‘ Technische
‘ Universitat

Dresden

Formale Systeme

17. Vorlesung: Deterministische Sprachen / Entscheidungsprobleme

Markus Kroétzsch

Professur fiir Wissensbasierte Systeme

TU Dresden, 11. Dezember 2025

https://iccl.inf.tu-dresden.de/web/FS2025
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

PDA = CFG = Typ 2

A s o T Lpush(B1 B,)" ~» l
L w) € 8, € A" PDA spush(B,),...,push(B;)"
mit Wort-push \
Satz: Eine Sprache ist
genau dann kontextfrei
wenn sie von einem PDA
akzeptiert wird.
PDA /
Var = aVs:b Z Ketlerwid vor Akzeptans geloart \
Vq,r = Vq,svs,r — pro Schritt pop oder push, nie beides w
Vgq — € ' skizziert

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 3 von 32

Deterministische Kellerautomaten

Ein deterministischer Kellerautomat (international: ,DPDA") M ist ein Tupel M =
(Q,Z,T,0,q0, F) bestehend aus Zustandsmenge Q, Eingabealphabet Z, Kelleralpha-
bet I', Startzustand ¢, € Q, Endzustande F C Q und partieller Ubergangsfunktion

O XX xT'e » OXT,
so dass fur alle g € O, a € X und A €T jeweils nur eines der folgenden definiert ist:

6(q,a,A) 6(q,a, €) (g, €, A) (g, €, €)

Beispiel: a'b’
a, e A b,A €

€,€— S /Gﬂ b,A € /0\ €,SHe€
qs N da N d)O
(=) N\ \&J ®

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 4 von 32

Deterministisch vs. nichtdeterministisch

Typ-2-Sprachen

e Erkannt durch PDAs

® Nicht unter Komplement
abgeschlossen

® Echte Obermenge der
det. Typ-2-Sprachen,
z.B. {a'b/ck | i # joderj # k}
e Wortproblem in O(lw}?)
(CYK-Algorithmus)

® Generiert durch CFGs

Markus Krétzsch, 11. Dezember 2025

Deterministische Typ-2-Sprachen

e Erkannt durch DPDAs

® Unter Komplement
abgeschlossen

® Echte Obermenge der
reguléren Sprachen,
z.B. {a'b’ | i > 0}

e Wortproblem in O(|wl)
(DPDA-Abarbeitung)

® Generiert durch deterministische
CFGs (kein Vorlesungsstoff)

Formale Systeme Folie 5 von 32

Deterministische Typ-2-Sprachen

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 6 von 32

Rulckblick: Ableitungsbdume

Ruckblick:

Die Interpretation von
Wortern kontextfreier
Sprachen basiert zumeist
auf dem Syntaxbaum.

Beispiel:

S>A|IM|V A—-(S5+S)

M — (SxS) Voxl|y|z

Wort: (xx(y+2))

Markus Krétzsch, 11. Dezember 2025

S
|
M
N
(T * T)
7N
>|: (T + T)
Vv Vv
-
y z
Formale Systeme Folie 7 von 32

Mehrdeutige Grammatiken

Wir wissen: Ein

Ableitungsbaum kann

zumeist durch S
verschiedene |
Ableitungen erzeugt M

werden / \ / \

Es gilt aber auch: Ein T
Wort kann mehrere v
verschiedene |
Ableitungsbaume X
haben

Beispiel:
S—>A|M|V A-S+S
M — SxS Voxl|yl|z

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 8 von 32

Mehrdeutige Grammatiken (2)

Eine Grammatik G ist mehrdeutig wenn es ein Wort w € L(G) gibt, das mehrere Syn-
taxbdume zulasst (aquivalent: wenn es fir w mehrere unterschiedliche Linksableitun-
gen gibt).

Mehrdeutige Grammatiken in der Praxis:
® unerwinscht in technischen Sprachdefinitionen (Programmiersprachen,
Datenformate)
® relevant in der Sprachverarbeitung (um die Mehrdeutigkeit nattrlicher Sprache
abzubilden)

Fir viele mehrdeutige Grammatiken kann man eindeutige Grammatiken finden, welche
die gleiche Sprache generieren, z.B.:

S—>A|M A— A+A|M M — MM | V Vox|ylz
Aber: es gibt inharent mehrdeutige Sprachen, die nur mehrdeutige Grammatiken haben,

z.B.:{a'bick | i,k > 0} U {a'bFck | i,k > 0}

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 9 von 32

Mehrdeutig vs. Deterministisch

Fakten:
® Deterministische Sprachen haben immer auch eindeutige Grammatiken (unter
anderen)
® Aber: eindeutige Grammatiken kdnnen nichtdeterministische Typ-2-Sprachen
beschreiben
deterministisch ¢ eindeutig € Typ 2

Unterschiedliche Motivationen:
® eindeutige Sprachdefinitionen: eindeutige Syntaxbaume, eindeutige Interpretation
® deterministische Sprachen: effizienteres Parsing méglich

viele Programmiersprachen verwenden deterministische (und eindeutige) Grammatiken

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 10 von 32

Deterministische CFGs

Man kann die Klasse der deterministischen Typ-2-Sprachen auch durch Grammatiken
beschreiben:

® Dies fuhrt zu deterministischen kontextfreien Grammatiken (DCFGs)

* Die eigentliche Definition ist relativ technisch

® DPDAs erkennen im Prinzip dieselben Sprachen wie DCFGs

sofern man sich auf Sprachen beschrénkt, bei denen jedes Wort als letztes Zeichen
ein spezielles Schlusssymbol verwendet, um das Ende zu markieren!

Gute Nachricht: Man kann effektiv entscheiden, ob eine gegebene CFG
deterministisch ist.

Schlechte Nachricht: Praktische Grammatiken erfiillen die strengen Bedingungen oft
nicht, auch wenn sie eine deterministisch kontextfreie Sprache beschreiben

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 11 von 32

Nach vorne blicken

Deterministische Typ-2-Sprachen sind praktisch sehr relevant:
® Programmiersprachen sind meist im Kern deterministisch

® Man kann sie sehr effizient parsen (kein CYK)

In der Praxis hilft eine Verallgemeinerung von DCFGs:
-\ Grammatiken mit endlicher Vorschau (Lookahead).

Idee:
® Wort wird von links nach rechts gelesen

® Grammatikregeln werden riickwarts angewendet, um

D (il 2 Teile des gelesenen Worts zu reduzieren
CC-By-SA 25

(c) J. Appelbaum ® Die Wahl der Grammatikregel hangt nur vom schon
gelesenen Wort und von bis zu k weiteren Symbolen
ab (Vorschau)

Grammatiken, die das erlauben, sind vom Typ LR(k), wobei LR(0) (keine Vorschau)
DCFGs sind.

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 12 von 32

Abschlusseigenschaften (1)

Wir wissen bereits, dass deterministische Typ-2-Sprachen unter Komplement
abgeschlossen sind.

Fir Schnitte gilt das allerdings nicht:

Fatz: Deterministische Typ-2-Sprachen sind nicht unter Schnitten abgeschlossen.

Beweis: Der Beweis fiir Typ-2-Sprachen funktioniert auch hier. Die Sprachen

L, = {a'bick|i>0,k > 0}
L, = {a'b*ck | i> 0,k > 0}.

sind deterministisch kontextfrei (Ubung: Geben Sie entsprechende DPDAs an). Ihr
Schnitt Ly N Ly = {a’b'c’ | i > 0} ist dagegen nicht einmal kontextfrei. O

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 13 von 32

Abschlusseigenschaften (2)

Der Nichtabschluss unter Schnitten hat weitere Konsequenzen:

Fatz: Deterministische Typ-2-Sprachen sind nicht unter Vereinigung abgeschlossen. \

Beweis: Angenommen sie wéren unter Vereinigung abgeschlossen, dann waren sie
auch unter Schnitten abgeschlossen, da sie bereits unter Komplement abgeschlossen
sind (De Morgan). Widerspruch. O

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 14 von 32

Abschlusseigenschaften (3)

Bei anderen Operationen sieht es nicht besser aus:

Satz: Deterministische Typ-2-Sprachen sind nicht unter Konkatenation oder Kleene-
Stern abgeschlossen.

Beweisidee: Vereinigungen kann man deterministisch machen, indem man einer der
Alternativen ein Markierungszeichen X vorschaltet, das ansonsten nie am Anfang des
Wortes auftauchen darf. Falls man die Sprache dann aber an die (deterministische
Sprache) X* anhangt, ist die Markierung nicht mehr als Entscheidungshilfe nutzbar. Die
Idee beim Stern ist &hnlich.]

Zusammenfassung: Deterministische Typ-2-Sprachen sind abgeschlossen unter
Komplement, aber nicht unter Vereinigung, Schnitt, Konkatenation oder Stern.

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 15 von 32

Entscheidungsprobleme auf kontextfreien
Sprachen

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 16 von 32

Ruckblick Entscheidungsprobleme

Fir reguldre Sprachen haben wir eine Reihe von Problemstellungen kennengelernt:
® |eerheitsproblem: Ist die beschriebene Sprache 0?
® |nklusionsproblem: Ist eine beschriebene Sprache Teilmenge einer anderen?
e Aquivalenzproblem: Wird durch zwei Beschreibungen die selbe Sprache gegeben?
® Endlichkeitsproblem: Ist die beschriebene Sprache endlich?
® Universalitdtsproblem: Ist die beschriebene Sprache X*?

Dabei kénnten Sprachen durch verschiedene Beschreibungen gegeben sein
(Automaten, Grammatiken, .. .)

Zudem gibt es freilich das Wortproblem
(fr [D]CFGs bereits besprochen)

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 17 von 32

Meistens unentscheidbar

Viele interessante Fragen sind leider im Allgemeinen nicht durch Algorithmen |sbar:

Fatz: Inklusion, Aquivalenz und Universalitat von CFGs ist unentscheidbar.

(ohne Beweis, da wir noch gar nicht Uber Entscheidbarkeit gesprochen haben .. .)

Einiges ist aber doch machbar:

Fatz: Leerheit und Endlichkeit einer CFG sind entscheidbar.

Diese Ergebnisse gelten ebenso, wenn PDAs statt CFGs gegeben sind, da wir diese ja
in CFGs umwandeln kdnnen.

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 18 von 32

Leerheit entscheiden

Eﬂz: Die Leerheit einer CFG ist entscheidbar.

Beweis: Man markiert Variablen mit folgender Prozedur:

® Markiere alle Variablen, welche direkt in ein Wort aus Terminalzeichen
umgeschrieben werden kénnen

® Markiere iterativ alle Variablen, welche in ein Wort aus Terminalzeichen und
markierten Variablen umgeschrieben werden kénnen

Die Sprache ist genau dann nicht leer wenn bei diesem Verfahren das Startsymbol
markiert wird. O

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 19 von 32

Endlichkeit entscheiden

Fatz: Endlichkeit der Sprache L(G) einer CFG G ist entscheidbar.

Beweis: Sei n die Zahl aus dem Pumpinglemma (also 2!¥! nach Umwandlung in
Chomsky NF).
® Wenn es ein Wort z € L(G) mit n < |z| < 2n gibt, dann ist L(G) unendlich (da man
das Pumpinglemma auf z anwenden kann).
e Wenn L(G) unendlich ist, dann gibt es ein Wort z € L(G) mit n < |z] < 2n (Beweis:
Es muss Worter mit mehr als n Zeichen geben. Sei z ein klrzestes Wort dieser Art.
Laut Pumpinglemma ist z = uvwxy mit [vx| < n und uv’wx’y = uwy € L(G). Da uwy
kirzer ist als z muss gelten [uwy| < n. Daraus folgt |z| = |uwy| + |vx| < 2n.)
Das heif3t, wir mlssen nur testen, ob es so ein Wort z € L(G) mit n < |z| < 2n gibt. Das
kann man (Brute Force) fir alle Worter dieser Lange tun (da das Wortproblem l&sbar
ist). O

(Es gibt effizientere Verfahren, aber dieses ist das einfachste fiir den Beweis.)

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 20 von 32

Alles unentscheidbar

Viele weitere interessante Fragen sind leider ebenfalls unentscheidbar:
® Regularitat: Ist die durch eine CFG gegebene Sprache regular?
® Mehrdeutigkeit: Ist eine gegebene CFG mehrdeutig oder nicht?
¢ Determinisierbarkeit: Ist die durch eine CFG gegebene Sprache deterministisch?"

Schnittproblem: Haben zwei gegebene Sprachen gemeinsame Wérter?

' Aber, wie zuvor angemerkt: man kann entscheiden, ob eine gegebene CFG bereits
deterministisch ist (wenn sie es nicht ist, dann bedeutet das aber nicht, dass es keine dquivalente
DCFG geben kénnte).

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 21 von 32

Entscheidungsprobleme fir DPDAs

Die Situation ist etwas besser bei DPDAs:

Leerheit
Endlichkeit
Universalitat

Regularitat
Inklusion

Schnitt

Aquivalenz

entscheidbar (wie bei cras)
entscheidbar (wie bei cFGs)
entscheidbar (entspricht Leerheit des Komplements)

entscheidbar
(Stearns: A Regularity Test for Pushdown Machines, 1967)

unentscheidbar

(Ginsburg & Greibach: Deterministic context-free languages, 1966)

unentscheidbar (wie Inklusion, da wir Komplemente haben)

entscheidbar!

(Sénizergues: L(A)=L(B)? decidability results from complete formal systems, 2001;

komplexes Verfahren ohne Komplexitatsschranken; Ergebnis bekannt seit 1997)

(Mehrdeutigkeit und Determinisierbarkeit sind bei DPDAS trivial)

Markus Krétzsch, 11. Dezember 2025 Formale Systeme

Folie 22 von 32

Ubersicht

Wortproblem

Leerheit
Endlichkeit
Universalitat

Inklusion
Schnitt

Aquivalenz

Regularitat
Mehrdeutigkeit

Determinisierbarkeit

Markus Krétzsch, 11. Dezember 2025

CFG
in O(Iwl*)

entscheidbar
entscheidbar

unentscheidbar

unentscheidbar
unentscheidbar

unentscheidbar

unentscheidbar
unentscheidbar

unentscheidbar

DPDA
in O(wl)

entscheidbar
entscheidbar

entscheidbar

unentscheidbar
unentscheidbar

entscheidbar

entscheidbar
trivial

trivial

Formale Systeme

Folie 23 von 32

Rechnen mit Typ 1 und Typ O

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 24 von 32

Wortprobleme jenseits von Typ 2

Wir haben gesehen:
® endliche Automaten erkennen Typ-3-Sprachen
® endliche Automaten + Kellerspeicher erkennen Typ-2-Sprachen

Eingabewort

lalalalaln] 3 B
B

Keller
Endliche

Steuerung
’—E Zustandsvariable

Far Typ 1 und Typ 0 bendtigen wir mehr als das — aber was?

Markus Krétzsch, 11. Dezember 2025 Formale Systeme

Folie 25 von 32

Berechnungsmodelle nach Kellerautomaten?

Beobachtung: Auch jenseits von Typ 2 kann man Wortprobleme algorithmisch 16sen.

Beispiel: Die Sprache {a’b'c’ | i > 0} ist nicht kontextfrei, wird also von keinem PDA
erkannt. Dennoch ware es nicht sehr schwer, ein Programm in einer beliebigen Pro-
grammiersprache zu schreiben, welches feststellt, ob eine Eingabe diese Form hat.

Aber: Praktische Programmiersprachen eignen sich schlecht als allgemeine
Berechnungsmodelle, da sie viel zu kompliziert sind.

~> Wir wollen lieber unser Automatenmodell erweitern

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 26 von 32

Jenseits PDAs (1): Mehr Stapel

Die Haupteinschrankung von Kellerautomaten war das eingeschrankte Speichermo-
dell. Wie kénnte man das erweitern?

® Man kdnnte statt eines Stapelspeichers zwei (oder mehr) Stapel verwenden

* Automateniibergange werden zum Zugriff auf weitere Stapel entsprechend
erweitert

Eingabewort

[alalalalo]]

A

___J A
5
Endliche

Steuerung
/—E Zustandsvariable

Markus Krétzsch, 11. Dezember 2025 Formale Systeme

Keller

>>ww)

Folie 27 von 32

Jenseits PDAs (2): ,Warteschlangenautomaten®

Die Haupteinschrankung von Kellerautomaten war das eingeschrankte Speichermo-
dell. Wie kénnte man das erweitern?

® Man kénnte statt eines Stapelspeichers eine Warteschlange (Queue) verwenden
~» first-in/first-out (FIFO)

® Definition fast genau wie bei PDAs, aber mit enqueue/dequeue statt push/pop

Eingabewort

Ellalebl -] —fAREEE]

Warteschlange

Endliche

Steuerung
’E Zustandsvariable

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 28 von 32

Jenseits PDAs (3): Zahlerautomaten

Die Haupteinschréankung von Kellerautomaten war das eingeschrénkte Speichermo-
dell. Wie kdnnte man das erweitern?

* Man kdnnte statt eines Stapelspeichers (endlich viele) Speicherplatze flr
natlrliche Zahlen einflhren
* Automatenlibergange kénnten einzelne Variablen inkrementieren, dekrementieren,
auf Gleichheit mit 0 testen, ...
Eingabewort
)—a_)a)a)am :2 _5_*17
42| Zahler
23

Endliche

Steuerung
Zustandsvariable

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 29 von 32

Jenseits PDAs (4): Programme statt Automaten

Eventuell kdnnte man auch vom Automatenmodell abweichen und stattdessen eine
einfache Programmiersprache definieren.
Einfache Ausdrucksmittel:

e Variablen, die Zahlen speichern kénnen

® Wertezuweisungen, die Variablen das Ergebnis eines Ausdrucks (z.B. aus +, —,
Variablen, Zahlen) zuweisen

e Schleifen der Form while x # 0 do: . ..
~> Sogenannte WHILE-Programme

Statt while kénnte man auch if und goto einfiihren
~» Sogenannte GOTO-Programme

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 30 von 32

Viele mdgliche Wege

Bisher gesammelte Ideen:
* PDAs mit zwei Stapeln
® PDAs mit einer noch gréBeren Zahl an Stapeln
® Warteschlangenautomaten
e Zahlerautomaten
WHILE-Programme
® GOTO-Programme
Man kann jedes dieser Berechnungsmodelle formal definieren ...

Es ergeben sich daher viele Fragen ...

\ Welche Sprachklasse kénnen diese Modelle jeweils erkennen?

...aber immer wieder die gleiche Antwort:

Genau die Typ-0-Sprachen.

Markus Krétzsch, 11. Dezember 2025 Formale Systeme

Folie 31 von 32

Zusammenfassung und Ausblick

Deterministische Typ-2-Sprachen sind praktisch wichtig, da effizient parsebar

Viele Fragestellungen fur Typ-2-Sprachen sind unentscheidbar, wobei deterministische
Sprachen noch etwas mehr erlauben

Zahlreiche naheliegende Erweiterungen von PDAs flihren alle zur gleichen
Ausdrucksstarke (Typ 0)

Offene Fragen:
® Welches Berechnungsmodell sollen wir nun verwenden?
® Wenn alle Modelle Typ 0O liefern, was ist dann mit Typ 1?
e Unterscheiden sich Typ 0 und Typ 1 Uberhaupt?

Markus Krétzsch, 11. Dezember 2025 Formale Systeme Folie 32 von 32

