
Implementing completion-based inferences for
the EL-family

Julian Mendez and Andreas Ecke and Anni-Yasmin Turhan

TU Dresden, Institute for Theoretical Computer Science

Abstract. Completion algorithms for subsumption are investigated for
many extensions of the description logic EL. While for several of them
subsumption is tractable, this is no longer the case, if inverse roles are
admitted. In this paper we present an optimized version of the comple-
tion algorithm for ELHIfR+ [11], which is implemented in jCel. The
completion sets computed during classification are a good substrate for
implementing other reasoning services such as generalizations. We re-
port on an extension of jCel that computes role-depth bounded least
common subsumers and most specific concepts based on completion sets.

1 Introduction

The lightweight Description Logic (DL) EL and many of its extensions enjoy the
nice property that computing concept subsumption and classification of ontolo-
gies written in these Description Logics is tractable [1]. Prominent bio-medical
ontologies are expressed in extensions of EL for which reasoning can still be done
in polynomial time. The Gene ontology (GO) is an ELH ontology and SNOMED
is written in EL+. However, the GALEN ontology uses the DL ELHIfR+—a DL
with inverse roles, which are known to make subsumption w.r.t. general ontolo-
gies ExpTime-complete [2]. While the polynomial time completion algorithms
work on graph structures that are static and have simple labellings, the algo-
rithm for ELI requires dynamic nodes sets and uses complex labels. In [11] a
completion algorithm for ELHIfR+ has been devised. Since the node set gen-
erated by this method can grow exponentially, it is important to use a good
completion strategy, that determines the next node label to which a completion
rules is applicable. We present in this paper an optimized version of the algo-
rithm for ELHIfR+ with such a completion strategy, which is implemented in
the reasoner jCel.

Recently, the completion sets computed during classification have been em-
ployed to compute (approximations for) generalization inferences such as the
least common subsumer (lcs) or most specific concept (msc). The lcs generalizes
a collection of concept descriptions into a single concept description that is the
least w.r.t. subsumption. The msc generalizes a description of an individual into
a concept description. Intuitively, the msc delivers the most specific concept de-
scription that the input individual belongs to. Both of these services are useful
for the building of knowledge bases. In the bio-medical field in particular the lcs
is employed to define similarity measures between concept descriptions. Since for

Syntax Semantics
conjunction C u C CI ∩DI

existential restr. ∃r.C {d ∈ ∆I | ∃e ∈ ∆I : (d, e) ∈ rI ∧ e ∈ CI}
role inclusion r v s rI ⊆ sI

functional role f(r) ∀d1 ∈ ∆I : | {d2 ∈ ∆I | (d1, d2) ∈ rI} | ≤ 1
inverse role r− {(d1, d2) ∈ ∆I ×∆I | (d2, d1) ∈ rI}
transitive role r ◦ r v r {(d1, d2), (d2, d3)} ⊆ rI → (d1, d3) ⊆ rI

Table 1. ELHIfR+ -concept and role constructors.

general EL-TBoxes neither the lcs nor the msc need to exist, an algorithm for
role-depth bounded lcs and -msc was devised in [8]. These algorithms are now
implemented for ELH on top of jCel.

2 Preliminaries

Starting from two disjoint sets NC and NR of concept and role names, respec-
tively, ELHIfR+ -concept descriptions are built using concept and role construc-
tors shown in Table 1 and the top-concept (>). The DL EL is the ELHIfR+ -
fragment that only allows for the concept constructors conjunction and existen-
tial restrictions. ELH extends EL by role inclusion statements.

The semantics of ELHIfR+ is defined by interpretations I = (∆I , ·I) con-
sisting of a non-empty domain ∆I and an interpretation function ·I that assigns
binary relations on ∆I to role names and subsets of ∆I to concepts. The in-
terpretation function is extended to complex concept descriptions and roles as
described in the last column of Table 1.

A TBox is a set of concept inclusion axioms of the form C v D, where
C,D are concept descriptions. An interpretation I satisfies the concept inclusion
C v D, denoted as I |= C v D iff CI ⊆ DI . I is a model of a TBox T if it
satisfies all axioms in T . A concept C is subsumed by a concept D w.r.t. T
(denoted C vT D) if, for every model I of T it holds that I |= C v D.

Let NI be a set of individual names. An EL-ABox is a set of assertions of the
form C(a), r(a, b), where C is an EL-concept description, r ∈ NR, and a, b ∈ NI.
A knowledge base K = (T ,A) consists of a TBox T and an ABox A.

Finally, an individual a ∈ NI is an instance of a concept description C w.r.t.
K (written K |= C(a)) if I |= C(a) for all models I of K. ABox realization is to
compute for each individual a in A the set of named concepts from K that have
a as an instance.

3 Completion algorithm for ELHIfR+

Classification of TBoxes is the computation of all subsumption relations between
all named concepts of a TBox. For several extensions of EL classification can be
performed in polynomial time [1, 2]. These classification algorithms typically
proceed in three steps:

NR-1 C ≡ D C v D,D v C
NR-2 C1 u · · · u Ĉ u · · · u Cn v D Ĉ v A,C1 u · · · uA u · · · u Cn v D
NR-3 ∃r′.Ĉ v D Ĉ v A,∃r′.A v D
NR-4 Ĉ v ∃r′.D Ĉ v A,A v ∃r′.D
NR-5 B v ∃r′.Ĉ B v ∃r′.A,A v Ĉ
NR-6 D v C1 u C2 D v C1, D v C2
NR-7 C v ∃r−.D C v ∃u.D, u v r−, r− v u
NR-8 ∃r−.C v D ∃u.C v D, u v r−, r− v u
where r: role; r′: (inverse) role; C, Ci, D: concept descriptions;
Ĉ, D̂: complex concept descriptions; B: concept name;
A: fresh concept name; u: fresh role name.

Table 2. Normalization rules.

1. normalization of the TBox
2. apply completion rules to the completion graph
3. read off subsumptions relations from the saturated completion graph

The basic completion algorithm represents the completion graph by two kinds
of completion sets: S(C) and S(C, r) for each concept name C and role name
r from the TBox. The sets contain concept names from the TBox and > .
The sets S(C) represent the labelled nodes, while the sets S(C, r) represent the
edges of the completion graph. The idea of the classification algorithm is that
completion rules make implicit subsumption relationships explicit. In fact, the
following invariants hold:

– D ∈ S(C) implies that C vT D,
– D ∈ S(C, r) implies that C vT ∃r.D.

For extensions of EL that also offer inverse roles, testing subsumption is not
polynomial, but it is ExpTime-complete [2]. In [11] Vu has devised a completion
algorithm for ELHIfR+ (and some of its sublanguages). In contrast to the basic
completion algorithm, this one works on completion graphs with more complex
nodes. Moreover, the set of nodes grows dynamically during completion. We
describe now an optimized version of Vu’s algorithm given in [7].

Normalization. An ELHIfR+ -TBox T is in normal form if all concept inclu-
sions have one of the following forms, where A1, A2, B are concept names:

A1 v B, A1 u . . . uAn v B, A1 v ∃r.A2 or ∃r.A1 v B.

Each ELHIfR+ -TBox can be transformed into this normal form by applying
the rules shown Table 2, where the axioms on the left-hand side are replaced by
the axiom(s) on the right-hand side. The implicit information on (functional)
roles is made explicit by applying the following saturation rules to the TBox:

r v s r− v s− r v s , s v t r v t
r ◦ r v r r− ◦ r− v r− r v s , f(s) f(r)

In addition, auxiliary role names are added to NR to allow a mapping where each
role s has an inverse role r− such that s ≡ r−. In this way, the algorithm applies
the completion rules to role names and inverse roles.

Completion rules. Once the TBox is normalized and saturated, the com-
pletion sets are initialized and the completion rules are applied. Based on the
two sets Ξ := {∃r.A | r ∈ NR, A ∈ NC} and Ω := {(A,ψ) | A ∈ NC, ψ ⊆ Ξ} the
completion sets are defined as
– V ⊆ Ω
– S ⊆ {(x,A) | x ∈ Ω,A ∈ NC}
– R ⊆ {(r, x, y) | r ∈ NR, x, y ∈ Ω}.

For the completion graph, the set V is the set of nodes, S is a node labeling and
Ω is the set of edges. The elements in S are called S-entries, the elements in R
are called R-entries, the elements in V are referred to as nodes. The completion
process satisfies the following invariants:
– if ((A,ϕ), C) ∈ S, then (A u

d

E∈ϕ
E) vT C

– if (r, (A,ϕ), (B,ψ)) ∈ R, then (A u
d

E∈ϕ
E) vT ∃r.(B u

d

E∈ψ
E)

where each E is of the form ∃r.X. Furthermore, after completion we have that
A vT B if and only if ((A, ∅), B) ∈ S. The algorithm initializes the sets as
follows:
– V := {(A, ∅) | A ∈ NC},
– S := {((A, ∅), A) | A ∈ NC} ∪ {((A, ∅),>) | A ∈ NC},
– R := ∅

and applies the completion rules. The optimized completion rules for ELHIfR+

are presented in Table 3. The underlined elements are membership checks for S
and R. These conditions are relevant for the strategy of completion.

As a consequence of the normal form presented here, CR-2 may have several
conjuncts on the left-hand side of a normalized GCI. This simple optimization
reduces the number of auxiliary symbols.

In [7] it was shown that the rules in Table 3 are equivalent to those in [11].

Completion strategy. The completion rules do not define any order of appli-
cation to the S- and R entries. In fact, finding the element of the completion sets
and axioms from the TBox to which a rule is applicable fast is crucial for the
performance of the reasoner. The idea of sets is that it collects newly generated
entries, which are not present in the set yet, to be tested for applicability of com-
pletion rules. This approach has already been employed in Cel, see [?]. In Cel
each node has an associated queue with entries to be tested. This idea is now
transferred to dynamic node sets and the set of completion rules for ELHIfR+ .

To prepare Q the initialization of the algorithm is slightly modified:

CR-1 if A v B ∈ T , (x,A) ∈ S then S′ := S ∪ {(x,B)}

CR-2 if A1 u . . . uAi u . . . uAn v B ∈ T ,
(x,A1) ∈ S, . . ., (x,Ai) ∈ S, . . ., (x,An) ∈ S

then S′ := S ∪ {(x,B)}

CR-3 if A v ∃r.B ∈ T , (x,A) ∈ S
then if f(r)

then v := (>, {∃r−.A})
if v /∈ V then V := V ∪ {v}, S′ := S ∪ {(v,B)} ∪ {(v,>)},

R′ := R ∪ {(r, x, v)}
else y := (B, ∅)
R′ := R ∪ {(r, x, y)}

CR-4 if ∃s.A v B ∈ T , (r, x, y) ∈ R, (y,A) ∈ S, r vT s
then S′ := S ∪ {(x,B)}

CR-5 if s ◦ s v s ∈ T , (r1, x, y) ∈ R, (r2, y, z) ∈ R, r1 vT s, r2 vT s
then R′ := R ∪ {(s, x, z)}

CR-6 if ∃s−.A v B ∈ T , r vT s, (r, x, y) ∈ R, (x,A) ∈ S, (y,B) /∈ S, y = (B′, ψ)
then v := (B′, ψ ∪ {∃r−.A})

if v /∈ V then V := V ∪ {v}, S′ := S ∪ {(v, k) | (y, k) ∈ S}
S′ := S ∪ {(v,B)}, R′ := R ∪ {(r, x, v)}

CR-7 if ∃s−.A v B ∈ T , (r2, x, y) ∈ R, x = (A′, ϕ), y = (B′, ψ),
r ◦ r v r ∈ T , r1 vT r, r2 vT r, ∃r−1 .A ∈ ϕ, r vT s

then v := (B′, ψ ∪ {∃r−.A})
if v /∈ V then V := V ∪ {v}, S′ := S ∪ {(v, k) | (y, k) ∈ S}
S′ := S ∪ {(v,B)}, R′ := R ∪ {(r2, x, v)}

CR-8 if A v ∃r−2 .B ∈ T , (r1, x, y) ∈ R, (y,A) ∈ S, r1 vT s, r2 vT s, f(s−)
then S′ := S ∪ {(x,B)}

CR-9 if (r1, x, y) ∈ R, (r2, x, z) ∈ R, r1 vT s, r2 vT s,
y = (>, ψ), z = (>, ϕ), y 6= z, f(s)

then v := (>, ψ ∪ ϕ)
if v /∈ V then V := V ∪ {v}
S′ := S ∪ {(v, k) | (y, k) ∈ S} ∪ {(v, k) | (z, k) ∈ S}, R′ := R ∪ {(r1, x, v)}

Table 3. Optimized completion rules for ELHIfR+ .

– S := ∅, R := ∅
– Q := {((A, ∅), A) | A ∈ NC} ∪ {((A, ∅),>) | A ∈ NC}

The sets S′ and R′ represent the next step of sets S and R, respectively. Their
new elements are added to Q′ in the algorithm shown in Table 4.

We say a completion rule is sensitive to changes in a set, if the precondition
of that rule mentions that set. In Table 3 the relevant entries are underlined.
For example, CR-1 is sensitive to changes in S only, CR-7 is sensitive to changes

1. S,R,Q := ∅
2. for each concept name A, add ((A, ∅), A) and ((A, ∅),>) to Q
3. while Q 6= ∅
4. take one element e from Q and remove it from Q
5. if e is an S-entry
6. let Q′ be the result of applying all the S-rules to e
7. else if e is an R-entry
8. let Q′ be the result of applying all the R-rules to e
9. Q := Q ∪ ((Q′ \ S) \ R)

Table 4. General algorithm.

in R only, and CR-4 is sensitive to changes in S and R. According to the kind
of entry they are sensitive to, the completion rules are members of the chain of
rules the process S-entries or R-entries.

A conceptual scheme of the algorithm is presented in Table 4. The processor
takes entries from Q, changes sets S and R, and informs the corresponding chain
of rules of these changes. This procedure is repeated until Q is empty, i.e. no
rules are applicable.

3.1 Implementation in jCel

jCel1 is implemented in Java. The object-oriented design of the completion algo-
rithm brings a very low coupling, since each rule can be changed separately. Thus
jCel can easily be adapted to new sets of completion rules. For implementation-
dependant technical details (e.g. data structures) see [7].

Besides classification for ELHIfR+ -TBoxes, jCel also implements realiza-
tion of ELH-ABoxes.

3.2 Experiments with jCel

The experiments were run on a computer with two Intel(R) Core(TM)2 Duo
E8500 processors running at 3.16 GHz and 4 GB of main memory.

Experiments classifying ELHIfR+ ontologies. The full version of GALEN
is still one of the most challenging ontologies, since hardly any reasoner can clas-
sify it. Two GALEN ontologies were considered: the original version of GALEN
(GALEN-A), and the newer version of GALEN (GALEN-B), which were used
in [?] to test Cel. Table 6 lists their sizes in terms of concepts etc.

For GALEN-A, jCel took 1093 s and the reasoner CB less than 1 s. In case
of GALEN-B, the current version of jCel could not finish classification due to
lack of memory. CB classified this ontology in 5 s.
1 The reasoner jCel and its source code is available at http://jcel.sourceforge.net.

ontology #axioms #norm. ax. #concepts #roles
GALEN-A 8140 12930 2748 413
GALEN-B 61787 95789 23143 950

Table 5. Ontologies using ELHIfR+ .

ontology logic #axioms #norm. ax. #concepts #roles
NCI EL 74662 47080 27652 70
GO ELR+ 49363 28900 20465 1
FMA ELR+ 150282 119570 75139 2
SNOMED CT ELH 962796 1127193 378569 61
NotGalen ELHR+ 7540 15089 2748 413
CELGalen ELHR+ 60637 102742 23141 950

Table 6. Ontologies using ELHR+ .

ontology entries jCel 0.13.0 Cel Plug-in 0.5.0 quotient
NCI 346887 8.9 s 10.2 s 0.87
GO 154489 4.4 s 3.5 s 1.26
FMA 9576858 149.0 s 2388.0 s 0.06
SNOMED CT 143039451 1108.0 s 705.0 s 1.57
NotGalen 224565 2.9 s 5.2 s 0.56
CELGalen 6836237 52.0 s 134.0 s 0.39
Table 7. Compared times of classification between jCel and Cel.

Experiments in ELHR+ . In Table 6 we compare the sizes of the different
test ontologies to be classified with the polynomial completion algorithm (with
static node set).

The execution times of jCel were compared with the Cel system. Cel is
one of the fastest reasoners for reasoning in the EL-family of DLs and is known
to deliver correct results [6, 4]. The inferred concept hierarchy was identical in
classifications of both reasoners. The measured run-times are shown in Table 7.

To sum up, jCel’s performance is comparable to state of the art reasoners
and, in case of Cel sometimes even better.

4 Completion based generalization

The classification and the realization algorithm of jCel can be employed to
compute generalizations. We define these inferences now.

Definition 1. Let K =(T , A) be a ELH-KB and C1, . . . , Cn ELH-concept de-
scriptions and k ∈ IN. Then the ELH-concept description C is the role-depth
bounded ELH-least common subsumer of C1, . . . , Cn w.r.t. T and role-depth k
(written k-lcs(C1, . . . , Cn)) iff

1. role-depth(C) ≤ k,
2. Ci vT C for all 1 ≤ i ≤ n, and

3. for each ELH-concept description D with role-depth(D) ≤ k it holds that,
Ci vT D for all 1 ≤ i ≤ n implies C vT D.

Let a be an individual in A and again k ∈ IN. The ELH-concept description C is
the role-depth bounded ELH-most specific concept of a w.r.t. K and role-depth
k (written k-msc(a)) iff

1. role-depth(C) ≤ k,
2. K |= C(a), and
3. for each ELH-concept description D with role-depth(D) ≤ k holds: K |=

D(a) implies C vT D.

Completion-based subsumption algorithms classify ELH-TBoxes by explic-
itly deriving all subsumptions relationships between named concept and storing
them in completion sets. The latter can be used to compute the k-lcs of concept
descriptions. A completion-based realization algorithm can be used to compute
the k-msc of an individual from its completion sets.

The algorithm for computing k-lcs and k-msc from completion sets is given
in [8]. The idea for k-lcs algorithm is: the lcs for two EL-concept descriptions
(w.r.t. an empty TBox) can be computed as the product of their corresponding
description trees [3]. However, with respect to a general TBox, we can construct
the k-lcs of two ELH-concept descriptions as follows:

1. assign the input concept descriptions new names
2. classify the augmented TBox
3. for the subgraph of the completion graph reachable from the nodes repre-

senting the newly introduced names by paths of length ≤ k: do cross-product
construction w.r.t. the node labels and edges.

The proof of the correctness for the k-lcs-algorithm for relies on the invariants
discussed in Section 3.

If the completion sets for ABox realization are computed, one can compute
the k-msc of an individual a simply by traversing the subgraph of the completion
graph reachable from a by paths of length up to k and conjoining the node labels.

Since the completion sets are containing all subsumers of a named concept,
the concept descriptions resulting from traversing subgraphs of the completion
graph and collecting the node labels are very redundant. For a person editing
the resulting concept description this is clearly undesirable. We devise a simpli-
fication heuristic that is similar to the (equivalent) minimal rewritings proposed
in [3] for EL-concept descriptions. For general TBoxes the Algorithm 1 yields
equivalent and smaller, but not necessarily minimal concept descriptions.

Implementation of the generalization inferences in Gel. Our system Gel
implements in Java the methods presented here. Gel accesses jCel’s internal
data structures directly to compute the k-lcs or the k-msc. These two reasoning
methods and the above described simplification are implemented in Gel in a
straight-forward way.

Algorithm 1 Simplification of the resulting concept description.
Procedure simplify (C, S)
Input: C: EL concept description; S: set of completion sets
Output: simplify(C): a simplified concept description equivalent to C
1: Let C be of the form A1 u . . . uAn u ∃r1.D1 u . . . u ∃rm.Dm with Ai ∈ NC

2: Conj := {Ai | i ∈ {1, . . . , n}}
3: ExRes := {∃rj .Dj | j ∈ (1 . . .m)}
4: for all Ai, E with Ai ∈ Conj and E ∈ Conj ∪ ExRes do
5: if E 6= Ai and E vT Ai then
6: R := Conj \ {Ai}
7: end if
8: end for
9: for all {E,D} ⊆ ExRes do

10: if E 6= D and E vT D then
11: R := R ∪ (ExRes \ {D})
12: end if
13: end for
14: for all ∃rj .Dj ∈ R do
15: R := (R \ {∃rj .Dj}) ∪ {∃rj .simplify(Dj , S)}
16: end for
17: return

d
E∈R E

Our system Gel is available as a plug-in for the ontology editor Protégé
and an API for the role-depth bounded lcs and -msc is planned. The former
system sonic [10] implemented the lcs and msc as well, but allowed only for
acyclic, unfoldable TBoxes.

Evaluation. For the evaluation of the generalization algorithms, we used two
different ontologies. The earlier mentioned NotGalen described in Table 6 is
a version of the medical ontology Galen stripped-down to ELH. This ontology
does not contain individuals, but its deep concept hierarchy makes it a good test
ontology for the k-lcs. As test concepts for the k-lcs we selected sibling concepts
from the concept hierarchy with common ancestors other than > and with many
(comparable) existential restrictions. In total, we selected 20 such concept tuples
from NotGalen.

We also used the Sweet2 ontology, the Semantic Web for Earth and Envi-
ronmental Terminology by NASA. This ontology was converted to ELH by re-
placing all value restrictions with existential restrictions and dropping all axioms
not expressible in ELH. Sweet does contain individuals and a rich relational
structure and was used as a test ontology for the k-msc. It has 4276 concept
names and 2069 individuals. We selected those individuals from Sweet that
appear in many role assertions. In total, we selected 18 individuals from Sweet.

All tests were run on an Intel(R) Core(TM) i5-2400 under Oracle Java 6SE
64bit. For each computation of the k-lcs or k-msc we measured the concept size
2 http://sweet.jpl.nasa.gov/sweet/

k = 1 k = 2 k = 3 k = 4 k = 5
construction time (ms) 19 572 3567 7604 289778
simplification time (ms) < 1 3 15 40 107
expanded concept size 185 3458 15478 33667 119296
simplified concept size 5 15 27 38 42

Table 8. Average concept size and run-time for the k-lcs of concepts from NotGalen.

k 2-ary lcs 3-ary lcs 4-ary lcs 5-ary lcs
1 1 7 37 114

construction 2 23 249 972 3752
time (ms) 3 284 1954 4465 24427

4 1801 5253 8355 45374
5 7008 12412 114452 2665440
1 178 214 199 217

expanded 2 3608 5974 2171 2313
concept 3 14198 26997 12859 15300
size 4 35656 34958 25793 31634

5 104768 133089 123924 178831
Table 9. Average concept size and run-time for the k-lcs of n concepts from Not-
Galen.

k = 1 k = 2 k = 3 k = 4 k = 5
construction time (ms) < 1 < 1 1 2 3
simplification time (ms) < 1 < 1 < 1 < 1 1
expanded concept size 100 275 498 918 2261
simplified concept size 8 9 10 10 11

Table 10. Average concept size and run-time for the k-msc of individuals from Sweet.

of the resulting concept description and after simplification and the run-time
(after classification / realization) for construction of the k-lcs or k-msc and of
its simplification. The Table 8 and 10 show the results for the k-msc and k-
lcs, respectively. The concept construction time and expanded concept size for
different numbers of input concepts to the k-lcs are shown in Table 9.

For the k-lcs the resulting run-times were quite high, whereas classification
of NotGalen took only around 670 ms. Computation of the k-msc was always
quite fast—especially compared to the realization time of 5.7 s for the Sweet
ontology.

For both k-lcs and k-msc we found the expanded concept size (and thus
the construction time) to grow exponentially with the role-depth bound k. The
concept size of the simplified concepts, however, is growing much slower.

Interestingly, for the k-msc the resulting concept was the exact most specific
concept for most individuals for a role-depth of only 2 or 3 — the resulting
concept did not change for higher k. Only 3 of the 18 individuals had a msc with
maximum role-depth of 5.

Table 9 shows how the run-time of the k-lcs grows drastically with the num-
ber of input concepts, whereas the concept size stays more or less constant. This
is the case because the product construction in the k-lcs is more expensive for
higher n. Instead of directly computing the k-lcs for n concepts, one can also
apply the binary k-lcs to the first two concepts and then successively compute
the k-lcs of the result with the next concept. Surprisingly, the accumulated con-
struction time for this method to yield the 4-lcs of 5 concepts was in average
1043.8 ms—much faster than the direct computation time of around 45 s.

To sum up, the computation of the fully expanded concept description is
very time-consuming. This is especially true for the product construction of the
k-lcs. To apply some of the simplification steps already during the construction
of the result should help the generalization algorithms to scale better.

References

1. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of the 19th
Int. Joint Conf. on Artificial Intelligence (IJCAI-05), Edinburgh, UK, 2005.

2. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope further. In K. Clark
and P. F. Patel-Schneider, editors, In Proc. of the OWLED Workshop, 2008.

3. F. Baader, R. Küsters, and R. Molitor. Computing least common subsumers in
description logics with existential restrictions. In Proc. of the 16th Int. Joint Conf.
on Artificial Intelligence (IJCAI-99), 1999.

4. K. Dentler, R. Cornet, A. ten Teije, and N. de Keizer. Comparison of reasoners
for large ontologies in the OWL 2 EL profile. Semantic Web Journal, pages 1–17,
2011. DOI: 10.3233/SW-2011-0034.

5. Y. Kazakov. Consequence-driven reasoning for Horn SHIQ ontologies. In Proc.
of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI-09) 2009.

6. J. Mendez and B. Suntisrivaraporn. Reintroducing CEL as an OWL 2 EL reasoner.
In Proc. of the 2009 Description Logic Workshop (DL 2009), vol. 477 of CEUR,
2009.

7. J. Mendez. A classification algorithm for ELIHfR+. Master’s thesis, Technische
Universität Dresden, 2011.

8. R. Peñaloza and A.-Y. Turhan. A practical approach for computing generalization
inferences in EL. In Proc. of the 8th European Semantic Web Conf. (ESWC’11),
LNCS. Springer, 2011.

9. B. Suntisrivaraporn. Polynomial-Time Reasoning Support for Design and Main-
tenance of Large-Scale Biomedical Ontologies. PhD thesis, Technische Universität
Dresden, 2009.

10. A.-Y. Turhan and C. Kissig. Sonic — Non-standard inferences go OilEd. In Proc.
of the Int. Joint Conf. on Automated Reasoning (IJCAR-04), vol. 3097 of LNCS.
Springer, 2004.

11. Q. H. Vu. Subsumption in the description logic ELHIfR+ w.r.t. general TBoxes.
Master’s thesis, Technische Universität Dresden, 2008.

