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PDA =̂ CFG =̂ Typ 2

CFG PDA

PDA
mit Wort-push

PDA
– je ein Start- und ein Endzustand
– Keller wird vor Akzeptanz geleert
– pro Schritt pop oder push, nie beides

„A→ w“{
„⟨ql, w⟩ ∈ δ(ql, ϵ, A)“

„push(B1 · · ·Bn)“{
„push(Bn),. . . ,push(B1)“

wie in Vorlesung
skizziert

Vq,r → aVs,tb
Vq,r → Vq,sVs,r

Vq,q → ϵ

Satz: Eine Sprache ist
genau dann kontextfrei
wenn sie von einem PDA
akzeptiert wird.
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Deterministische Kellerautomaten

Ein deterministischer Kellerautomat (international: „DPDA“) M ist ein Tupel M =

⟨Q,Σ,Γ, δ, q0, F⟩ bestehend aus Zustandsmenge Q, Eingabealphabet Σ, Kelleralpha-
bet Γ, Startzustand q0 ∈ Q, Endzustände F ⊆ Q und partieller Übergangsfunktion

Q × Σϵ × Γϵ → Q × Γϵ ,

so dass für alle q ∈ Q, a ∈ Σ und A ∈ Γ jeweils nur eines der folgenden definiert ist:

δ(q, a, A) δ(q, a, ϵ) δ(q, ϵ, A) δ(q, ϵ, ϵ)

Beispiel: aibi

qs qa qb qf
ϵ, ϵ 7→ S

a, ϵ 7→ A

b, A 7→ ϵ

b, A 7→ ϵ

ϵ, S 7→ ϵ
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Deterministisch vs. nichtdeterministisch

Typ-2-Sprachen

• Erkannt durch PDAs

• Nicht unter Komplement
abgeschlossen

• Echte Obermenge der
det. Typ-2-Sprachen,
z.B. {aibjck | i , j oder j , k}

• Wortproblem in O(|w|3)
(CYK-Algorithmus)

• Generiert durch CFGs

Deterministische Typ-2-Sprachen

• Erkannt durch DPDAs

• Unter Komplement
abgeschlossen

• Echte Obermenge der
regulären Sprachen,
z.B. {aibi | i ≥ 0}

• Wortproblem in O(|w|)
(DPDA-Abarbeitung)

• Generiert durch deterministische
CFGs (kein Vorlesungsstoff)
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Deterministische Typ-2-Sprachen
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Rückblick: Ableitungsbäume

Rückblick:
Die Interpretation von
Wörtern kontextfreier
Sprachen basiert zumeist
auf dem Syntaxbaum.

Beispiel:

S→ A | M | V A→ (S+S)

M→ (S∗S) V→ x | y | z

Wort: (x∗(y+z))

S

M

∗ S )S(

AV

+ S )S(x

VV

zy
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Mehrdeutige Grammatiken

Wir wissen: Ein
Ableitungsbaum kann
zumeist durch
verschiedene
Ableitungen erzeugt
werden

Es gilt aber auch: Ein
Wort kann mehrere
verschiedene
Ableitungsbäume
haben

Beispiel:

S→ A | M | V A→ S+S

M→ S∗S V→ x | y | z

S

M

∗ SS

AV

+ SSx

VV

zy

vs.

S

A

+S S

M V

∗S S z

V V

x y
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Mehrdeutige Grammatiken (2)

Eine Grammatik G ist mehrdeutig wenn es ein Wort w ∈ L(G) gibt, das mehrere Syn-
taxbäume zulässt (äquivalent: wenn es für w mehrere unterschiedliche Linksableitun-
gen gibt).

Mehrdeutige Grammatiken in der Praxis:

• unerwünscht in technischen Sprachdefinitionen (Programmiersprachen,
Datenformate)

• relevant in der Sprachverarbeitung (um die Mehrdeutigkeit natürlicher Sprache
abzubilden)

Für viele mehrdeutige Grammatiken kann man eindeutige Grammatiken finden, welche
die gleiche Sprache generieren, z.B.:

S→ A | M A→ A+A | M M→ M∗M | V V→ x | y | z

Aber: es gibt inhärent mehrdeutige Sprachen, die nur mehrdeutige Grammatiken haben,
z.B.: {aibick | i, k ≥ 0} ∪ {aibkck | i, k ≥ 0}
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Mehrdeutig vs. Deterministisch

Fakten:

• Deterministische Sprachen haben immer auch eindeutige Grammatiken (unter
anderen)

• Aber: eindeutige Grammatiken können nichtdeterministische Typ-2-Sprachen
beschreiben

deterministisch ⊊ eindeutig ⊊ Typ 2

Unterschiedliche Motivationen:

• eindeutige Sprachdefinitionen: eindeutige Syntaxbäume, eindeutige Interpretation

• deterministische Sprachen: effizienteres Parsing möglich

viele Programmiersprachen verwenden deterministische (und eindeutige) Grammatiken
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Deterministische CFGs

Man kann die Klasse der deterministischen Typ-2-Sprachen auch durch Grammatiken
beschreiben:

• Dies führt zu deterministischen kontextfreien Grammatiken (DCFGs)

• Die eigentliche Definition ist relativ technisch

• DPDAs erkennen im Prinzip dieselben Sprachen wie DCFGs
sofern man sich auf Sprachen beschränkt, bei denen jedes Wort als letztes Zeichen
ein spezielles Schlusssymbol verwendet, um das Ende zu markieren!

Gute Nachricht: Man kann effektiv entscheiden, ob eine gegebene CFG
deterministisch ist.

Schlechte Nachricht: Praktische Grammatiken erfüllen die strengen Bedingungen oft
nicht, auch wenn sie eine deterministisch kontextfreie Sprache beschreiben
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Nach vorne blicken

Deterministische Typ-2-Sprachen sind praktisch sehr relevant:

• Programmiersprachen sind meist im Kern deterministisch

• Man kann sie sehr effizient parsen (kein CYK)

Don Knuth, 2005
CC-By-SA 2.5
(c) J. Appelbaum

In der Praxis hilft eine Verallgemeinerung von DCFGs:
Grammatiken mit endlicher Vorschau (Lookahead).

Idee:

• Wort wird von links nach rechts gelesen

• Grammatikregeln werden rückwärts angewendet, um
Teile des gelesenen Worts zu reduzieren

• Die Wahl der Grammatikregel hängt nur vom schon
gelesenen Wort und von bis zu k weiteren Symbolen
ab (Vorschau)

Grammatiken, die das erlauben, sind vom Typ LR(k), wobei LR(0) (keine Vorschau)
DCFGs sind.
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Abschlusseigenschaften (1)

Wir wissen bereits, dass deterministische Typ-2-Sprachen unter Komplement
abgeschlossen sind.

Für Schnitte gilt das allerdings nicht:

Satz: Deterministische Typ-2-Sprachen sind nicht unter Schnitten abgeschlossen.

Beweis: Der Beweis für Typ-2-Sprachen funktioniert auch hier. Die Sprachen

L1 = {a
ibick | i ≥ 0, k ≥ 0}

L2 = {a
ibkck | i ≥ 0, k ≥ 0}.

sind deterministisch kontextfrei (Übung: Geben Sie entsprechende DPDAs an). Ihr
Schnitt L1 ∩ L2 = {a

ibici | i ≥ 0} ist dagegen nicht einmal kontextfrei. □
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Abschlusseigenschaften (2)

Der Nichtabschluss unter Schnitten hat weitere Konsequenzen:

Satz: Deterministische Typ-2-Sprachen sind nicht unter Vereinigung abgeschlossen.

Beweis: Angenommen sie wären unter Vereinigung abgeschlossen, dann wären sie
auch unter Schnitten abgeschlossen, da sie bereits unter Komplement abgeschlossen
sind (De Morgan). Widerspruch. □
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Abschlusseigenschaften (3)

Bei anderen Operationen sieht es nicht besser aus:

Satz: Deterministische Typ-2-Sprachen sind nicht unter Konkatenation oder Kleene-
Stern abgeschlossen.

Beweisidee: Vereinigungen kann man deterministisch machen, indem man einer der
Alternativen ein Markierungszeichen X vorschaltet, das ansonsten nie am Anfang des
Wortes auftauchen darf. Falls man die Sprache dann aber an die (deterministische
Sprache) X∗ anhängt, ist die Markierung nicht mehr als Entscheidungshilfe nutzbar. Die
Idee beim Stern ist ähnlich. □

Zusammenfassung: Deterministische Typ-2-Sprachen sind abgeschlossen unter
Komplement, aber nicht unter Vereinigung, Schnitt, Konkatenation oder Stern.
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Entscheidungsprobleme auf kontextfreien
Sprachen
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Rückblick Entscheidungsprobleme

Für reguläre Sprachen haben wir eine Reihe von Problemstellungen kennengelernt:

• Leerheitsproblem: Ist die beschriebene Sprache ∅?

• Inklusionsproblem: Ist eine beschriebene Sprache Teilmenge einer anderen?

• Äquivalenzproblem: Wird durch zwei Beschreibungen die selbe Sprache gegeben?

• Endlichkeitsproblem: Ist die beschriebene Sprache endlich?

• Universalitätsproblem: Ist die beschriebene Sprache Σ∗?

Dabei könnten Sprachen durch verschiedene Beschreibungen gegeben sein
(Automaten, Grammatiken, . . . )

Zudem gibt es freilich das Wortproblem
(für [D]CFGs bereits besprochen)
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Meistens unentscheidbar

Viele interessante Fragen sind leider im Allgemeinen nicht durch Algorithmen lösbar:

Satz: Inklusion, Äquivalenz und Universalität von CFGs ist unentscheidbar.

(ohne Beweis, da wir noch gar nicht über Entscheidbarkeit gesprochen haben . . . )

Einiges ist aber doch machbar:

Satz: Leerheit und Endlichkeit einer CFG sind entscheidbar.

Diese Ergebnisse gelten ebenso, wenn PDAs statt CFGs gegeben sind, da wir diese ja
in CFGs umwandeln können.
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Leerheit entscheiden

Satz: Die Leerheit einer CFG ist entscheidbar.

Beweis: Man markiert Variablen mit folgender Prozedur:

• Markiere alle Variablen, welche direkt in ein Wort aus Terminalzeichen
umgeschrieben werden können

• Markiere iterativ alle Variablen, welche in ein Wort aus Terminalzeichen und
markierten Variablen umgeschrieben werden können

Die Sprache ist genau dann nicht leer wenn bei diesem Verfahren das Startsymbol
markiert wird. □
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Endlichkeit entscheiden

Satz: Endlichkeit der Sprache L(G) einer CFG G ist entscheidbar.

Beweis: Sei n die Zahl aus dem Pumpinglemma (also 2|V | nach Umwandlung in
Chomsky NF).

• Wenn es ein Wort z ∈ L(G) mit n ≤ |z| < 2n gibt, dann ist L(G) unendlich (da man
das Pumpinglemma auf z anwenden kann).

• Wenn L(G) unendlich ist, dann gibt es ein Wort z ∈ L(G) mit n ≤ |z| < 2n (Beweis:
Es muss Wörter mit mehr als n Zeichen geben. Sei z ein kürzestes Wort dieser Art.
Laut Pumpinglemma ist z = uvwxy mit |vx| < n und uv0wx0y = uwy ∈ L(G). Da uwy
kürzer ist als z muss gelten |uwy| < n. Daraus folgt |z| = |uwy| + |vx| < 2n.)

Das heißt, wir müssen nur testen, ob es so ein Wort z ∈ L(G) mit n ≤ |z| < 2n gibt. Das
kann man (Brute Force) für alle Wörter dieser Länge tun (da das Wortproblem lösbar
ist). □

(Es gibt effizientere Verfahren, aber dieses ist das einfachste für den Beweis.)
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Alles unentscheidbar

Viele weitere interessante Fragen sind leider ebenfalls unentscheidbar:

• Regularität: Ist die durch eine CFG gegebene Sprache regulär?

• Mehrdeutigkeit: Ist eine gegebene CFG mehrdeutig oder nicht?

• Determinisierbarkeit: Ist die durch eine CFG gegebene Sprache deterministisch?1

• Schnittproblem: Haben zwei gegebene Sprachen gemeinsame Wörter?

1Aber, wie zuvor angemerkt: man kann entscheiden, ob eine gegebene CFG bereits
deterministisch ist (wenn sie es nicht ist, dann bedeutet das aber nicht, dass es keine äquivalente
DCFG geben könnte).
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Entscheidungsprobleme für DPDAs

Die Situation ist etwas besser bei DPDAs:

Leerheit entscheidbar (wie bei CFGs)

Endlichkeit entscheidbar (wie bei CFGs)

Universalität entscheidbar (entspricht Leerheit des Komplements)

Regularität entscheidbar
(Stearns: A Regularity Test for Pushdown Machines, 1967)

Inklusion unentscheidbar
(Ginsburg & Greibach: Deterministic context-free languages, 1966)

Schnitt unentscheidbar (wie Inklusion, da wir Komplemente haben)

Äquivalenz entscheidbar!
(Sénizergues: L(A)=L(B)? decidability results from complete formal systems, 2001;

komplexes Verfahren ohne Komplexitätsschranken; Ergebnis bekannt seit 1997)

(Mehrdeutigkeit und Determinisierbarkeit sind bei DPDAs trivial)
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Übersicht

CFG DPDA

Wortproblem in O(|w|3) in O(|w|)

Leerheit entscheidbar entscheidbar

Endlichkeit entscheidbar entscheidbar

Universalität unentscheidbar entscheidbar

Inklusion unentscheidbar unentscheidbar

Schnitt unentscheidbar unentscheidbar

Äquivalenz unentscheidbar entscheidbar

Regularität unentscheidbar entscheidbar

Mehrdeutigkeit unentscheidbar trivial

Determinisierbarkeit unentscheidbar trivial
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Rechnen mit Typ 1 und Typ 0
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Wortprobleme jenseits von Typ 2

Wir haben gesehen:

• endliche Automaten erkennen Typ-3-Sprachen

• endliche Automaten + Kellerspeicher erkennen Typ-2-Sprachen

Eingabewort
a a a a b · · ·

Endliche
Steuerung

q Zustandsvariable

B
B
A
A

Keller

Für Typ 1 und Typ 0 benötigen wir mehr als das – aber was?
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Berechnungsmodelle nach Kellerautomaten?

Beobachtung: Auch jenseits von Typ 2 kann man Wortprobleme algorithmisch lösen.

Beispiel: Die Sprache {aibici | i ≥ 0} ist nicht kontextfrei, wird also von keinem PDA
erkannt. Dennoch wäre es nicht sehr schwer, ein Programm in einer beliebigen Pro-
grammiersprache zu schreiben, welches feststellt, ob eine Eingabe diese Form hat.

Aber: Praktische Programmiersprachen eignen sich schlecht als allgemeine
Berechnungsmodelle, da sie viel zu kompliziert sind.

{Wir wollen lieber unser Automatenmodell erweitern
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Jenseits PDAs (1): Mehr Stapel

Die Haupteinschränkung von Kellerautomaten war das eingeschränkte Speichermo-
dell. Wie könnte man das erweitern?

• Man könnte statt eines Stapelspeichers zwei (oder mehr) Stapel verwenden

• Automatenübergänge werden zum Zugriff auf weitere Stapel entsprechend
erweitert

Eingabewort
a a a a b · · ·

Endliche
Steuerung

q Zustandsvariable

B
B
A
A

A
A
B

Keller
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Jenseits PDAs (2): „Warteschlangenautomaten“

Die Haupteinschränkung von Kellerautomaten war das eingeschränkte Speichermo-
dell. Wie könnte man das erweitern?

• Man könnte statt eines Stapelspeichers eine Warteschlange (Queue) verwenden
{ first-in/first-out (FIFO)

• Definition fast genau wie bei PDAs, aber mit enqueue/dequeue statt push/pop

Eingabewort
a a a a b · · ·

Endliche
Steuerung

q Zustandsvariable

A A B B B
Warteschlange
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Jenseits PDAs (3): Zählerautomaten

Die Haupteinschränkung von Kellerautomaten war das eingeschränkte Speichermo-
dell. Wie könnte man das erweitern?

• Man könnte statt eines Stapelspeichers (endlich viele) Speicherplätze für
natürliche Zahlen einführen

• Automatenübergänge könnten einzelne Variablen inkrementieren, dekrementieren,
auf Gleichheit mit 0 testen, . . .

Eingabewort
a a a a b · · ·

Endliche
Steuerung

q Zustandsvariable

17
42
23

Zähler
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Jenseits PDAs (4): Programme statt Automaten

Eventuell könnte man auch vom Automatenmodell abweichen und stattdessen eine
einfache Programmiersprache definieren.

Einfache Ausdrucksmittel:

• Variablen, die Zahlen speichern können

• Wertezuweisungen, die Variablen das Ergebnis eines Ausdrucks (z.B. aus +, −,
Variablen, Zahlen) zuweisen

• Schleifen der Form while x , 0 do: . . .

{ Sogenannte WHILE-Programme

Statt while könnte man auch if und goto einführen
{ Sogenannte GOTO-Programme
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Viele mögliche Wege

Bisher gesammelte Ideen:

• PDAs mit zwei Stapeln

• PDAs mit einer noch größeren Zahl an Stapeln

• Warteschlangenautomaten

• Zählerautomaten

• WHILE-Programme

• GOTO-Programme

Man kann jedes dieser Berechnungsmodelle formal definieren . . .

Es ergeben sich daher viele Fragen . . .

Welche Sprachklasse können diese Modelle jeweils erkennen?

. . . aber immer wieder die gleiche Antwort:

Genau die Typ-0-Sprachen.
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Zusammenfassung und Ausblick

Deterministische Typ-2-Sprachen sind praktisch wichtig, da effizient parsebar

Viele Fragestellungen für Typ-2-Sprachen sind unentscheidbar, wobei deterministische
Sprachen noch etwas mehr erlauben

Zahlreiche naheliegende Erweiterungen von PDAs führen alle zur gleichen
Ausdrucksstärke (Typ 0)

Offene Fragen:

• Welches Berechnungsmodell sollen wir nun verwenden?

• Wenn alle Modelle Typ 0 liefern, was ist dann mit Typ 1?

• Unterscheiden sich Typ 0 und Typ 1 überhaupt?
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