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Abstract Dialectical Frameworks
Gerhard Brewka, Stefan Ellmauthaler, Hannes Strass,
Johannes P. Wallner, Stefan Woltran

abstract. This handbook chapter describes abstract dialectical frame-
works, or adfs for short. adfs are generalizations of the widely used
Dung argumentation frameworks. Whereas the latter focus on a single
relation among abstract arguments, namely attack, adfs allow arbitrary
relationships among arguments to be expressed. For instance, arguments
may support each other, or a group of arguments may jointly attack an-
other one while each single member of the group is not strong enough to
do so. This additional expressiveness is achieved by handling acceptance
conditions for each argument explicitly.

The semantics of adfs are inspired by approximation fixpoint theory
(AFT), a general algebraic theory for approximation based semantics
developed by Denecker, Marek and Truszczyński. We briefly introduce
AFT and discuss its role in argumentation. This puts us in a position
to formally introduce adfs and their semantics. In particular, we show
how the most important Dung semantics can be generalized to adfs.
Furthermore, we illustrate the use of adfs as semantical tool in various
modelling scenarios, demonstrating how typical representations in argu-
mentation can be equipped with precise semantics via translations to
adfs. We also present grappa, a related approach where the semantics
of arbitrary labelled argument graphs can be directly defined in an adf-
like manner, circumventing the need for explicit translations. Finally, we
address various computational aspects of adfs, like complexity, express-
iveness and realizability, and present several implemented systems.

1 Introduction

This chapter is about abstract dialectical frameworks, or adfs for short. adfs
are generalizations of Dung argumentation frameworks (afs, see Chapter 4
of this Handbook). afs are very popular tools in argumentation. They ab-
stract away from the content of particular arguments and focus on conflicts
among arguments, where each argument is viewed as an atomic item. The
only information afs take into account is whether an argument attacks an-
other one or not. Based on a set of arguments and an attack relation, different
af semantics single out coherent subsets of arguments which “fit” together,
according to specific criteria. More formally, an af semantics takes an argu-
mentation framework as input and produces as output a collection of sets of
arguments, called extensions.
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afs are typically not used directly for knowledge representation purposes,
but as semantical tools: given a knowledge base KB in some knowledge repres-
entation formalism, the set of arguments induced by KB is formally defined and
the attack relation on these arguments is identified. This defines an af that
can be evaluated according to a chosen semantics. The KB formulas supported
by accepted arguments are then the ones which are accepted. This stepwise
evaluation is often referred to as the argumentation process [Caminada and
Amgoud, 2007].

Given that afs are in wide use, a natural question to ask is why a generaliz-
ation of afs is useful in the first place. There are at least two possible answers
to this question:

• the generalization is more expressive than afs,

• the generalization allows for easier modelling.

In fact, it turns out that both answers apply to adfs. We will discuss the issue
of expressiveness in detail in Section 6.2. For the time being let us focus on
the modelling issue. afs restrict their attention to the attack relation, and the
basic intuition is the following: assume an argument b is attacked by argument
c, then whenever c is accepted b is defeated. But how about more fine-grained
– or entirely different – relations which could be of potential interest? What if
c alone is not strong enough and a second argument, say d, is needed to jointly
defeat b? And, maybe even more importantly, aren’t there situations where
accepting an argument can be a reason for accepting another one, in other
words, where arguments are in support rather than in attack relation? We do
not claim here that examples like the ones just discussed cannot be modelled
at all with afs. However, additional nodes in the af argument graph will be
needed which have the sole purpose of modelling other relations indirectly, via
attack. These nodes will often be entirely unrelated to the original knowledge
base and thus meaningless from the perspective of the application.

Indeed, for these reasons many authors have felt the need to extend the
functionality available in afs in one way or another. Examples of exten-
sions described in the literature are preference or value-based afs [Simari
and Loui, 1992; Amgoud and Cayrol, 2002; Amgoud and Vesic, 2011; Bench-
Capon, 2003], afs with support relations [Cayrol and Lagasquie-Schiex, 2013;
Oren and Norman, 2008; Polberg and Oren, 2014], necessities [Nouioua, 2013],
set attacks [Nielsen and Parsons, 2007], attacks on attacks [Modgil, 2009], re-
cursive attacks [Baroni et al., 2011] and afs with weights [Mart́ınez et al., 2008;
Dunne et al., 2011; Coste-Marquis et al., 2012] or probabilities [Hunter, 2013;
Thimm, 2012]. We refer the reader to [Brewka et al., 2014] for an overview of
such extensions.

In a nutshell, adfs are an attempt to unify several of these different ap-
proaches and to generalize afs in a principled, systematic way. The basic idea
is very simple. Consider again the conditions under which an argument, say b,
with attackers c and d is accepted in an af: b is accepted iff c is not accepted
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Figure 1: An argument with two supporters and one attacker.

and d is not accepted. This condition can easily be expressed as the proposi-
tional formula ¬c ∧ ¬d. The acceptance condition for each argument in an af
is obtained in exactly the same way, by constructing the conjunction of the
negations of its attackers. Once the implicit acceptance conditions which are
at work in afs are made explicit this way, the generalization adfs build upon
are pretty straightforward: rather than using implicit acceptance conditions
of the form we just saw, adfs use explicit acceptance conditions which can
conveniently be expressed as arbitrary propositional formulas.

Let us see how explicit acceptance conditions allow us to handle some of the
examples discussed above. We start with joint attack. If b can only be defeated
jointly by c and d, then all we have to do is change the acceptance condition
accordingly: rather than a conjunction, we have to use the disjunction ¬c∨¬d
as acceptance condition for b. The effect is that b is only defeated when both
c and d are accepted, as intended. As soon as one of them is not accepted, b is
no longer defeated.

Support can be handled in a similar manner. Assume g has two supporting
arguments a and b, and one attacking argument c, as illustrated in Figure 1.
We use + and − to indicate support and attack, respectively.

Note that the information about supporting and attacking links in the graph
does not sufficiently specify under what conditions g should be accepted. Let
us call a link active if its source node is accepted. There are various options we
may want to choose, all of them expressible as a particular acceptance condition
for g:

• no negative and all positive links must be active: ¬c ∧ (a ∧ b)

• no negative and at least one positive link must be active: ¬c ∧ (a ∨ b)

• no negative or both positive links must be active: ¬c ∨ (a ∧ b)

• no negative or at least one positive link must be active: ¬c ∨ (a ∨ b)

• more positive than negative links must be active: (¬c ∧ (a ∨ b)) ∨ (a ∧ b)
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Note how it depends on the acceptance condition whether supporting links are
“stronger than” attacking links (meaning that if all incoming links are active,
the node is accepted), as in the last three items, or attacking links are “stronger
than” supporting links (meaning that if all incoming links are active, the node
is rejected), as for the first two items.

We hope these examples are sufficient to illustrate the additional modelling
capabilities adfs provide, and also the simplicity of the basic idea they rest
upon. We will see, however, that generalizing the af semantics to adfs is far
from being simple. This issue will be addressed in Section 3.

In spite of their additional expressiveness, we do not view adfs primarily
as a knowledge representation formalism. We rather consider them as “argu-
mentation middleware”, that is, as a framework which is particularly useful for
providing semantics to other, maybe more user-friendly formalisms via trans-
lations [Brewka et al., 2014]. We will further illustrate this in Section 4.

The rest of this chapter is organized as follows. In Section 2 we recall some
relevant background and in particular discuss some relationships between ap-
proximation fixpoint theory and afs which will be useful later. Section 3 in-
troduces adfs and their semantics formally. The presentation of this section
is based on [Brewka et al., 2013]. Section 4 illustrates the role of adfs in ar-
gumentation, showing how they can be used for modelling. Section 5 describes
grappa (GRaph-based Argument Processing based on Patterns of Accept-
ance) along the lines of [Brewka and Woltran, 2014]; grappa is an approach
to graph-based argumentation which is closely related to adfs and their under-
lying formal techniques. Section 6 discusses subclasses, computational aspects,
and expressivity of adfs. Section 6.1 focuses on an interesting special case
of adfs, so-called bipolar adfs where each link in the adf graph is attacking
or supporting (or both). This rather expressive class is not only of practical
interest, but also has nice computational properties. Expressiveness of adfs
and bipolar adfs is investigated in Section 6.2, computational complexity in
Section 6.3, and recent systems in Section 6.4. Section 7 concludes the chapter.

2 Approximation Fixpoint Theory in Abstract
Argumentation

Denecker, Marek and Truszczyński [Denecker et al., 2000] (henceforth shortened
to DMT) introduced an algebraic framework for studying semantics of know-
ledge representation formalisms. In this framework – approximation fixpoint
theory (AFT) – knowledge bases are associated with operators (functions) on
algebraic structures (for example lattices). The fixpoints of those operators
are then studied in order to analyse the semantics of knowledge bases. While
this technique is standard to define semantics of programming languages and
has indeed been used in early works on logic programming [van Emden and
Kowalski, 1976], the major invention of DMT has been the important concept
of an approximation of an operator. In the study of semantics of knowledge
representation formalisms, elements of lattices represent objects of interest.
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Operators transform such objects into others according to the contents of a
given knowledge base. Consequently, fixpoints of such operators are then ob-
jects that cannot be updated any more – informally speaking, the knowledge
base can neither add information to a fixpoint nor remove information from it.

In classical approaches to fixpoint-based semantics, the underlying algebraic
structure is the complete lattice of the set V2 = {v : A→ {t, f}} of all two-
valued interpretations over some vocabulary A ordered by the truth ordering
≤t with

v1 ≤t v2 if and only if ∀a ∈ A : v1(a) = t =⇒ v2(a) = t.1

Consequently, an operator O on this lattice (V2,≤t) takes as input a two-valued
interpretation v ∈ V2 and returns a revised interpretation O(v) ∈ V2. The in-
tuition of the operator is that the revised interpretation O(v) incorporates
additional knowledge that is induced by the knowledge base associated to O
from interpretation v. Based on this intuition, fixpoints of O correspond to the
models of the knowledge base.

To study fixpoints of operators O, DMT investigate fixpoints of their approx-
imating operators O. WhenO operates on two-valued interpretations V2, its ap-
proximationO operates on three-valued interpretations V3 = {v : A→ {t, f ,u}}.
The three truth values t (true), f (false), and u (undefined) can be ordered by
the information ordering ≤i. This ordering intuitively assigns a greater in-
formation content to the classical truth values {t, f} than to undefined u; more
formally, we have u <i t and u <i f and ≤i is the reflexive transitive closure of
<i. The partially ordered set ({t, f ,u} ,≤i) forms a complete meet-semilattice
with the meet operation ui.2 This meet can be read as consensus and as-
signs t ui t = t, f ui f = f , and returns u otherwise. The ordering ≤i can be
generalized to three-valued interpretations in a pointwise fashion:

v1 ≤i v2 if and only if ∀a ∈ A : v1(a) ∈ {t, f} =⇒ v1(a) = v2(a).3

Again, the resulting algebraic structure is a complete meet-semilattice; its ≤i-
maximal elements are exactly the two-valued interpretations V2, which form
an ≤i-antichain. Intuitively, in that complete meet-semilattice, a single three-
valued interpretation

v : A→ {t, f ,u}
serves to approximate a set [v]2 = {w ∈ V2 | v ≤i w} of two-valued in-
terpretations. For example, for the vocabulary A = {a, b, c}, the
three-valued interpretation v = {a 7→ t, b 7→ u, c 7→ f} approximates the set
{w1, w2} of two-valued interpretations where w1 = {a 7→ t, b 7→ t, c 7→ f} and
w2 = {a 7→ t, b 7→ f , c 7→ f}.

1(V2,≤t) is isomorphic to (2A,⊆) via v 7→ v−1(t) = {a ∈ A | v(a) = t}.
2A complete meet-semilattice is such that every non-empty finite subset has a greatest

lower bound, the meet; and every non-empty directed subset has a least upper bound. A
subset is directed iff any two of its elements have an upper bound in the set.

3(V3,≤i) is isomorphic to ({M ⊆ A ∪ {¬a | a ∈ A} | a ∈M =⇒ ¬a /∈M} ,⊆) via the
mapping v 7→ {a ∈ A | v(a) = t} ∪ {¬a | a ∈ A, v(a) = f}.
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In a similar vein, a three-valued operator O : V3 → V3 approximates a two-
valued operator O : V2 → V2 if and only if

1. for all v ∈ V2, we have O(v) = O(v) (O agrees with O on two-valued v),
and

2. for all v1, v2 ∈ V3, v1 ≤i v2 =⇒ O(v1) ≤i O(v2) (O is ≤i-monotone).

DMT [Denecker et al., 2000] showed that in this case fixpoints ofO approximate
fixpoints of O. More specifically, for every fixpoint v2 of O, there is a fixpoint
v3 of O such that v2 ∈ [v3]2. Moreover, an approximating operator O always
has a fixpoint, which need not be the case for two-valued operators O. In
particular, O has an ≤i-least fixpoint, which approximates all fixpoints of O.

In subsequent work, DMT [Denecker et al., 2004] presented a general,
abstract way to define the most precise approximation of a given operator
O : V2 → V2. Most precise here refers to a generalisation of ≤i to operators,
where for O1,O2 : V3 → V3, they define O1 ≤i O2 iff for all v ∈ V3 it holds that
O1(v) ≤i O2(v). Specifically, DMT then show that the most precise – called
the ultimate – approximation of O is given by the operator UO : V3 → V3 that
maps a given v ∈ V3 to

UO(v) : A→ {t, f ,u} with a 7→


t if w(a) = t for all w ∈ {O(x) | x ∈ [v]2}
f if w(a) = f for all w ∈ {O(x) | x ∈ [v]2}
u otherwise

This definition is remarkable since previously, approximations of operators had
to be devised by hand rather than automatically derived. DMT [Denecker et
al., 2004] give additional definitions introducing stable semantics that are only
of minor interest here and will be introduced in a special form later.

AFT on AFs

AFT can be used for defining semantics of afs as follows [Strass, 2013a]. The
stable semantics for afs can be understood as a two-valued semantics given
by the fixpoints of an operator (going back to Pollock [1987]) on two-valued
interpretations.

Definition 2.1 For each af F = (A,R), the operator UF : V2 → V2 yields –
for a given interpretation v : A→ {t, f} – a new interpretation

UF (v) : A→ {t, f} with a 7→

{
f if ∃b ∈ A : v(b) = t, (b, a) ∈ R
t otherwise

Intuitively, all arguments that are attacked in F by some argument that is
true in v are set to false in UF and set to true otherwise, that is, if unattacked
by all t arguments of v. (So the U is for “unattacked”.) It is easy to see that
the fixpoints of this operator exactly correspond to stable extensions [Strass,
2013a, Proposition 4.4].
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Proposition 2.2 Let F = (A,R) be an AF and v : A→ {t, f} be an inter-
pretation. Then v = UF (v) iff the set v−1(t) = {a ∈ A | v(a) = t} is a stable
extension of F .

Example 2.3 Consider the af F1 = (A1, R1) with A1 = {a, b} and
R1 = {(a, b), (b, a)}:

a b

Below, we depict the complete lattice ({v : A1 → {t, f}} ,≤t) of two-valued in-
terpretations over A1 ordered by the truth ordering as a Hasse diagram (i.e.
straight lines show direct ≤t-neighbours), and how the operator UF1

assigns its
points to others (dashed arrows).

{a 7→ f , b 7→ f}

{a 7→ t, b 7→ f} {a 7→ f , b 7→ t}

{a 7→ t, b 7→ t}

It can be seen from the diagram that the operator has two fixpoints,
{a 7→ t, b 7→ f} and {a 7→ f , b 7→ t}. They correspond one-to-one to the stable
extensions {a} and {b} of the AF F1.

Example 2.4 In contrast, consider the af F2 = (A2, R2) with A2 = {a, b, c}
and R2 = {(a, b), (b, c), (c, a)}:

a

bc

Again, we depict the complete lattice ({v : A2 → {t, f}} ,≤t) and how the op-
erator UF2 assigns its points to others.
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{a 7→ f , b 7→ f , c 7→ f}

{a 7→ t, b 7→ f , c 7→ f} {a 7→ f , b 7→ t, c 7→ f} {a 7→ f , b 7→ f , c 7→ t}

{a 7→ f , b 7→ t, c 7→ t}{a 7→ t, b 7→ f , c 7→ t}{a 7→ t, b 7→ t, c 7→ f}

{a 7→ t, b 7→ t, c 7→ t}

The picture makes it obvious that UF2 has no fixpoint, in accordance with the
fact that F2 has no stable extension.

Using the definitions of Denecker, Marek and Truszczyński, it is easy to
obtain the ultimate approximation of UF . (See also [Strass, 2013a, Proposi-
tion 4.1].)

Corollary 2.5 Given an interpretation v : A→ {t, f ,u}, the three-valued op-
erator ΥF : V3 → V3 yields a new interpretation

ΥF (v) : A→ {t, f ,u} with a 7→


f if ∃b ∈ A : v(b) = t, (b, a) ∈ R
t if ∀b ∈ A : (b, a) ∈ R =⇒ v(b) = f

u otherwise

For any given AF F , the fixpoints of UF constitute the stable semantics of F .
The ultimate approximation ΥF approximates UF , thus the semantics induced
by ΥF then intuitively approximate af stable semantics. More specifically, the
following result is straightforward [Strass, 2013a, Section 4]:4

Proposition 2.6 Let F = (A,R) be an AF and v : A→ {t, f ,u} be an inter-
pretation.

1. v is complete for F iff v = ΥF (v).

4Given an AF F = (A,R), an extension E ⊆ A uniquely determines a three-valued in-
terpretation vE by letting vE(a) = t if a ∈ E, vE(a) = f if a is attacked by E in F , and
vE(a) = u otherwise. Similarly, a three-valued interpretation v : A→ {t, f ,u} uniquely de-
termines an extension Ev = {a | v(a) = t}. This allows us to switch freely between extensions
and interpretations.
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2. v is admissible for F iff v ≤i ΥF (v).

3. v is preferred for F iff v is ≤i-maximal admissible.

4. v is grounded for F iff v is the ≤i-least fixpoint of ΥF .

In the next section, we will use approximation fixpoint theory and this result
to define the semantics of adfs in a straightforward way.

Example 2.7 Consider the AF F3 = (A3, R3) with A3 = {a, b} and
R3 = {(a, b)}:

a b

Below, we depict the associated meet-semilattice ({v : A3 → {t, f ,u}} ,≤i) of
the set of all three-valued interpretations over A3 ordered by the information
ordering, and how the operator ΥF3 maps those interpretations to others.

{a 7→ u, b 7→ u}

{a 7→ f , b 7→ u}{a 7→ u, b 7→ f} {a 7→ t, b 7→ u} {a 7→ u, b 7→ t}

{a 7→ f , b 7→ f} {a 7→ t, b 7→ f} {a 7→ f , b 7→ t} {a 7→ t, b 7→ t}

The picture shows how the grounded semantics can be obtained by following the
dotted line starting in the ≤i-least element up to the operator’s single fixpoint.
(In fact, it obviates that all (sufficiently long) sequences of operator applica-
tions lead to the fixpoint, showing that this interpretation really is the intended
meaning of F3.)

Example 2.8 Reconsider the AF F1 = (A1, R1) from Example 2.3 with
A1 = {a, b} and R1 = {(a, b), (b, a)}:

a b
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Again, we show the complete meet-semilattice ({v : A1 → {t, f ,u}} ,≤i) along
with the mappings of the operator ΥF1

(dotted arrows).

{a 7→ u, b 7→ u}

{a 7→ f , b 7→ u}{a 7→ u, b 7→ f} {a 7→ t, b 7→ u} {a 7→ u, b 7→ t}

{a 7→ f , b 7→ f} {a 7→ t, b 7→ f} {a 7→ f , b 7→ t} {a 7→ t, b 7→ t}

In this picture, the operator UF1
re-appears in the top row of all two-valued in-

terpretations. Those form a complete lattice with respect to ≤t, but an antichain
with respect to ≤i. Likewise, the two fixpoints of UF1

re-appear as fixpoints of
ΥF1 in the top row. The additional fixpoint of ΥF1 consequently constitutes the
grounded semantics of F1.

As we have seen, the operator ΥF arises naturally from a straightforward
application of ultimate approximation [Denecker et al., 2004] to an operator
proposed by Pollock [1987]. It is interesting to observe that the assignments of
the operator correspond precisely to what has independently been defined as
“legal argument labellings” [Caminada and Gabbay, 2009].

3 ADFs: Syntax and Semantics

Like an af, an abstract dialectical framework (adf) is a directed graph whose
nodes represent arguments, statements or positions. One can think of the
nodes as arbitrary items which can be accepted or not. The links represent
dependencies. However, unlike a link in an af, the meaning of an adf link can
vary. The status of a node s only depends on the status of its parents (denoted
par(s)), that is, the nodes with a direct link to s. In addition, each node s has
an associated acceptance condition Cs specifying the exact conditions under
which s is accepted. Cs is a function assigning to each subset of par(s) one of
the truth values t, f .5 Intuitively, if for some R ⊆ par(s) we have Cs(R) = t,
then s will be accepted provided the nodes in R are accepted and those in
par(s) \R are not accepted.

5In the original paper in and out were used. We prefer truth values here as they allow us
to apply standard logical terminology.
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Definition 3.1 An abstract dialectical framework is a tuple D = (S,L,C)
where

• S is a set of statements (positions, nodes),

• L ⊆ S × S is a set of links,

• C = {Cs}s∈S is a set of total functions Cs : 2par(s) → {t, f}, one for each
statement s. Cs is called acceptance condition of s.

In many cases it is convenient to represent acceptance conditions as proposi-
tional formulas. For this reason we will frequently use a logical representation
of adfs (S,L,C) where C is a collection {ϕs}s∈S of propositional formulas.6

Example 3.2 In the following adf, which will act as running example
throughout the chapter, we use formulas to specify acceptance conditions.

a b

c d

ϕa = > ϕb = b

ϕc = a ∧ b ϕd = ¬b

Intuitively, ϕa states that a should always be accepted. Condition ϕb expresses
a kind of self-support, which can be utilized as a guess whether or not to accept
b. Finally, c should be accepted if both a and b are, while d is attacked by
statement b.

Unless specified differently we will tacitly assume that the acceptance for-
mulas specify the parents a node depends on implicitly. It is then not necessary
to give the links in the graph explicitly. We thus can represent an adf D as a
tuple (S,C) where S and C are as above and L is implicitly given as (a, b) ∈ L
iff a appears in ϕb.

The different semantics of adfs over statements S are based (via approx-
imation fixpoint theory) on the notion of a two-valued model. A two-valued
interpretation v : S → {t, f} – a mapping from statements to the truth values
true and false – is a two-valued model (model, if clear from the context) of
an adf (S,C) whenever for all statements s ∈ S we have v(s) = v(ϕs), that

6More precisely, each acceptance condition Cs will be represented as a propositional for-
mula ϕs over the vocabulary par(s).
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is, v maps exactly those statements to true whose acceptance conditions are
satisfied under v.7

Approximation Fixpoint Theory on ADFs

We now come back to AFT and illustrate its role to define semantics for
ADFs [Strass, 2013a; Brewka et al., 2013]. As AFT deals with operator-based
semantics and how to approximate them, the starting point is an operator for
the two-valued semantics: the notion of an adf model allows us to associate a
two-valued operator to a given adf.

Definition 3.3 Let D = (S, {ϕs}s∈S) be an ADF. The operator GD : V2 → V2
takes an input v : S → {t, f} and returns an updated interpretation

GD(v) : S → {t, f} with s 7→ v(ϕs)

In words, the operator takes a two-valued interpretation v and returns a
two-valued interpretation GD(v) mapping each s ∈ S to the truth value that is
obtained by evaluating ϕs with v. It is easy to see that this operator charac-
terises the adf model semantics [Strass, 2013a, Proposition 3.4].

Proposition 3.4 Let D = (S,L,C) be an adf and v : S → {t, f} be a two-
valued interpretation. Then v is a (two-valued) model of D iff v = GD(v).

Example 3.5 For the ADF D from Example 3.2, Figure 2 depicts the complete
lattice ({v : S → {t, f}} ,≤t) and how the operator GD assigns its points to
others.

Using the general operator-based definitions of Denecker, Marek and
Truszczyński [Denecker et al., 2004], it is again straightforward to determine
the ultimate approximation of GD. Recall from the section on approximation
fixpoint theory (Section 2) that the set V3 of all three-valued interpretations
over S forms a complete meet-semilattice with respect to the information or-
dering ≤i. The consensus meet operation ui of this semilattice is given by
(v1 ui v2)(s) = v1(s) ui v2(s) for all s ∈ S. The least element of this semilattice
is the interpretation vu : S → {u} mapping all statements to undefined – the
least informative interpretation. The ultimate approximation of the two-valued
adf operator GD is now obtained as follows [Strass, 2013a, Lemma 3.12]:

Corollary 3.6 Let D be an adf. The operator ΓD : V3 → V3 is the ultimate
approximation of GD and is defined as follows: for an adf D and a three-valued
interpretation v, the revised interpretation ΓD(v) is given by

ΓD(v) : S → {t, f ,u} with s 7→
d
i {w(ϕs) | w ∈ [v]2}

7In an earlier paper [Brewka et al., 2013], there was the notion of a “three-valued model”.
The development and analysis of that concept has been discontinued.
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d 7→ t}

{a 7→ f ,
b 7→ f ,
c 7→ t,
d 7→ t}

{a 7→ t,
b 7→ t,
c 7→ t,
d 7→ f}

{a 7→ t,
b 7→ t,
c 7→ f ,
d 7→ t}

{a 7→ t,
b 7→ f ,
c 7→ t,
d 7→ t}

{a 7→ f ,
b 7→ t,
c 7→ t,
d 7→ t}

{a 7→ t,
b 7→ t,
c 7→ t,
d 7→ t}

Figure 2: Complete lattice of two-valued interpretations for Example 3.2;
dashed arrows visualise the assignments of the operator GD. It can be read-
ily seen that GD has two fixpoints, whence D has two models (Proposition 3.4).
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That is, for each statement s, the operator returns the consensus truth value
for its acceptance formula ϕs, where the consensus takes into account all pos-
sible two-valued interpretations w that extend the input valuation v. If this v is
two-valued, then [v]2 = {v}, thus ΓD(v)(s) = v(ϕs) = GD(v)(s) and ΓD indeed
approximates GD.

Example 3.7 Consider the adf D1 = (S1, L1, C1) given by S1 = {a, b, c}, and
L1 and C1 given as follows:

a b c

ϕa = ⊥ ϕb = a ∨ b ∨ ¬c ϕc = ¬a ∨ ¬b

Roughly, a cannot be accepted. Statement b supports itself, and is furthermore
supported by a and attacked by c – more precisely, b can be accepted if a can
be accepted or b can be accepted or c can be rejected. In turn, c is jointly
attacked by a and b – c can only be rejected if both a and b are accepted,
otherwise c is accepted. Figure 3 shows the associated complete meet-semilattice
({v : S1 → {t, f ,u}} ,≤i) along with the mappings of the operator ΓD1

.

It is now an easy corollary of Definition 2.6 to generalize the standard af
semantics to adfs:

Definition 3.8 Let D = (S,L,C) be an adf and v : S → {t, f ,u} be an inter-
pretation.

1. v is complete for D iff v = ΓD(v).

2. v is admissible for D iff v ≤i ΓD(v).

3. v is preferred for D iff v is ≤i-maximal admissible.

4. v is grounded for D iff v is the ≤i-least fixpoint of ΓD.

Incidentally, Brewka and Woltran [2010] already defined the operator ΓD
(manually) and used it to define the grounded semantics. Thus the grounded
semantics can be seen as the greatest possible consensus between all accept-
able ways of interpreting the adf at hand. A three-valued interpretation is
admissible for an adf D iff it does not make an unjustified commitment that
the operator ΓD will subsequently revoke.

There is an alternative and perhaps slightly more accessible way of introdu-
cing the operator ΓD. We will briefly pursue this way for illustration, and start
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{a 7→ u,
b 7→ u,
c 7→ u}

{a 7→ u,
b 7→ u,
c 7→ t}

{a 7→ u,
b 7→ t,
c 7→ u}

{a 7→ t,
b 7→ u,
c 7→ u}

{a 7→ f,
b 7→ u,
c 7→ u}

{a 7→ u,
b 7→ f,
c 7→ u}

{a 7→ u,
b 7→ u,
c 7→ f}

{a 7→ u,
b 7→ t,
c 7→ t}

{a 7→ t,
b 7→ u,
c 7→ t}

{a 7→ t,
b 7→ t,
c 7→ u}

{a 7→ u,
b 7→ f,
c 7→ t}

{a 7→ f,
b 7→ t,
c 7→ u}

{a 7→ u,
b 7→ t,
c 7→ f}

{a 7→ f,
b 7→ u,
c 7→ t}

{a 7→ t,
b 7→ f,
c 7→ u}

{a 7→ t,
b 7→ u,
c 7→ f}

{a 7→ f,
b 7→ f,
c 7→ u}

{a 7→ f,
b 7→ u,
c 7→ f}

{a 7→ u,
b 7→ f,
c 7→ f}

{a 7→ t,
b 7→ t,
c 7→ t}

{a 7→ t,
b 7→ t,
c 7→ f}

{a 7→ t,
b 7→ f,
c 7→ t}

{a 7→ f,
b 7→ t,
c 7→ t}

{a 7→ t,
b 7→ f,
c 7→ f}

{a 7→ f,
b 7→ t,
c 7→ f}

{a 7→ f,
b 7→ f,
c 7→ t}

{a 7→ f,
b 7→ f,
c 7→ f}

Figure 3: Complete meet-semilattice of three-valued interpretations over
S1 = {a, b, c} under the information ordering for Example 3.7; dotted arrows
visualise mappings of the operator ΓD1

. It can be seen that ΓD1
has a ≤i-least

fixpoint, which is situated right ≤i-beneath its two-valued models, the other two
fixpoints of ΓD1

.

out with an additional definition. For a propositional formula ϕ over vocabu-
lary S and a three-valued interpretation v : S → {t, f ,u}, the partial valuation
of ϕ by v is the formula

ϕv = ϕ[p/> : v(p) = t][p/⊥ : v(p) = f ]

Intuitively, given a three-valued interpretation v and a formula ϕ, the partial
evaluation of ϕ with v takes the two-valued part of v and replaces the evaluated
variables with their truth values. For example, consider the propositional for-
mula ϕ = a ∨ (b ∧ c) and the interpretation v1 = {a 7→ f , b 7→ t, c 7→ u}. State-
ment c with v1(c) = u will remain in ϕ, while a and b are replaced, and we
get ϕv1 = ⊥ ∨ (> ∧ c). Now assume that an adf D = (S, {ϕs}s∈S) is given via
acceptance formulas; for this D and a three-valued interpretation v, the revised
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interpretation ΓD(v) is given by

ΓD(v) : S → {t, f ,u} with s 7→


t if ϕvs is irrefutable

f if ϕvs is unsatisfiable

u otherwise

An irrefutable formula is a formula that is satisfied under any two-valued in-
terpretation (i.e. the formula is a tautology).

For reasons of brevity, we will sometimes shorten the notation of a three-
valued interpretation v = {a1 7→ t1, . . . , an 7→ tn, } with statements a1, . . . , an
and truth values t1, . . . , tn to v =̂ {ai | v(ai) = t} ∪ {¬ai | v(ai) = f}. For in-
stance, v = {a 7→ t, b 7→ u, c 7→ f} =̂ {a,¬c}.

We now show some concrete interpretations and semantics for an example.

Example 3.9 As we have seen before, for the adf D from Example 3.2 we
obtain the following two-valued models:

• v1 = {a 7→ t, b 7→ t, c 7→ t, d 7→ f} =̂ {a, b, c,¬d}

• v2 = {a 7→ t, b 7→ f , c 7→ f , d 7→ t} =̂ {a,¬b,¬c, d}

Unfortunately, due to its sheer size (34 = 81 interpretations), we can-
not depict the semi-lattice ({S → {t, f ,u}} ,≤i) and will henceforth re-
sort to textual descriptions. The grounded interpretation of D is
v3 = {a 7→ t, b 7→ u, c 7→ u, d 7→ u} =̂ {a}. The admissible interpretations
(ordered by ≤i) of our example adf are as follows:

∅

{a}{b} {¬b}

{a,¬b}{a, b}{b,¬d} {¬b, d} {¬b,¬c}

{a,¬b, d}{a, b,¬d}{a, b, c} {a,¬b,¬c} {¬b,¬c, d}

{a, b, c,¬d} {a,¬b,¬c, d}

We verify that v4 =̂ {a,¬b,¬c} is admissible in the example adf. State-
ment a’s acceptance condition is a tautology. This means that under any
three-valued interpretation v′ it holds that ΓD(v′)(a) = t, and, in particular,
ΓD(v4)(a) = v4(a) = t. Acceptance condition of statement b is the formula
b. Such an acceptance condition (a single unnegated variable) implies that
for any three-valued interpretation v′ that assigns a value to b, it holds that
ΓD(v′)(b) = v′(b). If b is assigned t by v′, then ϕv

′

b is a tautology, if b is assigned
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f , then ϕv
′

b is unsatisfiable, and if b is assigned u by v′, then ϕv
′

b = b is neither
a tautology nor unsatisfiable. The acceptance condition of statement c is a∧ b.
Evaluating ϕc under v4 gives ϕv4c = > ∧ ⊥ ≡ ⊥, and ΓD(v4)(c) = f = v4(c).
Finally, v4(d) = u and ϕd = ¬b. Since for the undefined truth value it holds
that u ≤i t and u ≤i f , if a three-valued interpretation v′ assigns undefined
to a statement, then applying the operator ΓD under v′ cannot return a truth
value with less information than u for that statement. For our example inter-
pretation, we have v4(d) ≤i ΓD(v4)(d) = t.

The complete interpretations of our example adf are

v3 =̂ {a}, v5 =̂ {a, b, c,¬d}, v6 =̂ {a,¬b,¬c, d}.

The latter two, v5 and v6, are the preferred interpretations.

The definition of stable model semantics for adfs [Brewka et al., 2013] is
based on ideas from Logic Programming (LP) where stable models strengthen
the notion of minimal models by excluding self-justifying cycles of atoms. In
LP, this is achieved by a test which picks a candidate model M , uses M to
reduce the original logic program to a program without negative literals, and
then checks whether M coincides with the (typically unique) least model of the
reduced program. This way self-justifying cycles cannot appear. What we do
for an adf D is very similar: to check whether a two-valued model v of D is
stable we do the following:

• we eliminate in D all nodes with v-value f and corresponding links,

• we replace eliminated nodes in acceptance conditions by ⊥,

• we check whether nodes that are t in v coincide with those that are t in
the grounded interpretation of the reduced adf.

This is captured in the following definition [Brewka et al., 2013, Definition 6].
(See also [Strass and Wallner, 2015, Proposition 2.4] for an alternative definition
via AFT.)

Definition 3.10 Let D = (S,L,C) be an adf with C = {ϕs}s∈S and
v : S → {t, f} be a two-valued model of D. Define the reduced adf Dv with
Dv = (Sv, Lv, Cv), where

• Sv = {s ∈ S | v(s) = t}

• Lv = L ∩ Sv × Sv

• Cv = {ϕvs}s∈Sv where for each s ∈ Sv, we set ϕvs = ϕs[b/⊥ : v(b) = f ].

Denote by w the unique grounded interpretation of Dv. Now the two-valued
model v of D is a stable model of D if and only if for all s ∈ S, we find that
v(s) = t implies w(s) = t.
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Note that a stable model of an adf D is a model of D by definition (v
is assumed to be a model). In the reduct for a model v, (i) only statements
assigned to true by v are present, (ii) only links with both ends being statements
assigned to true by v are considered, and (iii) in each acceptance formula of
the remaining statements we replace statements b ∈ S that v maps to false
by their truth value, i.e., in these acceptance conditions variables assigned to
false by v are replaced by ⊥ (and the remaining statements/variables remain
unmodified in the formulas). This definition straightforwardly expresses the
intuition underlying stable models: if all statements the model v takes to be
false are indeed false, we must find a constructive proof for all statements the
model takes to be true.

Example 3.11 Consider the adf D given by

ϕa = >, ϕb = ¬a ∨ c, ϕc = b.

It has two models: v1 = {a 7→ t, b 7→ t, c 7→ t} and v2 = {a 7→ t, b 7→ f , c 7→ f}.
Let us check whether they are stable models. For v1, the reduct, Dv1 , is equal
to D (every statement is assigned to true by v1, thus all statements and links
remain in the reduct and no statement is replaced by ⊥ in an acceptance con-
dition). The grounded interpretation of D is v3 = {a 7→ t, b 7→ u, c 7→ u}, im-
plying that v1 is not stable in D, since the grounded interpretation of Dv1 is
not equal to v1.8

For the other model of D, the reduct Dv2 = (Sv2 , Lv2 , Cv2) with Sv2 = {a},
Lv2 = ∅, and ϕa = >. The grounded interpretation of Dv2 is v4 = {a 7→ t}.
The final condition of Definition 3.10, v2(a) = t implies v4(a) = t, is satisfied,
and, therefore, v2 is a stable model of D. Further, v2 is the only stable model
of D, since we considered all models of D, only one being stable, and any other
interpretation cannot be stable for D, since being a model is a prerequisite for
being stable.

Next, we illustrate that there are cases where an adf has a model, but no
stable model.

Example 3.12 Consider the adf D given by

ϕa = c, ϕb = c, ϕc = a↔ b.

8The definition of stable models in this chapter, taken from [Brewka et al., 2013, Definition
6], supersedes the definition of stable models in the original paper on adfs [Brewka and
Woltran, 2010, Definition 6] in that the new definition corrects certain unintended results.
For instance, v1 in Example 3.11 is the only stable model according to the old definition,
but this is not the case under the new definition. The model v1 violates the basic intuition
of stable semantics that all elements of a stable model should have a non-cyclic justification:
in the model v1 it holds that b is accepted because c is and vice versa (these two statements
have supporting links to each other; see Section 6.1 for a formalization of attacking and
supporting links between statements).
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The only two-valued model of D is v = {a 7→ t, b 7→ t, c 7→ t}. Since c is true
because a and b are and vice versa, the model contains unintended cyclic sup-
port and thus should not be stable. Indeed, for the reduct we get Dv = D.
Let us compute the grounded semantics of D. We start with interpretation
w = {a 7→ u, b 7→ u, c 7→ u}. Since none of the acceptance formulas is a tau-
tology or an unsatisfiable formula, w is already a fixpoint of ΓD and thus the
grounded interpretation of D. Hence v is not a stable model and D has no
stable models, just as intended. Since v is a minimal model of D the example
illustrates that in Definition 3.10 we actually need the grounded semantics; re-
quiring v to be among the (subset-inclusion or information) minimal two-valued
models of the reduct is insufficient, in contrast to, e.g., stable semantics of logic
programs.

For our running example, the concept of reduct is applied as follows.

Example 3.13 The ADF from Example 3.2 has two two-
valued models, namely v1 = {a 7→ t, b 7→ t, c 7→ t, d 7→ f} and
v2 = {a 7→ t, b 7→ f , c 7→ f , d 7→ t}. We obtain the reducts for each model
of D as follows:

a b

c

ϕa = > ϕb = b

ϕc = a ∧ b

Reduct Dv1

a

d

ϕa = >

ϕd = ¬⊥

Reduct Dv2

The grounded interpretation of reduct Dv1 is {a}, v1 is thus not a stable model
of D. For v2, the reduct Dv2 has the grounded interpretation {a 7→ t, d 7→ t}.
The model v2 of D is thus the single stable model of D.

Well-known relationships between semantics defined on Dung AFs carry over
to adfs. This is formalized in the next theorem [Brewka et al., 2013, The-
orem 3].

Theorem 3.14 Let D be an adf.

• Each stable model of D is a two-valued model of D;

• each two-valued model of D is a preferred interpretation of D;

• each preferred interpretation of D is complete;
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stable model

two-valued model

preferred interpretation

complete interpretation

admissible interpretation

grounded interpretation

Figure 4: Relations between adf semantics

• each complete interpretation of D is admissible;

• the grounded interpretation of D is complete.

We illustrate the relationships in Figure 4 where an arrow from a σ-
interpretation to a τ -interpretation denotes that every σ-interpretation is a
τ -interpretation. Further, again similarly as in AFs, any ADF possesses at
least one admissible, complete, preferred, and grounded interpretation, while
this is not guaranteed for models and stable models.

In addition to the semantical relationships generalizing those known from
afs, semantics on adfs also directly generalize semantics for afs. We first
define for a given af its associated adf.

Definition 3.15 For an af F = (A,R), define the adf associated to F as
DF = (A,R,C) with C = {ϕa}a∈A such that for each a ∈ A, the acceptance
condition is given by

ϕa =
∧
b∈A,

(b,a)∈R

¬b

Now we can formalize the way adfs, and their semantics, generalize afs in
the next two theorems [Brewka et al., 2013].

Theorem 3.16 Let F = (A,R) be an af and DF its associated adf. For any
two-valued interpretation v for A, the following are equivalent:
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(A) the set v−1(t) = {a ∈ A | v(a) = t} is a stable extension of F ,

(B) v is a stable model of DF ,

(C) v is a two-valued model of DF .

Note that for af-based adfs, there is no distinction between models and
stable models. The intuitive explanation for this is that stable semantics on
adfs breaks cyclic supports, which cannot arise in afs because they cannot
(directly) express support.

More generally, we can also show that our definitions are indeed proper
generalizations of Dung’s notions for afs as given in Proposition 2.6. The
result is due to [Brewka et al., 2013].

Theorem 3.17 Let F be an af and DF its associated adf. An interpretation
is admissible, complete, preferred, grounded for F iff it is admissible, complete,
preferred, grounded for DF .

On afs, if v is a preferred interpretation (a stable model) for an af F
it holds that there is no preferred interpretation (stable model) v′ 6= v such
that the set of statements assigned to true by v is a subset of the statements
assigned to true by v′, i.e., {s | v(s) = t} 6⊆ {s | v′(s) = t}. On general adfs,
this property does not hold for preferred interpretations and two-valued models,
i.e., there are adfs with two preferred interpretations (models) v and v′ such
that {s | v(s) = t} ⊆ {s | v′(s) = t}.

Example 3.18 Consider adf D = ({a}, {(a, a)}, {ϕa = a}). Both
v1 = {a 7→ f} and v2 = {a 7→ t} are models and preferred interpretations
of D. It holds that {s | v(s) = t} = ∅ ( {a} = {s | v′(s) = t}.

On the other hand, for any ADF D with stable models v1 and v2, it holds
that v1 ≤t v2 implies v1 = v2 [Strass, 2013a, Proposition 3.8], that is, such
strict relationships cannot occur between stable models. (This follows easily
from AFT.)

4 ADFs as Modelling Tools

In this section we will provide various examples illustrating why – as we be-
lieve – adfs are useful tools in formal argumentation. We discussed the term
argumentation middleware in the introduction already. We now want to give a
clearer picture what we actually mean by this. More precisely, we will discuss
various graphical representations of argumentation scenarios users may find
useful. In each case we define the semantics of the chosen representation by
providing a formal translation to adfs. The representation is thus equipped –
via the translation – with the whole range of Dung semantics we have defined
for adfs. We also discuss how adfs can serve as a tool for providing semantics
to systems based on strict and defeasible inference rules, again via a translation.
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a

b

c

g

5

2

−6

Figure 5: An argument graph with weighted links.

4.1 Weights and Preferences

In our informal discussion in the introduction we have already shown how
graphical representations based on link types (+ for supporting, − for attack-
ing) can be modeled using adfs. The same is obviously true for links annot-
ated with numerical weights. Throughout the chapter we will assume a positive
weight represents support, a negative weight attack, in both cases with a given
strength. An example can be found in Figure 5.

The figure uses a weighted graph to represent a simple argumentation scen-
ario. We will provide the graph with a formal semantics based on translating it
to an adf. There are various ways of interpreting the numbers and of actually
deriving specific adf acceptance conditions from representations like this one.
We first have to specify how the numbers should actually be used to decide
whether a node is accepted or not. Recall that a link is active if its source node
is accepted. A straightforward idea is to accept a node whenever the sum of
the weights of all active links pointing to the node is positive. We will call this
strategy sum-of-weights (sow). For node g in Figure 5 this amounts, as we will
see, to the following acceptance condition: (¬c ∧ (a ∨ b)) ∨ (a ∧ b).

Secondly, we need to take care of those nodes which do not depend on other
nodes, that is, nodes without incoming links. We will call these nodes input
nodes and denote the input nodes of a graph G as input(G). It is often useful
to consider input nodes as parameters whose truth values can be chosen freely,
with the aim to explore the consequences of a particular choice. Consequently,
our translation will depend on the assignment of truth values to the input
nodes.

Definition 4.1 Let G = (N,E, I) be a labelled graph with nodes N , edges E
and (integer) labelling function I : E → Z. Let A ⊆ input(G) be the subset
of input nodes considered true (the other input nodes are considered false).
The sum-of-weights translation of G under A is the adf D = (S,L,C) with
S = N , L = E, and the acceptance condition Cs (represented as a formula φs)
is defined as follows:



Abstract Dialectical Frameworks 257

φs =


>, if s ∈ A
⊥, if s ∈ input(G) \A
φsow(s), otherwise

where the formula φsow(s) is the disjunction of all conjunctions of literals built
from parent nodes of s which represent truth value assignments under which
the sum of weights of active links is positive.

Let us check how the acceptance condition for node g in Figure 5 is obtained.
The following table shows 8 possible assignments of truth values to g’s parent
nodes, together with the sum of values of active links:

a b c
t t t 1
t t f 7
t f t -1
t f f 5
f t t -4
f t f 2
f f t -6
f f f 0

The sum of weights of active links is positive in 4 of the 8 lines, the acceptance
condition of g is the disjunction of the conjunctions corresponding to these lines,
that is:

(a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ ¬c) ∨ (¬a ∧ b ∧ ¬c)

which can be simplified to (¬c∧ (a∨ b))∨ (a∧ b), the formula presented earlier.
Of course, there are many more strategies how to evaluate the numbers. One

possibility is to check whether the maximal positive weight of an active link
is higher than the maximal negative weight of an active link. This leads to a
different definition of acceptance conditions for non-input nodes. We leave the
details to the reader and just mention that in Figure 5 the acceptance condition
for g under this new strategy becomes (¬c ∧ (a ∨ b)).

Qualitative preferences can be handled in a similar manner. Let us first
introduce prioritized argument graphs.

Definition 4.2 A prioritized argument graph is a tuple G = (S,L+, L−, >)
where S is the set of nodes, L+ and L− are subsets of S × S, the support-
ing and attacking links, and > is a strict partial order (irreflexive, transitive,
antisymmetric) on S representing preferences among the nodes.

As before, we will translate prioritized argument graphs to adfs. We illustrate
the translation using an example. Assume we are given the graph in Figure 6.



258 G. Brewka, S. Ellmauthaler, H. Strass, J. P. Wallner, S. Woltran

a

b

c

d

g

+

−
−
−

Figure 6: An argument graph with qualitative weights.

Assume further the preference ordering is a > c and g > d, that is a is strictly
preferred to c, g to d. We want to capture the following intuition: an attacker
(represented by label − in the graph) does not succeed if the attacked node
is more preferred than the attacker, or if there is a more preferred supporting
node (represented by label + in the graph).

We treat input nodes as in Definition 4.1. The general scheme for deriving
formulas expressing the corresponding acceptance condition φs for a node s
with a non-empty set of parents is the following: we create a conjunction of
implications, one for each attacker t of s which is not less preferred than s.
The left side of the implication (the precondition) consists of the attacker t,
the right side (conclusion) is the disjunction of all supporting nodes of s which
are more preferred than t.

In the example above, the only attackers which are not less preferred than
g are b and c. For b we obtain the implication b→ f (as there is no supporting
node more preferred than b and the empty disjunction is equivalent to f). For
attacker c we obtain the implication c → a, as a is more preferred than c.
This yields the following acceptance condition for g: (b → f) ∧ (c → a) or,
equivalently ¬b ∧ (c→ a).

As a matter of fact, preferences are often not given in advance, as assumed
in the example, but an issue of debate themselves. One way to model situ-
ations where the preference relation > is established dynamically in the course
of argumentation is the following. Let us assume some nodes represent (pos-
sibly conflicting) preference information, that is information about which pairs
of nodes belong to >. The idea is to guess a (stable, preferred, grounded)
interpretation M and then to verify whether M can be generated in a way sat-
isfying the preference relation it contains. To do so we extract the preference
information from the relevant nodes in M . We then check whether M can be
reconstructed under this (now static) preference information using the tech-
niques described above. We thus verify whether the preferences represented in
the model itself were taken into account adequately.
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Definition 4.3 An argument graph with dynamic preferences is a tuple

G = (S,L+, L−, P )

where S is the set of nodes, L+ and L− are subsets of S × S, the supporting
and attacking links, and P : S → S × S is a partial function.

The function P assigns preference information to some of the nodes in S. If
P (a) = (b, c) then node a carries the information that b is preferred over c. For
a three-valued interpretation M we use >M to denote the smallest strict partial
order on S containing the set {(b, c) | P (a) = (b, c),M(a) = t}. Note that >M
may be undefined, e.g. if M contains two nodes with conflicting preference
information. The semantics of argument graphs with dynamic preferences is
now defined as follows:

Definition 4.4 Let G = (S,L+, L−, P ) be an argument graph with dynamic
preferences, A a subset of its input nodes. E is a (stable, preferred, grounded)
interpretation of G under A iff >E is a strict partial order and E is a (stable,
preferred, grounded) interpretation of the prioritized argument graph DE =
(S,L+, L−, >E) under A.

We thus guess an interpretation E of the intended type, extract from E
the corresponding strict partial order on S, and check whether E is among
the intended interpretations of the (non-dynamic) prioritized argument graph
which is based on the extracted preference information. The evaluation of the
prioritized graph is based on the translation to adfs described earlier in this
section. For further details see [Brewka et al., 2013].

4.2 Proof Standards

Proof standards are well known and play an important role in legal reasoning.
They are based on the intuitive idea that decisions or verdicts which have
drastic consequences, say for a defendant, should be based on stronger, less
doubtful criteria than decisions with limited consequences, say a small fine.
Farley and Freeman [Farley and Freeman, 1995] introduced a model of legal
argumentation which distinguishes four types of arguments (in decreasing order
of strength):

• valid arguments based on deductive inference,

• strong arguments based on inference with defeasible rules,

• credible arguments where premises give some evidence,

• weak arguments based on abductive reasoning.

By using values V = {+v,+s,+c,+w,−v,−s,−c,−w} we will distinguish pro
and con links of the corresponding types in argument graphs, where the type
of a link is inherited from the type of its source node.

Based on these argument types, Farley and Freeman define the following
proof standards:
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Figure 7: A Farley/Freeman argument graph.

• Scintilla of Evidence: at least one pro-argument is accepted.

• Preponderance of Evidence: at least one pro-argument is accepted, all
accepted con arguments are outweighed by stronger accepted pro argu-
ments.

• Dialectical Validity: there is at least one credible accepted pro-argument,
none of the other side’s arguments is accepted.

• Beyond Reasonable Doubt : there is at least one strong accepted pro-
argument, none of the other side’s arguments is accepted.

• Beyond Doubt : there is at least one valid active pro-argument, none of
the other side’s arguments is accepted.

Again we will show how these notions can be formalized using adfs.
Consider the labelled graph in Figure 7. Let us focus on the acceptance

condition for g, represented as a propositional formula. The condition obviously
depends on g’s proof standard. For scintilla of evidence it is sufficient that at
least one pro-argument is accepted. There are two such arguments, a and b, the
acceptance condition thus is a ∨ b. For preponderance of evidence at least one
pro-argument must be accepted, and in addition each accepted con-argument
must be outweighed by a stronger pro-argument. In our case this means that
if c is accepted, then the stronger pro-argument b must also be accepted, and
d cannot be accepted, as there is no stronger pro-argument than the valid
argument d. Taken together this yields the formula (a∨ b)∧ (c→ b)∧¬d. In a
similar manner we obtain the formulas for g for the remaining proof standards,
as shown in the following table:

Scintilla of evidence: a ∨ b
Preponderance of evidence: (a ∨ b) ∧ (c→ b) ∧ ¬d
Dialectical validity: b ∧ ¬c ∧ ¬d
Beyond reasonable doubt: b ∧ ¬c ∧ ¬d
Beyond doubt: ⊥
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Figure 8: A graph with dynamic proof standards.

It is even possible to choose the proof standard dynamically. For ease of
presentation let’s focus on three proof standards, namely scintilla of evidence,
preponderance of evidence and dialectical validity, represented as se, pe and
dv, respectively.9 Consider the graph in Figure 8 which should be viewed as
part of a larger argument graph. The idea here is that scintilla of evidence is the
default proof standard. If the corresponding node se is attacked from outside
(e.g. since a crime was committed), then preponderance of evidence becomes
the active proof standard. If also the corresponding node pe is attacked from
outside (e.g. since the crime has serious consequences), then dialectical validity
will be active. To model this intuition, the acceptance condition of node g
becomes:

(se ∧ (a ∨ b)) ∨ (pe ∧ (a ∨ b) ∧ (c→ b) ∧ ¬d) ∨ (dv ∧ b ∧ ¬c ∧ ¬d).

4.3 Carneades

Carneades [Gordon et al., 2007] is an advanced model of argumentation based
on a graphical representation of arguments and the propositions involved in
them. Each proposition has an associated proof standard (scintilla of evidence,
preponderance of evidence, clear and convincing evidence, beyond reasonable
doubt, dialectical validity). There is some paraconsistency at work in the sys-
tem as scintilla of evidence allows both a proposition and its negation to be
accepted at the same time. The adf graphs we will construct later will for this
reason have separate nodes for each proposition p and its complement p. A ma-
jor restriction of Carneades is that cycles in the graph are not allowed (which
means the system handles only cases where all Dung semantics coincide).

Let us start with some basic definitions underlying Carneades. Our present-
ation follows [Brewka and Gordon, 2010].

Definition 4.5 An argument is a tuple 〈P,E, c〉 with premises P , exceptions
E (P ∩ E = ∅) and conclusion c. c and elements of P , E are literals.

9The type of these nodes is irrelevant and thus left out.
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An argument evaluation structure (CAES) is a tuple S =
〈args, as,weight, standard〉, where

• args is a set of arguments generating an acyclic argument graph,

• as is a consistent set of literals,

• weight assigns a real number to each argument, and

• standard maps propositions to a proof standard.

The argument graph generated by a CAES is obtained as follows: each literal
occurring in an argument arg becomes a node; each argument arg becomes a
node; each premise of an argument arg is linked to the corresponding argument
node arg via a link labelled with +, each exception via a link labelled with -;
an additional link, labelled with weight(arg), connects arg and the conclusion
of arg .

The central notions in Carneades are applicability of arguments and accept-
ability of propositions. These notions are defined via mutual recursion. Note
that for the recursion to bottom out it is essential that Carneades is acyclic.

Definition 4.6 We say an argument 〈P,E, c〉 ∈ args is applicable in S iff

• p ∈ P implies p ∈ as or [p 6∈ as and p acceptable in S], and

• p ∈ E implies p 6∈ as and [p ∈ as or p is not acceptable in S].

Based on the applicability of arguments, we can define what it means for a
proposition p to be acceptable in S. As expected, acceptability depends on p’s
proof standard. The Carneades proof standards differ form those of Farley and
Freeman. In particular, they depend on numerical values:

• standard(p) = se: there is an applicable argument for p,

• standard(p) = pe: p satisfies se, and the maximum weight assigned to
an applicable argument pro p is greater than the maximum weight of an
applicable argument con p,

• standard(p) = ce: p satisfies pe, and the maximum weight of an applicable
pro argument exceeds a threshold α, and difference between the maximum
weight of applicable pro arguments and the maximum weight of applicable
con arguments exceeds a threshold β,

• standard(p) = bd: p satisfies ce, and the maximum weight of the applic-
able con arguments is less than a threshold γ,

• standard(p) = dv: there is an applicable argument pro p and no applic-
able argument con p.
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Figure 9: A Carneades argument represented graphically.

We now show how arguments and the generated argument graphs are repres-
ented using adfs. The translation to adfs is based on the techniques we have
seen so far in this section. Consider the argument a = 〈{bird}, {peng, ostr},
flies〉 with weight(a) = 0.8. This argument is represented graphically as shown
in Figure 9.

Apart from the duplication of propositions/complements the graphical rep-
resentation corresponds to the original Carneades graph. Using techniques
similar to the ones described earlier, we can properly define acceptance con-
ditions such that an argument node is t in the adf graph iff the argument is
applicable, and a proposition node is t iff the proposition is acceptable. The
acceptance condition of an argument node arg requires that all premises of arg
are true, all exceptions false (assumptions can be handled by an easy prepro-
cessing step). The acceptance condition of a proposition node depends on the
proof standard and is modelled along the lines of what we have discussed earlier
in this section. We leave the details to the reader. Note that we will resume
our discussion of Carneades at the end of Section 5 where we show how the
relevant acceptance conditions can be formalized in grappa.

What has been gained by this reconstruction? Why is it useful? First of
all, it shows the generality of adfs. Secondly, it puts Carneades on safe formal
ground. But in addition, and this is probably the main advantage, it allows us
to give up the restriction of Carneades to acyclic argument graphs. Nothing
in our translation rests on the assumption that Carneades is acyclic. The
translation works perfectly well also for cyclic argument evaluation structures.
The only difference is that the resulting adf graph will have cycles as well.
But handling cycles of this kind is part of the core functionality of adfs, and
they have a variety of different semantics to offer for this case, as we have seen
in Section 3.

4.4 Rule-based Languages

A major strand of research in formal argumentation is concerned with using ar-
gumentation techniques to assign semantics to simple rule-based languages (see
Chapter 6 of this handbook). Those languages are simple logic-inspired form-
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alisms working with inference rules on a set of propositional literals. Inference
rules can be strict, in which case the conclusion of the inference (a literal) must
necessarily hold whenever all antecedents (also literals) hold. Inference rules
can also be defeasible, which means that the conclusion usually holds whenever
the antecedents hold. Here, the word “usually” suggests that there could be
exceptional cases where a defeasible rule has not been applied [Pollock, 1987]

(for example to avoid an imminent inconsistency).

Most of the existing works in this area translate rule-based languages to afs
by constructing arguments and identifying attacks. But this approach is not
always without problems, as Caminada and Amgoud [Caminada and Amgoud,
2007] observed. (They even devised a set of rationality postulates for capturing
the intended behavior of semantics for rule-based languages.) While there exist
af-based solutions to those problems [Wyner et al., 2013], we concentrate here
on one approach using adfs as target language [Strass, 2013b; Strass, 2015b].
Translating to adfs instead of afs has the additional benefit of tackling the
problem of cyclic justifications amongst arguments on the semantic level instead
of the syntactic one (like it is done in the ASPIC approach [Caminada and
Amgoud, 2007] among others). We only give intuitions here and refer the
reader to the original paper(s) for details [Strass, 2013b; Strass, 2015b].

Inspired by the approach of Wyner et al. [Wyner et al., 2013], Strass [Strass,
2013b; Strass, 2015b] directly uses the literals from the theory base as state-
ments that express whether the literal holds. He also uses rule names as state-
ments indicating that the rule is applicable. Additionally, for each rule r he
creates a statement -r indicating that the rule has not been applied. Not ap-
plying a rule is acceptable for defeasible rules, but unacceptable for strict rules
since it would violate the closure postulate. This is enforced via integrity con-
straints saying that it may not be the case in any model that the rule body
holds but the head does not hold: Technically, for a strict rule r, he introduces
a conditional self-attack of -r; this self-attack becomes active if (and only if)
the body of r is satisfied but the head of r is not satisfied, thereby preventing
this undesirable state of affairs from getting included in a model. Defeasible
rules offer some degree of choice, whence it is left to the semantics whether or
not to apply them. This choice is modelled by a mutual attack cycle between
r and -r. The remaining acceptance conditions are equally straightforward:

• Opposite literals attack each other.

• A literal is accepted whenever some rule deriving it is applicable, that is,
all rules with head ψ support statement ψ.

• A strict rule is applicable whenever all of its body literals hold, that is,
the body literals of r are exactly the supporters of r.

• Likewise, a defeasible rule is applicable whenever all of its body literals
hold, and additionally the negation of its head literal must not hold.
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Strass [2013b, 2015b] showed that the approach satisfies the rationality pos-
tulates of Caminada and Amgoud [2007]. Furthermore, this method has a mild
computational complexity (with an at most quadratic blowup from rule-based
theory to adf formalization, while there can be exponential to infinite blowup
in other approaches).

5 Graph-based Argument Processing

We have seen in Section 4 how adfs can be used to provide graphical repres-
entations of argumentation scenarios with semantics. The different approaches
were based on translations from some graphical representation to adfs. In a
nutshell, the grappa approach [Brewka and Woltran, 2014] described in this
section addresses the opposite question: is it possible to extend the formal
techniques underlying adfs in such a way that the semantics of various kinds
of graphical representations can be defined directly for these representations,
without the detour of a translation? More specifically, we will consider ar-
bitrary (edge) labelled graphs. Such graphs are highly popular for visualizing
argumentation scenarios, and indeed this chapter (and the handbook) is full
of such representations. The goal of this section is to define various semantics
directly for such labelled graphs.

Another way of looking at the approach is the following: Dung afs actually
can be seen as graphs where all edges have the same label, which is left im-
plicit for this reason. In addition, all nodes have the same type of acceptance
condition. Dung’s seminal contribution can thus be characterized as defining
various semantics for specific graphs with a single label and uniform accept-
ance conditions. Our goal is to generalize this to arbitrary labelled graphs with
flexible, user-defined acceptance conditions.

grappa requires two major changes. First of all, the acceptance conditions
can no longer be propositional formulas built from parent nodes, as in adfs.
We rather have to define them in terms of the labels of active links in the graph,
that is links whose source nodes are accepted (true). More precisely, since it
may be relevant whether there are multiple active links with the same label,
we have to consider multisets of labels. An acceptance condition will thus be a
function assigning a truth value to each multiset of labels. Secondly, we have
to modify the operator ΓD for adfs D as defined in Section 3 in such a way
that the new acceptance conditions are taken into account adequately.

In the following we describe multisets as functions into the natural num-
bers. Intuitively, the number assigned to an element describes the number of
occurrences of the element in the multiset.

Definition 5.1 An acceptance function over a set of labels L is a function
c : (L→ N)→ {t, f}.

The set of all acceptance functions over L is denoted FL.

Definition 5.2 A labelled argument graph (LAG) is a tuple G = (S,E,L, λ, α)
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where

• S is a set of nodes (statements),

• E is a set of edges (dependencies),

• L is a set of labels,

• λ : E → L assigns labels to edges,

• α : S → FL assigns L-acceptance-functions to nodes.

The characteristic operator ΓG of a LAG G basically does what the cor-
responding operator does for adfs: it takes a three-valued (or, equivalently,
partial) interpretation v and produces a new one v′. In doing so, it checks
which truth values of nodes in S can be justified by v. This is done by consid-
ering all possible completions of v, more precisely the multisets of active labels
induced by completions of v. These multisets are obtained by including an oc-
currence of a particular label for each occurrence of that label in a link which
is active in the completion. If the acceptance function of s yields t under all
completions (more precisely, for all multisets induced by any completion), then
v′ assigns t to s. If the acceptance function of s yields f under all completions,
then v′ assigns f to s. In all other cases the value remains undefined.

Here are the formal details. Note that we represent here three-valued in-
terpretations v as sets of literals: nodes true in v appear positively in the set,
nodes assigned false appear negated, and undefined nodes are left out.

Definition 5.3 Let G = (S,E,L, λ, α) be a LAG, v a three-valued interpreta-
tion of S. mv

s , the multiset of active labels of s ∈ S in G under v, is defined
as

mv
s(l) = |{(e, s) ∈ E | e ∈ v, λ((e, s)) = l}|

for each l ∈ L.

The characteristic operator ΓG of G takes a three-valued interpretation v of
S and produces a revised three-valued interpretation ΓG(v) of S.

Definition 5.4 Let G = (S,E,L, λ, α) be a LAG, v a three-valued interpreta-
tion of S. ΓG(v) = PG(v) ∪NG(v) with

PG(v) =
{
s
∣∣∣ α(s)(m) = t for each m ∈ {mv′

s | v′ ∈ [v]c}
}

NG(v) =
{
¬s
∣∣∣ α(s)(m) = f for each m ∈ {mv′

s | v′ ∈ [v]c}
}

With this new operator we can define the semantics of grappa in exactly
the same way as was done for adfs:
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Definition 5.5 Let G = (S,E,L, λ, α) be a LAG, v a three-valued interpreta-
tion of S.

• v is a model of G iff v is total and v = ΓG(v),

• v is grounded in G iff v is the least fixed point of ΓG,

• v is admissible in G iff v ⊆ ΓG(v),

• v is preferred in G iff v is ⊆-maximal admissible in G,

• v is complete in G iff v = ΓG(v).

Example 5.6 This is a variation of Example 3.2. Consider the LAG with
S = {a, b, c, d} and L = { , }. The following graph shows the labels of each
link.

a b

c d

For simplicity, let us assume all nodes have the same acceptance condition
requiring that all positive links must be active (that is the respective parents
must be t) and no negative link is active.10 We obtain two models, namely
v1 = {a, b, c,¬d} and v2 = {a,¬b,¬c, d}. The grounded interpretation is
v3 = {a}. The 16 admissible interpretations are exactly the same as for Ex-
ample 3.9. Among the admissible interpretations {a, b, c,¬d} and {a,¬b,¬c, d}
are preferred. Complete interpretations are these two and in addition {a}.

Now let us turn to stable semantics. The idea underlying stable semantics is
to exclude self-justifying cycles. Again this semantics can be defined along the
lines of the corresponding definition for ADFs in [Brewka et al., 2013]: take a
model v, reduce the LAG based on v and check whether the grounded extension
of the reduced LAG coincides with the nodes true in v. Here is the definition:

Definition 5.7 Let G = (S,E,L, λ, α) be a LAG, v a model of G, Sv = v∩S.
v is a stable model of G iff v restricted to Sv is the grounded interpretation of
Gv = (Sv, Ev, L, λv, αv), the v-reduct of G, where

• Ev = E ∩ (Sv × Sv),

10In the pattern language developed later in this section this can be expressed as (#t( )−
#( ) = 0) ∧ (#( ) = 0).
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• λv is λ restricted to Sv,11

• αv is α restricted to Sv.

Observe that in αv we did not have to alter the values of the function, i.e.
the true and false multisets remain the same (although some of them might
become “unused” since the number of parents shrinked). We will see later that
this exactly matches the stable semantics for ADFs from [Brewka et al., 2013].
For the moment, we continue our running example.

Example 5.8 For Example 5.6 we obtained two models, v1 = {a, b, c,¬d} and
v2 = {a,¬b,¬c, d}. In v1 the justification for b is obviously based on a cycle.
The v1-reduct of our graph is

a b

c

It is easy to see that the grounded interpretation of the reduced graph is {a},
v1 is thus not a stable model, as intended. We leave it to the reader to verify
that v2 indeed is a stable model.

Results about the semantics carry over from adfs [Brewka et al., 2013].

Proposition 5.9 Let G be a LAG. The following inclusions hold:

stb(G) ⊆ mod(G) ⊆ pref (G) ⊆ com(G) ⊆ adm(G),

where stb(G),mod(G), pref (G), com(G) and adm(G) denote the sets of stable
models, models, preferred interpretations, complete interpretations and ad-
missible interpretations of G, respectively. Moreover, pref (G) 6= ∅, whereas
mod(G′) = ∅ for some LAG G′.

A remaining question is how to actually specify acceptance functions for
grappa. In [Brewka and Woltran, 2014] a specific pattern language has been
developed for this purpose. This pattern language allows for the specification of
conditions on multisets of labels. In the patterns one can refer to the number of
total and active labels of specific types, to minimal/maximal numerical labels
of active links. It is also possible to use simple arithmetics and relations.

More precisely, grappa acceptance functions are specified using acceptance
patterns over a set of labels L defined as follows:

11Given a function f : M → N andM ′ ⊆M , f restricted toM ′ is the function f ′ : M ′ → N
such that f ′(m) = f(m) for all m ∈M ′.
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• A term over L is of the form #(l), #t(l) (with l ∈ L), or min, mint,
max, maxt, sum, sumt, count, countt.

• A basic acceptance pattern (over L) is of the form a1t1 + · · · + antnRa,
where the ti are terms over L, the ais and a are integers and R ∈ {<,≤
,=, 6=,≥, >}.

• An acceptance pattern (over L) is a basic acceptance pattern or a Boolean
combination of acceptance patterns.

A grappa instance then is a labelled argument graph with acceptance functions
represented as acceptance patterns:

Definition 5.10 A grappa instance is a tuple G = (S,E,L, λ, π) where S is
a set of statements, E a set of edges, L a set of labels, λ an assignment of labels
to edges, and π an assignment of acceptance patterns over L to all elements of
S.

We still need to specify what the acceptance function represented by a par-
ticular pattern assigned to a node s is. Recall that an acceptance function
assigns a truth value in {t, f} to a multiset of labels. We will define this func-
tion by specifying a satisfaction relation |= between multisets and patterns: the
basic idea is that a multiset receives value t iff it satisfies the corresponding
pattern. The actual definition is slightly more complicated, though, as some
of the terms (actually those indexed with t) are actually independent of the
multiset, but depend on the node s, more precisely on the labels of links –
active or not – with target s. For this reason, satisfaction of a pattern depends
on both a multiset of labels and the node the pattern is assigned to via π. For
a multiset of labels m : L→ N and s ∈ S the value function valms is:

valms (#l) = m(l)
valms (#tl) = |{(e, s) ∈ E | λ((e, s)) = l}|
valms (min) = min{l ∈ L | m(l) > 0}
valms (mint) = min{λ((e, s)) | (e, s) ∈ E}
valms (max) = max{l ∈ L | m(l) > 0}
valms (maxt) = max{λ((e, s)) | (e, s) ∈ E}
valms (sum) =

∑
l∈Lm(l)

valms (sumt) =
∑

(e,s)∈E λ((e, s))

valms (count) = |{l | m(l) > 0}|
valms (countt) = |{λ((e, s)) | (e, s) ∈ E}|

min(t), max(t), sum(t) are undefined in case of non-numerical labels. For ∅
they yield the neutral element of the corresponding operation, i.e.
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valms (sum) = valms (sumt) = 0,

valms (min) = valms (mint) =∞,
valms (max) = valms (maxt) = −∞.

Let m and s be as before. For basic acceptance patterns the satisfaction
relation |= is defined by

(m, s) |= a1t1 + · · ·+ antnRa iff

n∑
i=1

(
ai val

m
s (ti)

)
R a.

The extension to Boolean combinations is as usual. The acceptance function
represented by pattern p at node s then is the function assigning t to multiset
m iff (m, s) |= p.

Example 5.11 Let L = { , , , } be a set of labels representing strong
support, support, attack and strong attack, respectively. Assume a node s is
accepted if its (active) support is stronger than its attack, where we measure
strength by counting the respective links, hereby multiplying strong support/at-
tack with a factor of 2. This can be specified using the following pattern for
s:

2(# ) + (# )− 2(# )− (# ) > 0.

We conclude this section by showing how the necessary patterns for
Carneades argument graphs, which we discussed in Section 4.3, can be defined
in grappa. Recall that these graphs have two kinds of nodes, argument nodes
and propositions nodes. The pattern for all argument nodes is(

(#t )− (# ) = 0
)
∧ (
(
# ) = 0

)
.

which says that all premises and none of the exceptions must be accepted.
The patterns for proposition nodes depend on their proof standard. Recall that
some of these standards have additional numerical parameters α, β and γ. The
terms max and min represent the maximal, respectively minimal, label of an
active link:

• scintilla of evidence: max > 0

• preponderance of evidence: max + min > 0

• clear and convincing evidence: (max > α) ∧ (max + min > β)

• beyond reasonable doubt: (max > α) ∧ (max + min > β) ∧ (−min < γ)

• dialectical validity: (max > 0) ∧ (min > 0)
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This representation of the acceptance conditions underlying Carneades is not
only extremely simple. It has the big advantage that it is uniform: the patterns
for all nodes with the same proof standard are actually the same. This is
different from representations of proof standards and other notions we discussed
in Section 4 in adfs where the acceptance condition for each node depends on
its specific parents.

6 Computational Aspects

In the introduction we discussed, in an informal manner, relationships between
statements (arguments) that are supporting or attacking, in the sense that a
statement can have a positive or negative influence on the acceptance of an-
other statement. General adfs have a generic notion of links (dependencies)
between statements. However, such links can be formally categorized into 4
groups, depending on whether they have an attacking or supporting nature (or
both or neither). This leads to the notion of so-called bipolar adfs (badfs for
short) which contain only attacking or supporting dependencies. We will in-
troduce them, based on the original definition of [Brewka and Woltran, 2010],
in Section 6.1, together with the formalization of attacking and supporting
links. Such badfs are a subclass of general adfs, yet have appealing compu-
tational properties. They generalize afs in a direct manner, but are strictly
“in-between” afs and general adfs w.r.t. their corresponding expressiveness.
Results relating to expressiveness are presented in Section 6.2. Further, many
frameworks arising in argumentation in AI, other than afs, can be translated to
badfs [Polberg, 2016] (partially under semantics not discussed in this chapter).

From a computational perspective, badfs have the following interesting
properties: they have the same worst-time complexity as afs for many se-
mantics, while general adfs typically exhibit higher computational complexity.
We summarize these results in Section 6.3, followed by Section 6.4 that gives
pointers to recent systems for computing reasoning tasks on adfs and badfs.

6.1 Bipolar ADFs

As we have seen in previous sections, the concept of acceptance condition is
quite powerful. A natural question is to what extent different restrictions of
acceptance conditions may form interesting subclasses of adfs. One such sub-
class are bipolar adfs, as already defined in [Brewka and Woltran, 2010]. This
class relies on the concept of attacking and supporting links which are defined
as follows.

Let D = (S,L,C) be an adf. Formally, a link (r, s) ∈ L is

• supporting in D iff for all R ⊆ par(s), we have Cs(R) = t implies Cs(R∪
{r}) = t;

• attacking in D iff for all R ⊆ par(s), we have Cs(R ∪ {r}) = t implies
Cs(R) = t.
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a

b c

b→ c

a ∧ (c ∨ ¬c) a↔ b

L+ L−

(a, b) (b, a)
(c, b) (c, b)
(c, a)

Figure 10: An adf with link types.

We use L+ ⊆ L to denote all supporting and L− ⊆ L to denote all attacking
links of L in an adf D = (S,L,C).

Example 6.1 In Figure 10 we see an example adf D = (S,L,C) with S =
{a, b, c} and acceptance conditions ϕa = b → c, ϕb = a ∧ (c ∨ ¬c), and ϕc =
a ↔ b. On the right of that figure the link types are shown. Let us investigate
why some of the links are supporting or attacking. Looking at the acceptance
condition of a, ϕa, and the parents of a then we have the following relevant
sets of statements (shown as two-valued interpretations):

v1 =̂ {¬b,¬c} |= ϕa
v2 =̂ {b,¬c} 6|= ϕa
v3 =̂ {¬b, c} |= ϕa
v4 =̂ {b, c} |= ϕa

We see, e.g., that the link (c, a) is supporting, because whenever c is added to
a subset of parents that is mapped to t by Ca (switched to true in every model
of ϕa) then the new set (interpretation) is again mapped to true by acceptance
condition Ca (is a model of ϕa). More concretely, v1, v3, and v4 are models
of acceptance condition ϕa. Switching the truth value of c to true in each of
them, results in v3 and v4 (assigning c to true in v1 and v3 results in both cases
with v3, and assigning c to true in v4 is again equal to v4). Both v3 and v4
are models of ϕa. This means (c, a) is a supporting link. Similarly, link (b, a)
is attacking because whenever we remove b from a set of parents of a that is
mapped to t by Ca we get a set that is likewise mapped to t by Ca.

Links (a, b) which are both attacking and supporting are so-called redundant
links. The reason to call such a link redundant is that switching the truth
value of a in any interpretation does not change the evaluation of acceptance
condition ϕb w.r.t. the original interpretation and the modified interpretation.
A link that is neither attacking nor supporting is called dependent.
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Example 6.2 Continuing Example 6.1, the link (c, b) is a redundant link. This
link is both attacking and supporting. Redundancy means that the evaluation
of ϕb is independent of the value of c (formula ϕb only depends on the truth
value of a). In contrast, the links (b, c) and (a, c) are dependent links. For
instance, {¬a,¬b} |= ϕc and {a,¬b} 6|= ϕc taken together show that (a, c) is not
supporting in this adf. To see that (a, c) is not attacking, consider {a, b} |= ϕc
and {¬a, b} 6|= ϕc.

An adf D = (S,L,C) is bipolar (a badf) if all links in L are supporting or
attacking or both, i.e., L = L+ ∪ L−. For example, our running example adf
from Example 3.2 is a badf. Further, for any af F its associated adf DF is
bipolar, in fact each link in DF is attacking.

Bipolar adfs are still a quite expressible class; they allow acceptance condi-
tions not only to express simply attack and support (for example ¬a1 ∧ · · · ∧
¬an ∧ s1 ∧ · · · ∧ sm expressing that a statement is attacked by statements
ai and supported by statements sj), but more advanced relations, like e.g.
((¬a1 ∨ s1)∧ (¬a2 ∨ s2))∨¬a3; in fact, all examples given in Section 4 are also
bipolar adfs. We would like to mention here that bipolar adfs behave differ-
ently than the prominent class of bipolar afs [Cayrol and Lagasquie-Schiex,
2013]. Indeed, several concepts of support relations have been discussed in the
literature (abstract, deductive, necessary, and evidential support), thus a de-
tailed discussion is beyond the scope of this chapter, and we refer the reader to
works relating adfs to formalisms including support [Polberg and Oren, 2014;
Polberg, 2016]. However, what is important to state is that bipolar adfs treat
support and attack as equally strong concepts. Given the generality of bipolar
adfs which allow to “mix” support and attack as exemplified above, a distinct
handling of support and attack in adfs, e.g. as separated concepts in the lan-
guage instead of a property of links and acceptance conditions, would require
a lot of additional machinery.

Acceptance conditions in badfs are, in fact, not only interesting for defining
adfs. The study of the concept of bipolar Boolean functions has meanwhile
found applications outside of adfs. Baumann and Strass (2016) have analyzed
the integer sequence that arises when considering for each positive integer n
the number of bipolar Boolean functions in n arguments. The resulting se-
quence is novel and has been added to the Online Encyclopedia of Number
Sequences12. In further related work, Alviano, Faber, and Strass [Alviano et
al., 2016] applied the concept of bipolar Boolean functions to aggregates in
answer set programming and obtained a novel class of aggregates whose model
checking problems (according to the semantics of Pelov et al. [Pelov et al., 2007]

and Son and Pontelli [Son and Pontelli, 2007]) can be decided in deterministic
polynomial time. They even identify a class that goes beyond bipolar Boolean
functions but still retains polynomial-time decidability; this might constitute
an interesting avenue for research that extends the bipolarity concept of adfs.

12https://oeis.org/A245079
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6.2 Expressiveness and Realizability

Expressiveness of a formalism F (i.e. the set of structures available in a form-
alism) with a semantics σ over a vocabulary A can be defined as the set of
interpretation-sets over A that elements of F (the knowledge bases kb ∈ F of
that formalism) can produce. Formally, the signature of a formalism F w.r.t.
semantics σ is the set

ΣσF = {σ(kb) | kb ∈ F}

Intuitively, expressiveness is a basic measure of the capabilities of formalism
F under σ, because it characterizes what “can and cannot be done” with F
under semantics σ [Gogic et al., 1995]. Whenever we have two formalisms, say
F1 and F2, that share a semantics σ and we find that ΣσF1

( ΣσF2
, then this

intuitively means that F2 is strictly more expressive than F1: all sets V ⊆ V3
that can be realized with F1 can be realized with F2, and there is at least one
set V ⊆ V3 that can be realized with F2 but not with F1.

For afs, badfs and adfs under various semantics, their relative express-
iveness is summarized in the following result [Strass, 2015c; Strass, 2015a;
Linsbichler et al., 2016a].

Theorem 6.3 For σ ∈ {adm, com, prf ,mod}, we find that

ΣσAF ( ΣσBADF ( ΣσADF.

For the stable model semantics stb, we find that

Σmod
AF = Σstb

AF ( Σstb
BADF = Σstb

ADF.

Furthermore, for the model semantics we have

Σmod
ADF = V2 = {v : A→ {t, f}},

that is, adfs under the model semantics are universally expressive.

Example 6.4 We give example sets of interpretations that can be used to
witness Σprf

AF ( Σprf
BADF ( Σprf

ADF. Consider S = {a, b, c} and interpreta-
tions v1 = {a 7→ t, b 7→ t, c 7→ f}, v2 = {a 7→ t, b 7→ f , c 7→ t}, and

v3 = {a 7→ f , b 7→ t, c 7→ t}. To see that {v1, v2, v3} ∈ Σprf
BADF, consider the adf

over S with acceptance conditions ϕa = ¬b∨¬c, ϕb = ¬a∨¬c, and ϕc = ¬a∨¬b.
It is easy to verify that this adf is bipolar and that {v1, v2, v3} constitute its
preferred interpretations. On the other hand, from results in [Dunne et al.,
2015] it follows that there is no af with preferred extensions {a, b}, {a, c}, and
{b, c}. In fact, this is quite easy to see: consider there would exist an af F with
those three preferred extensions. Then, there cannot be an attack in F between
a and b, and moreover {a, b} defends itself in F ; the same holds for the pairs
a, c, and b, c. But then, {a, b, c} has to be conflict-free in F and defends itself,
and thus {a, b} (and likewise, {a, c} and {b, c}) cannot be preferred in F ; a
contradiction.
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For Σprf
BADF ( Σprf

ADF, we use an example given in [Linsbichler et al., 2016b,
Theorem 8]: consider S′ = {a, b} and interpretations v4 = {a 7→ t, b 7→ t},
v5 = {a 7→ t, b 7→ f}, and v6 = {a 7→ f , b 7→ u}. For X ′ = {v4, v5, v6} we

have X ′ ∈ Σprf
ADF, but X ′ /∈ Σprf

BADF. For general adfs, one example adf is
D′ = (S′, L′, {ϕa = a, ϕb = a ↔ b}). All three interpretations v4, v5, and
v6 are preferred interpretations of D′. This adf D′ is not bipolar (due to
ϕb, see Example 6.2). There is no badf that has X ′ exactly as its preferred
interpretations.13

While this shows that badfs can do strictly more than afs, and in turn
adfs can do strictly more than badfs (with the exception of the stable model
semantics), there is little information on what exactly these signatures look like.
Work on precisely characterizing signatures has been carried out for afs [Dunne
et al., 2015]; the results can be found in Chapter 17 of this handbook. There has
also been work on characterizing realizability for adfs under two-valued [Strass,
2015a] and three-valued [Pührer, 2015; Linsbichler et al., 2016a] semantics.

Finally, initial results on characterizing the representational succinctness of
these formalisms have recently been obtained. Succinctness not only takes into
account what formalisms can realize, but also to what representational cost,
that is, what amount of space is needed to represent the smallest knowledge
base realizing some desired set of interpretations. Again, the capabilities of
different formalisms can be compared with respect to this measure [Gogic et
al., 1995]. As one promising result on adfs, it turned out that even badfs are
exponentially more succinct than normal logic programs [Strass, 2015a].

6.3 Computational Complexity

The computational complexity of adfs is well-studied [Strass and Wallner,
2014; Strass and Wallner, 2015; Gaggl et al., 2015; Brewka et al., 2013;
Polberg and Wallner, 2017; Wallner, 2014]; for an overview we refer the reader
to Chapter 13 of this volume. For the reader’s convenience we repeat here the
main results. For a specified semantics σ, the main reasoning tasks for adfs
to solve are:

• Credulous acceptance of a statement: is statement s assigned to true in
at least one interpretation under semantics σ?

• Skeptical acceptance of a statement: is statement s assigned to true in
all interpretations under semantics σ?

• Interpretation verification: is a given interpretation an interpretation un-
der semantics σ?

• Interpretation existence: is there an interpretation under semantics σ?

13For an automated way to check whether for a given set of three-valued interpretations
there is an adf, badf, or af that has exactly this set as its σ-interpretations, one can use
the system UNREAL [Linsbichler et al., 2016b], available at http://www.dbai.tuwien.ac.

at/proj/adf/unreal/.
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adf
compile to
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ASP/QBF
solver
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(a)

adf

ASP solver

encoding of
semantics

ASP solver

encoding of
semantics

results

(b)

Figure 11: Workflow for systems based on (a) instance-based compilation
(QADF, GrappaVis, and YADF), and (b) static encodings (diamond and
GrappaVis)

• Non-trivial interpretation existence: is there an interpretation under se-
mantics σ assigning true or false to some statement?

Briefly put, complexity of reasoning tasks on general adfs is situated one
level higher in the polynomial hierarchy compared to the corresponding tasks on
afs. For badfs complexity of reasoning stays at the same level as reasoning on
afs for most reasoning tasks, if the link type (attack or support) for each link is
known (part of the input). Thus, badfs offer more modeling capabilities than
afs while having the same (worst-case) computational cost as afs for many
reasoning tasks.

6.4 Systems

Systems for implementing reasoning on adfs rely on declarative encodings in
answer-set programming (ASP) [Brewka et al., 2011] or quantified Boolean sat-
isfiability, and utilize available solvers for these languages [Gebser et al., 2011;
Lonsing and Biere, 2010]. Most prominently, the diamond family14 [Strass and
Ellmauthaler, 2017; Ellmauthaler and Strass, 2016; Ellmauthaler and Strass,
2014; Ellmauthaler and Strass, 2013] consists of ASP-based systems for reason-
ing on adfs. In each diamond version an adf is encoded via ASP facts and,
when augmented with static encodings for semantics, several reasoning tasks
can be solved by computing answer-sets of the resulting ASP. Depending on
the complexity of the reasoning task and used options in diamond one call (in

14http://diamond-adf.sourceforge.net/
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some family members two calls) to an ASP-solver are carried out to solve the
given problem instance. diamond includes dedicated badf-specific encodings
that make use of badfs’ upper complexity bounds.

The system QADF15 [Diller et al., 2015] uses solvers for quantified Boolean
formulas (QBFs) to perform reasoning on adfs. In QADF, in contrast to
diamond, each adf instance is compiled to a QBF incorporating both the
input adf and the chosen semantics, i.e., the encodings for the semantics are
not static.

GrappaVis16 [Heißenberger, 2016] is a system implementing grappa (see
Section 5) and incorporates both instance-based compilation of grappa input
into declarative ASP encodings and static encodings for the semantics utilizing
in both cases one ASP solver call.

The system YADF17 [Brewka et al., 2017] is an ASP-based system for adfs,
based on the encodings for grappa used in GrappaVis. This system compiles
adf instances into one program to call an ASP solver (once).

The basic workflows for diamond, QADF, GrappaVis, and YADF are
shown in Figure 11. With this figure we illustrate that QADF, GrappaVis,
and YADF implement algorithms that take an instance of an adf, compile
this instance, together with the chosen semantics and reasoning task, to one
instance of an ASP or a QBF. On the other hand, diamond and GrappaVis
implement algorithms that take an instance of an adf, add to this instance
a static encoding for the semantics and reasoning task, and give these to an
ASP solver (with calling such a solver once or twice, depending on the task).
The difference between (a) and (b) is that in (a) adf and semantics have to be
compiled together into one input for the solver, while for (b) semantics can be
encoded separately (and modified separately).

A technique to cope with the high computational complexity of reasoning on
adfs was proposed by Linsbichler (2014). The technique is based on splitting
the input adf into partitions and solving one partition and transforming and
solving the other partitions accordingly.

7 Conclusion

In this chapter, we have reviewed the argumentation formalism of abstract
dialectical frameworks (adfs). In contrast to Dung style frameworks, adfs
allow for a much more general specification of the interrelationship between
the arguments. We have discussed how standard semantics like admissible,
grounded, complete, preferred and stable can be generalized to adfs by making
use of the well known approximation fixpoint theory due to Denecker, Marek
and Truszczyński [Denecker et al., 2004].

Alternative approaches to defining adf semantics can be found in the works
of Polberg and colleagues [Polberg et al., 2013; Polberg, 2014a; Polberg, 2014b;

15http://www.dbai.tuwien.ac.at/proj/adf/qadf/
16http://www.dbai.tuwien.ac.at/proj/adf/grappavis/
17http://www.dbai.tuwien.ac.at/proj/adf/yadf/
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Polberg, 2015]. Likewise, further well-known semantics for afs have been gen-
eralized to adfs, e.g. naive, stage, and the cf2 family of semantics [Gaggl
and Strass, 2014] and an alternative, symmetric version of the naive se-
mantics [Strass and Wallner, 2015].

A further subclass of adfs, related to a certain notion of acyclicity and dif-
ferent from badfs, is investigated in [Polberg, 2015; Polberg, 2016]. Other au-
thors have analyzed the relationship of adfs and logic programs [Strass, 2013a;
Alviano and Faber, 2015] and in the course of that have defined new adf se-
mantics, like approximate stable models [Strass, 2013a], F-stable models [Alvi-
ano and Faber, 2015], and the grounded fixpoint semantics [Bogaerts et al.,
2015]. The whole adf formalism has even been lifted to the probabilistic
case [Polberg and Doder, 2014].

We also addressed the modelling capabilities of adfs; for a thorough dis-
cussion on the relation between adfs and other argumentations frameworks,
see also [Polberg, 2017]. A further application of adfs in the context of legal
reasoning can be found in [Al-Abdulkarim et al., 2014; Al-Abdulkarim et al.,
2016]. The use of adfs in text exploration has been investigated in [Cabrio and
Villata, 2016]. Finally, we discussed the grappa approach which makes use of
adf-like semantics in a flexible graph-based formalism. grappa is the formal
system underlying a mobile argumentation app developed by Pührer [2017].
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