{i+1}$ is a semantic consequence of resultant $Q_i \theta_{i+1} \leftarrow Q_{i+1}$ associated with $(i + 1)$-st derivation step and $R_i \theta_{i+1} = Q_0 \theta_1 \ldots \theta_i \leftarrow Q_i \theta_{i+1}$, thus by Lemma 4.3 (i) and induction hypothesis: $P \models R_{i+1}$
Theorem 4.4

If there exists a successful SLD-derivation of $P \cup \{Q_0\}$ with $\text{CAS } \theta$, then $P \models Q_0 \theta$.

Proof.
Let $\xi = Q_0 \implies \ldots \implies \Box$ be successful SLD-derivation.
Lemma 4.3 (ii) applied to the resultant of level n of ξ implies $P \models Q_0 \theta_1 \ldots \theta_n$ and $Q_0 \theta_1 \ldots \theta_n = Q_0(\theta_1 \ldots \theta_n|_{\text{Var}(Q_0)}) = Q_0 \theta$.
Corollary 4.5

If there exists a successful SLD-derivation of $P \cup \{Q_0\}$, then $P \models \exists Q_0$.

Proof.
Theorem 4.4 implies $P \models Q_0 \theta$ for some $\text{CAS } \theta$.
Then, $P \models Q_0 \theta$
implies for every interpretation I: if $I \models P$, then $I \models Q_0 \theta$
implies for every interpretation I: if $I \models P$, then $I \models \forall (Q_0 \theta)$
implies for every interpretation I: if $I \models P$, then $I \models \exists Q_0$
implies $P \models \exists Q_0$
Towards Completeness of SLD-Resolution

To show completeness of SLD-resolution we need to syntactically characterize the set of semantically derivable queries.

The concepts of term models and implication trees serve this purpose.
Term Models

V set of variables, F function symbols, Π predicate symbols:

The term algebra J for F is defined as follows:
1. domain $D = TU_{F,V}$
2. mapping $f_J : (TU_{F,V})^n \to TU_{F,V}$ assigned to every $f \in F^n$ with
 $f_J(t_1, \ldots, t_n) \iff f(t_1, \ldots, t_n)$

A term interpretation I for F and Π consists of:
1. term algebra for F
2. $I \subseteq TB_{\Pi,F,V}$ (set of atoms that are true; equivalent: assignment of a relation $p_I \subseteq (TU_{F,V})^n$
 to every $p \in \Pi^n$)

I term model of a set S of expressions $:\iff I$ term interpretation and model of S
Herbrand Models

The Herbrand algebra J for F is defined as follows:

1. domain $D = HU_F$
2. mapping $f_J : (HU_F)^n \rightarrow HU_F$ assigned to every $f \in F^n$ with $f_J(t_1, ..., t_n) \leftrightarrow f(t_1, ..., t_n)$

A Herbrand interpretation I for F and Π consists of:

1. Herbrand algebra for F
2. $I \subseteq HB_{\Pi,F}$ (set of ground atoms that are true)

I Herbrand model of a set S of expressions $\iff I$ Herbrand interpretation and model of S

I least Herbrand model of a set S of expressions $\iff I$ Herbrand model of S and $I \subseteq I'$ for all Herbrand models I' of S
Implication Trees

implication tree w.r.t. program P

: ⇔

• finite tree whose nodes are atoms

• if A is a node with the direct descendants $B_1, ..., B_n$ then $A \leftarrow B_1, ..., B_n \in \text{inst}(P)$

• if A is a leaf, then $A \leftarrow \in \text{inst}(P)$

E expression, S set of expressions:

• $\text{inst}(E) : \leftrightarrow \text{set of all instances of } E$

• $\text{inst}(S) : \leftrightarrow \text{set of all instances of Elements } E \in S$

• $\text{ground}(E) : \leftrightarrow \text{set of all ground instances of } E$

• $\text{ground}(S) : \leftrightarrow \text{set of all ground instances of Elements } E \in S$
Implication Trees (Example)

Let P_{add} "add-program", $n \in \mathbb{N}$, V set of variables, $t \in TU_{\{s,0\}, V}$, and

$$T = \begin{array}{c}
add(t, s^n(0), s^n(t)) \\
| \\
add(t, s^{n-1}(0), s^{n-1}(t)) \\
| \\
\vdots \\
| \\
add(t, s(0), s(t)) \\
| \\
add(t, 0, t)
\end{array}$$

If $t \in HU_{\{s,0\}}$, then T is ground implication tree w.r.t. P_{add}.

Lemma 4.7
Consider term interpretation I, atom A, program P

- $I \models A$ iff $\text{inst}(A) \subseteq I$
- $I \models P$ iff for every $A \leftarrow B_1, \ldots, B_n \in \text{inst}(P)$: if $\{B_1, \ldots, B_n\} \subseteq I$ then $A \in I$

Lemma 4.12
The term interpretation $C(P) \iff \{A \mid A$ is the root of some implication tree w.r.t. $P\}$ is a model of P.
Lemma 4.26
Consider Herbrand interpretation I, atom A, program P

- $I \models A$ iff $\text{ground}(A) \subseteq I$
- $I \models P$ iff for every $A \leftarrow B_1, \ldots, B_n \in \text{ground}(P)$, $\{B_1, \ldots, B_n\} \subseteq I$ implies $A \in I$

Lemma 4.28
The Herbrand interpretation $M(P) : \leftrightarrow \{A \mid A \text{ is the root of some ground implication tree w.r.t. } P\}$ is a model of P.
Example

Let P_{add} “add-program”, and V set of variables.

The term interpretation

\[
C(P_{\text{add}}) = \{\text{add}(t, s^n(0), s^n(t)) \mid n \in \mathbb{N}, t \in TU_{\{s,0\},V}\}
\]

\[
= \{\text{add}(s^m(v), s^n(0), s^{n+m}(v)) \mid m, n \in \mathbb{N}, v \in V \cup \{0\}\}
\]

and the Herbrand interpretation

\[
M(P_{\text{add}}) = \{\text{add}(t, s^n(0), s^n(t)) \mid n \in \mathbb{N}, t \in HU_{\{s,0\}}\}
\]

\[
= \{\text{add}(s^m(0), s^n(0), s^{n+m}(0)) \mid m, n \in \mathbb{N}\}
\]

are models of P_{add}.
Correct Answer Substitutions versus Computed Answer Substitutions (Example)

Let P_{add} “add-program”, and $Q = add(u, s(0), s(u))$ query.

- $\theta = \{u/s^2(v)\}$ correct answer substitution of Q, since $P_{\text{add}} \models Q\theta = add(s^2(v), s(0), s^3(v))$ (in analogy to slide 13 with $x = s^2(v)$).

- SLD-derivation of $P_{\text{add}} \cup \{Q\}$:

 \[
 \begin{align*}
 \theta_1 & \vdash add(u, 0, u) \to□ \\
 \theta_2 & \text{ with } \theta_1 = \{x/u, y/0, z/u\} \text{ and } \theta_2 = \{x/u\}, \\
 \end{align*}
 \]

 thus $\eta = (\theta_1 \theta_2)_{\{u\}} = \epsilon$ is a computed answer substitution of Q.

- Thus, $Q\eta$ more general than $Q\theta$.

- In fact, no SLD-derivation of $P_{\text{add}} \cup \{Q\}$ can deliver correct answer substitution θ.
Completeness of SLD-Resolution for Implication Trees

Query Q is n-deep.

\iff

every atom in Q is the root of an implication tree,

and n is the total number of nodes in these trees

Lemma 4.15

Suppose Q^0 is n-deep for some $n \geq 0$. Then for every selection rule \mathcal{R} there exists a successful SLD-derivation of $P \cup \{Q\}$ with $\text{CAS } \eta$ such that Q_η is more general than Q^0.
Completeness of SLD-Resolution (I)

Theorem 4.13
Suppose that θ is a correct answer substitution of Q. Then for every selection rule \mathcal{R} there exists a successful SLD-derivation of $P \cup \{Q\}$ with $\text{CAS } \eta$ such that $Q\eta$ is more general than $Q\theta$.

Proof. Let $Q = A_1, ..., A_m$. Then: θ correct answer substitution of $A_1, ..., A_m$
implies $P \models A_1\theta, ..., A_m\theta$
implies for every interpretation I: if $I \models P$, then $I \models A_1\theta, ..., A_m\theta$
implies $C(P) \models A_1\theta, ..., A_m\theta$ (since $C(P) \models P$ by Lemma 4.12)
implies $\text{inst}(A_i\theta) \subseteq C(P)$ for every $i = 1, ..., m$ (by Lemma 4.7)
implies $A_i\theta \in C(P)$ for every $i = 1, ..., m$
implies $A_1\theta, ..., A_m\theta$ is n-deep for some $n \geq 0$ (by def. of $C(P)$)
implies claim (by Lemma 4.15)
Completeness of SLD-Resolution (II)

Corollary 4.16
Suppose $P \models \exists Q$.
Then there exists a successful SLD-derivation of $P \cup \{Q\}$.

Proof. $P \models \exists Q$
implies $P \models Q\theta$ for some substitution θ
implies θ correct answer substitution of Q
implies claim (by Theorem 4.13)
Least Herbrand Model

Theorem 4.29 \(\mathcal{M}(P) \) is the least Herbrand model of \(P \).

Proof. Let \(I \) be a Herbrand model of \(P \) and let \(A \in \mathcal{M}(P) \).

We prove \(A \in I \) by induction on the number \(i \) of nodes in the ground implication tree w.r.t. \(P \) with root \(A \). Then \(\mathcal{M}(P) \subseteq I \).

\(i = 1 \): A leaf implies \(A \leftarrow \in \text{ground}(P) \)

implies \(I \models A \) (since \(I \models P \))

implies \(A \in I \)

\(i \to i+1 \): A has direct descendants \(B_1, \ldots, B_n \) (roots of subtrees)

implies \(A \leftarrow B_1, \ldots, B_n \in \text{ground}(P) \) and \(B_1, \ldots, B_n \in I \) (induction hypothesis)

implies \(I \models B_1, \ldots, B_n \)

implies \(I \models A \) (since \(I \models P \))

implies \(A \in I \)
Ground Equivalence

Theorem 4.30 For every ground atom A: $P \models A$ iff $\mathcal{M}(P) \models A$.

Proof. “only if”: $P \models A$ and $\mathcal{M}(P) \models P$ implies $\mathcal{M}(P) \models A$ (semantic consequence).

“if”: Show for every interpretation I: $I \models P$ implies $I \not\models A$.

Let $I_H = \{A \mid A$ ground atom and $I \models A\}$ Herbrand interpretation.

\[I \models P \]

implies $I \models B \leftarrow B_1, \ldots, B_n$ for all $B \leftarrow B_1, \ldots, B_n \in \text{ground}(P)$

implies if $I \models B_1, \ldots, I \models B_n$ then $I \models B$ for all ...

implies if $B_1 \in I_H, \ldots, B_n \in I_H$ then $B \in I_H$ for all ... (Def. I_H)

implies $I_H \models P$ (by Lemma 4.26; thus I_H Herbrand model)

implies $A \in I_H$ (since $A \in \mathcal{M}(P)$ and $\mathcal{M}(P)$ least Herbrand model)

implies $I \models A$ (by Def. I_H)
Complete Partial Orderings

Let \((\mathcal{A}, \sqsubseteq)\) be a partial ordering (cf. Slide 18 for Chapter 2).

- \textbf{a least element} of \(X \subseteq \mathcal{A}\)
 \[\iff a \in X, a \sqsubseteq x \text{ for all } x \in X\]

- \textbf{a least upper bound} of \(X \subseteq \mathcal{A}\) (Notation: \(a = \sqcup X\))
 \[\iff a \in \mathcal{A}, x \sqsubseteq a \text{ for all } x \in X \text{ and } a \text{ is the least element of } \mathcal{A} \text{ with this property}\]

\((\mathcal{A}, \sqsubseteq)\) \textbf{complete partial ordering} (\text{CPO}) \(\iff\)

- \(\mathcal{A}\) contains a least element (denoted by \(\emptyset\))

- for every increasing sequence \(a_0 \sqsubseteq a_1 \sqsubseteq a_2 \ldots\) of elements of \(\mathcal{A}\),
 the set \(X = \{a_0, a_1, a_2, \ldots\}\) has a least upper bound
Some Properties of Operators

Let \((A, \sqsubseteq)\) be a \text{CPO}.

operator \(T: A \rightarrow A\) monotonic
\[\iff l \sqsubseteq J \implies T(l) \sqsubseteq T(J)\]

operator \(T: A \rightarrow A\) finitary
\[\iff \text{for every infinite sequence } I_0 \sqsubseteq I_1 \sqsubseteq \ldots, \quad \bigcup_{n=0}^{\infty} T(I_n) \text{ exists and } T \left(\bigcup_{n=0}^{\infty} I_n \right) \sqsubseteq \bigcup_{n=0}^{\infty} T(I_n)\]

operator \(T: A \rightarrow A\) continuous :\(\iff T\) monotonic and finitary

\(I\) pre-fixpoint of \(T :\(\iff T(I) \sqsubseteq I\)

\(I\) fixpoint of \(T :\(\iff T(I) = I\)
Iterating Operators

Let \((\mathcal{A}, \sqsubseteq)\) be a \texttt{CPO}, \(T: \mathcal{A} \to \mathcal{A}\), and \(I \in \mathcal{A}\).

- \(T^0 (I) \iff I\)
- \(T^{(n+1)} (I) \iff T(T^n (I))\)
- \(T^w (I) \iff \bigcup_{n=0}^{\infty} T^n (I)\)

\(T^a :\iff T^a (\emptyset)\) (for \(a = 0, 1, 2, \ldots, w\))

By the definition of a \texttt{CPO}:
If the sequence \(T^0 (I), T^1 (I), T^2 (I), \ldots\) is increasing, then \(T^w (I)\) exists.

\textbf{Theorem 4.22}

If \(T\) is a continuous operator on a \texttt{CPO}, then \(T^w\) exists and is the least prefixpoint of \(T\) and the least fixpoint of \(T\).
Consider the CPO \(\{ I \mid I \text{Herbrand interpretation}\}, \subseteq \).
Let \(P \) be a program and \(I \) a Herbrand interpretation. Then
\[
T_P(I) :\iff \{ A \mid A \leftarrow B_1, ..., B_n \in \text{ground}(P), \{B_1, ..., B_n\} \subseteq I \}
\]

Lemma 4.33

(i) \(T_P \) is finitary.
(ii) \(T_P \) is monotonic.
Lemma 4.32

A Herbrand interpretation I is a model of P iff

$$T_P(I) \subseteq I$$

Proof.

$I \models P$

iff for every $A \leftarrow B_1, \ldots, B_n \in \text{ground}(P)$:

$$\{B_1, \ldots, B_n\} \subseteq I \text{ implies } A \in I \quad \text{(by Lemma 4.26)}$$

iff for every ground atom A: $A \in T_P(I)$ implies $A \in I$

iff $T_P(I) \subseteq I$
Characterization Theorem

Theorem 4.34

\[\mathcal{M}(P) \]

- (i) = least Herbrand model of \(P \)
- (ii) = least pre-fixpoint of \(T_P \)
- (iii) = least fixpoint of \(T_P \)
- (iv) = \(T_P^w \)
- (v) = \(\{ A \mid A \text{ ground atom, } P \models A \} \)

Foundations of Logic Programming

Declarative Interpretation
Success Sets

success set of a program $P :\iff$

$\{ A \mid A$ ground atom, \exists successful SLD-derivation of $P \cup \{ A \} \}$

Theorem 4.37

For a ground atom A, the following are equivalent:

(i) $\mathcal{M}(P) \models A$
(ii) $P \models A$
(iii) Every SLD-tree for $P \cup \{ A \}$ is successful
(iv) A is in the success set of P
Objectives

- Algebras (which provide a semantics of terms)
- Interpretations (which provide a semantics of programs)
- Soundness of SLD-resolution
- Completeness of SLD-resolution
- Least Herbrand models
- Computing least Herbrand models