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Question 1: The Logarithmic Hierarchy
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Q1: The Logarithmic Hierarchy

The Polynomial Hierarchy is based on polynomially time-bounded TMs

It would also be interesting to study the Logarithmic Hierarchy
obtained by considering logarithmically space-bounded TMs instead

,
wouldnt’t it?

In detail, we can define:

• ΣL
0 = Π

L
0 = L

• ΣL
i+1 = NLΣ

L
i alternatively: languages of log-space bounded Σi+1 ATMs

• ΠL
i+1 = coNLΣ

L
i alternatively: languages of log-space bounded Πi+1 ATMs
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Q1: What is the Logarithmic Hierarchy?

How do the levels of this hierarchy look?

• ΣL
0 = Π

L
0 = L

• ΣL
1 = NLL = NL

• ΠL
1 = coNLL = coNL = NL (why?)

• ΣL
2 = NLΣ

L
1 = NLNL = NL (why?)

• ΠL
2 = coNLΣ

L
1 = coNLNL = NL (why?)

Therefore ΣL
i = Π

L
i = NL for all i ≥ 1.

The Logarithmic Hierarchy collapses on the first level.
Historic note: In 1987, just before the Immerman-Szelepcsényi Theorem was published, Klaus-Jörn Lange, Birgit Jenner, and Bernd Kirsig showed
that the Logarithmic Hierarchy collapses on the second level [ICALP 1987].
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Question 2: The Hardest Problems in P
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Q2: The hardest problems in P

What we know about P and NP:

• We don’t know if any problem in NP is really harder than any problem in P.

• But we do know that NP is at least as challenging as P, i.e., P ⊆ NP.

So all problems that are hard for NP are also hard for P, aren’t they?
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Q2: Is NP-hard as hard as P-hard?

Let’s first recall the definitions:

Definition: A problem L is NP-hard if, for all problems M ∈ NP, there is a polyno-
mial many-one reduction M ≤m L.

Definition: A problem L is P-hard if, for all problems M ∈ P, there is a log-space
reduction M ≤L L.

How to show “NP-hard implies P-hard”?

• Assume that L is NP-hard.

• Consider any language M ∈ P.

• Then M ∈ NP.

• So there is a polynomial many-one reduction f from M to L

• Hence, . . . well. . . , nothing much, really.
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Q2: Is NP-hard as hard as P-hard?

For all we know today, it is perfectly possible that
there are NP-hard problems that are not P-hard.

Example 18.1: We know that L ⊆ P ⊆ NP but we do not know if any of these
subsumptions are proper. Suppose that the truth actually looks like this: L ⊊ P =
NP. Then all non-trivial problems in P are NP-hard (why?), but not every such
problem would be P-hard (why?).

Note: This is really about the different notions of reduction used to define hardness. If
we used log-space reductions for P-hardness and NP-hardness, the claim would follow.
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Question 3: Problems Harder than P
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Q3: Problems harder than P

Polynomial time is an approximation of “practically tractable” problems:

• Many practical problems are in P, including many very simple ones (e.g., ∅)

• P-hard problems are as hard as any other problem in P, and
P-complete problems therefore are the hardest problems in P

• However, there are even harder problems that are no longer in P

So, clearly, problems that are not even in P must be P-hard, right?
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Q3: Are problems harder than P also hard for P?

Can we find any problem that is surely harder than P?

Yes, easily:

• The Halting Problem is undecidable and therefore not in P

• Any ExpTime-complete problem is not in P (Time Hierarchy Theorem); e.g., the
Word Problem for DTMs with a (fixed) exponential time bound

These concrete examples both are hard for P:

• The Word Problem for polynomially time-bounded DTMs log-space reduces to the
Word Problem for exponential TMs (reduction: the identity function)

• This polytime Word Problem also log-space reduces to the Halting problem: a
reduction merely has to modify the TM so that every rejecting halting configuration
leads into an infinite loop
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Q3: Are problems harder than P also hard for P?

Rephrasing the question: Are there problems that are not in P, yet not hard for P?

Some observations:

• ∅ is not P-hard (why?)

• Any ExpTime-complete problem L is not in P (why?)

• We can enumerate DTMs for all languages in P (how?)

• We can enumerate DTMs for all P-hard languages in ExpTime (how?)

So, it’s clear what we have to do now . . .
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So, it’s clear what we have to do now . . .
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Q3: Are problems harder than P also hard for P?

Schöning to the rescue (see Theorem 15.2):

Corollary 18.2: Consider the classes C1 = ExpPHard (P-hard problems in Exp-
Time) and C2 = P. Both are classes of decidable languages. We find that for
either class Ck:

• We can effectively enumerate TMs Mk
0,M

k
1, . . . such that

Ck = {L(Mk
i ) | i ≥ 0)}.

• If L ∈ Ck and L’ differs from L on only a finite number of words, then L’ ∈ Ck

Let L1 = ∅, and let L2 be some ExpTime-complete problem. Clearly, L1 <

ExpPHard and L2 < P (Time Hierarchy), hence there is a decidable language
Ld < ExpPHard ∪ P.
Moreover, as ∅ ∈ P and L2 is not trivial, Ld ≤p L2 and hence Ld ∈ ExpTime.
Therefore Ld < ExpPHard implies that Ld is not P-hard.

This idea of using Schöning’s Theorem has been put forward by Ryan Williams (link). Our version is a modification requiring C1 ⊆ ExpTime.
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Q3: Are problems harder than P also hard for P?

No, there are problems in ExpTime that are neither in P nor hard for P.

(Other arguments can even show the existence of undecidable sets that are not P-hard1)

Discussion:

• Considering Questions 2 and 3, the use of the word hard is misleading, since we
interpret it as difficult

• However, the actual meaning of difficult would be “not in a given class”
(e.g., problems not in P are clearly more difficult than those in P)

• Our formal notion of hard also implies that a problem is difficult in some sense, but
it also requires it to be universal in the sense that many other problems can be
solved through it

What we have seen is that there are difficult problems that are not universal.

1Related note: the undecidable UHalt is not NP-hard, since it is a so-called sparse language.
Markus Krötzsch; 17th Dec 2024 Complexity Theory slide 14 of 17



Q3: Are problems harder than P also hard for P?

No, there are problems in ExpTime that are neither in P nor hard for P.

(Other arguments can even show the existence of undecidable sets that are not P-hard1)

Discussion:

• Considering Questions 2 and 3, the use of the word hard is misleading, since we
interpret it as difficult

• However, the actual meaning of difficult would be “not in a given class”
(e.g., problems not in P are clearly more difficult than those in P)

• Our formal notion of hard also implies that a problem is difficult in some sense, but
it also requires it to be universal in the sense that many other problems can be
solved through it

What we have seen is that there are difficult problems that are not universal.

1Related note: the undecidable UHalt is not NP-hard, since it is a so-called sparse language.
Markus Krötzsch; 17th Dec 2024 Complexity Theory slide 14 of 17



Your Questions
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Summary and Outlook

Answer 1: The Logarithmic Hierarchy collapses.

Answer 2: We don’t know that NP-hard implies P-hard.

Answer 3: Being outside of P does not make a problem P-hard.

What’s next?

• Holidays

• Circuits as a model of computation

• Randomness
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Here’s wishing you

a Merry Christmas, a Happy Hanukkah,

a Joyous Yalda, a Cheerful Dōngzhì,

a Great Feast of Juul,

and a Wonderful Winter Solstice,

respectively!
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