
LTL over Description Logic Axioms

Franz Baader?, Silvio Ghilardi, and Carsten Lutz

1 TU Dresden, Germany, baader@inf.tu-dresden.de
2 Università degli Studi di Milano, Italy, ghilardi@dsi.unimi.it

3 TU Dresden, Germany, lutz@inf.tu-dresden.de

1 Introduction

In many applications of Description Logics (DLs) [7], such as the use of DLs as
ontology languages or conceptual modeling languages, being able to represent
dynamic aspects of the application domain would be quite useful. This is, for
instance, the case if one wants to use DLs as conceptual modeling languages
for temporal databases [4]. Another example are medical ontologies, where the
faithful representation of concepts would often require the description of tem-
poral patterns. As a simple example, consider the concept “Concussion with no
loss of consciousness,” which is modeled as a primitive (i.e., not further defined)
concept in the medical ontology SNOMED CT.1 As argued in [18], a correct
representation of this concept should actually say that, after the concussion, the
patient remained conscious until the examination.

Since the expressiveness of pure DLs is not sufficient to describe such tempo-
ral patterns, a plethora of temporal extensions of DLs have been investigated in
the literature.2 These include approaches as diverse as the combination of DLs
with Halpern and Shoham’s logic of time intervals [17], formalisms inspired by
action logics [1], the treatment of time points and intervals as a concrete domains
[13], and the combination of standard DLs with standard (propositional) tempo-
ral logics into logics with a two-dimensional semantics, where one dimension is
for time and the other for the DL domain [15, 19, 11]. In this paper, we follow the
last approach, where we use the basic DL ALC [16] in the DL component and
linear temporal logic (LTL) [14] (sometimes also called propositional temporal
logic (PTL) [11]) in the temporal component. However, even after the DL and
the temporal logic to be combined have been fixed, there remain several degrees
of freedom when defining the resulting temporalized DL.

On the one hand, one must decide to which pieces of syntax temporal oper-
ators can be applied. Temporal operators may be allowed to be use as concept
constructors, as required by the above example of a concussion with no loss
of consciousness, which could be defined using the until-operator U of LTL as
follows:

∃finding.Concussion u Conscious U ∃procedure.Examination. (1)
? Supported by NICTA, Canberra Research Lab.
1 see http://www.ihtsdo.org/our-standards/
2 For a more thorough survey of the literature on temporalized DLs, see the technical

report accompanying this paper [8] and the survey papers [2, 3, 12].

Alternatively or in addition, temporal operators may be applied to TBox axioms
(i.e., general concept inclusions, GCIs) and/or to ABox assertions. For example,
the temporalized TBox axiom

32(UScitizen v ∃insured by.HealthInsurer)

says that there is a future time point from which on US citizens will always have
health insurance, and the formula Ψ :

3
(
(∃finding.Concussion)(BOB) ∧ (2)

Conscious(BOB)U(∃procedure.Examination)(BOB)
)

says that, sometime in the future, Bob will have a concussion with no loss of
consciousness between the concussion and the examination.

On the other hand, one must decide whether one wants to have rigid concepts
and/or roles, i.e., concepts/roles whose interpretation does not vary over time.
For example, the concept Human and the role has father should probably be rigid
since a human being will stay a human being and have the same father over
his/her life-time, whereas Conscious should be a flexible concept (i.e., not rigid)
since someone that is conscious at the moment need not always by conscious.
Similarly, insured by should be modeled as a flexible role. Using a logic that
cannot enforce rigidity of concepts/roles may result in unintended models, and
thus prevent certain useful inferences to be drawn. For example, the concept
description ∃has father.Human u3 (∀has father.¬Human) is only unsatisfiable if
both has father and Human are rigid.

The combination of (extensions of) ALC and LTL in which temporal opera-
tors can be applied to concept descriptions, TBox axioms, and ABox assertions
has been studied by Wolter, Zakharyaschev, and others (see, e.g., [19, 11]). In par-
ticular, it is known that the basic reasoning problems are ExpSpace-complete.
In this setting, rigid concepts can be defined, but rigid roles cannot. In fact, as
also shown in [11], the addition of rigid roles causes undecidability even w.r.t. a
global TBox (i.e., where the same TBox axioms must hold at all time points).
Decidability can be regained by dropping TBoxes altogether, but the decision
problem is still hard for non-elementary time. Decidable combinations of DLs
and temporal logics that allow for rigid roles can be obtained by strongly re-
stricting either the temporal component [6] or the DL component [5].

In this paper, we follow a different approach for regaining decidability in the
presence of rigid roles: temporal operators are allowed to occur only in front of
axioms (i.e., ABox assertions and TBox axioms), but not inside concept descrip-
tions. We show that reasoning becomes simpler in this setting: with rigid roles,
satisfiability is decidable (more precisely: 2-ExpTime-complete); without rigid
roles, the complexity decreases to NExpTime-complete; and without any rigid
symbols, it decreases further to ExpTime-complete (i.e., the same complexity as
reasoning in ALC alone). We also consider another way of decreasing the com-
plexity of satisfiability to ExpTime: satisfiability without rigid roles (but with
rigid concepts) becomes ExpTime-complete if GCIs can occur only as global

axioms that must hold in every temporal world. Note that, in this case, ABox
assertions are not assumed to be global, i.e., the valid ABox assertions may vary
over time.

The situation we concentrate on in this paper (i.e., where temporal operators
are allowed to occur only in front of axioms) has been considered before only for
the case where there are no rigid concepts or roles. The combination approach
introduced in [10] yields a decision procedure for this case, whose worst-case
complexity is, however, non-optimal. Our ExpTime upper bound for this case
actually also follows from more general results in [11] (see the remark following
Theorem 14.15 on page 605 of [11]). However, also in [11], the setting where
temporal operators are allowed to occur only in front of axioms is considered
only in the absence of rigid symbols.

Obviously, the temporalized DLs we investigate in this paper cannot be used
to define temporal concepts such as (1) for concussion with no loss of conscious-
ness. However, they are nevertheless useful in ontology-based applications since
they can be used to reason about a temporal sequence of ABoxes w.r.t. a (global
or temporalized) TBox. For example, in an emergency ward, the vital param-
eters of a patient are monitored in short intervals (sometimes not longer than
10 minutes), and additional information is available from the patient record and
added by doctors and nurses. Using concepts defined in a medical ontology like
SNOMED CT, a high-level view of the medical status of the patient at a given
time point can be given by an ABox. Obviously, the sequence of ABoxes ob-
tained this way can be described using temporalized ABox assertions. Critical
situations, which require the intervention of a doctor, can then be described by a
formula in our temporalized DL, and recognized using the reasoning procedures
developed in this paper. For example, given a formula φ encoding a sequence of
ABoxes describing the medical status of Bob, starting at some time point t0, and
the formula ψ defined in (2), we can check whether Bob sometime after t0 had
a concussion with no loss of consciousness by testing φ ∧¬ψ for unsatisfiability.

2 Basic definitions

We assume that the reader is familiar with the basic DL ALC [16] and with
the temporal logic LTL [14]. We consider general ALC-TBoxes, i.e., TBoxes
consist of finitely many general concept inclusion axioms (GCIs) of the form
C v D, where C,D are ALC-concept descriptions. An ABox consists of a finite
set of assertions of the form a : C or (a, b) : r where C is an ALC-concept
description, r is a role name, and a, b are individual names. We call both GCIs
and ABox assertions ALC-axioms. A Boolean combination of ALC-axioms is
called a Boolean ALC-knowledge base. For LTL, we use the variant with a non-
strict until (U) and a next (X) operator. We are now ready to define our new
logic, called ALC-LTL, where ALC-axioms replace propositional letters in LTL.

Definition 1. ALC-LTL formulae are defined by induction:

– if α is an ALC-axiom, then α is an ALC-LTL formula;

– if φ, ψ are ALC-LTL formulae, then so are φ∧ψ, φ∨ψ, ¬φ, φUψ, and Xφ.

As usual, we use true as an abbreviation for A(a)∨¬A(a), 3φ as an abbrevi-
ation for trueUφ (diamond, which should be read as “sometime in the future”),
and 2φ as an abbreviation for ¬3¬φ (box, which should be read as “always in
the future”). The semantics of ALC-LTL is based on ALC-LTL structures, which
are sequences of ALC-interpretations over the same non-empty domain ∆ (con-
stant domain assumption). We assume that every individual name stands for a
unique element of ∆ (rigid individual names), and we make the unique name
assumption (UNA), i.e., different individual names are interpreted by different
elements of ∆.

Definition 2. An ALC-LTL structure is a sequence I = (Ii)i=0,1,... of ALC-
interpretations Ii = (∆, ·Ii) obeying the UNA (called worlds) such that aIi = aIj

for all individual names a and all i, j ∈ {0, 1, 2, . . .}. Given an ALC-LTL formula
φ, an ALC-LTL structure I = (Ii)i=0,1,..., and a time point i ∈ {0, 1, 2, . . .},
validity of φ in I at time i (written I, i |= φ) is defined inductively:

I, i |= C v D iff CIi ⊆ DIi

I, i |= a : C iff aIi ∈ CIi

I, i |= (a, b) : r iff (aIi , bIi) ∈ rIi

I, i |= φ ∧ ψ iff I, i |= φ and I, i |= ψ
I, i |= φ ∨ ψ iff I, i |= φ or I, i |= ψ
I, i |= ¬φ iff not I, i |= φ
I, i |= Xφ iff I, i+ 1 |= φ
I, i |= φUψ iff there is k ≥ i such that I, k |= ψ

and I, j |= φ for all j, i ≤ j < k

As mentioned above, for some concepts and roles it is not desirable that their
interpretation changes over time. Thus, we will sometimes assume that a subset
of the set of concept and role names can be designated as being rigid. We will
call the elements of this subset rigid concept names and rigid role names.

Definition 3. We say that the ALC-LTL structure I = (Ii)i=0,1,... respects
rigid concept names (role names) iff AIi = AIj (rIi = rIj) holds for all i, j ∈
{0, 1, 2, . . .} and all rigid concept names A (rigid role names r).

3 The satisfiability problem in ALC-LTL

Depending on whether rigid concept and role names are considered or not, we
obtain different variants of the satisfiability problem.

Definition 4. Let φ be an ALC-LTL formula and assume that a subset of the
set of concept and role names has been designated as being rigid.

– We say that φ is satisfiable w.r.t. rigid names iff there is an ALC-LTL
structure I respecting rigid concept and role names such that I, 0 |= φ.

W.r.t. rigid names W.r.t. rigid concepts Without rigid names

ALC-LTL 2-ExpTime-complete NExpTime-complete ExpTime-complete

ALC-LTL|gGCI 2-ExpTime-complete ExpTime-complete ExpTime-complete

Table 1. Complexity of the satisfiability problem in ALC-LTL and ALC-LTL|gGCI.

– We say that φ is satisfiable w.r.t. rigid concepts iff there is an ALC-LTL
structure I respecting rigid concept names such that I, 0 |= φ.

– We say that φ is satisfiable without rigid names (or simply satisfiable) iff
there is an ALC-LTL structure I such that I, 0 |= φ.

In this paper, we show that the complexity of the satisfiability problem for
ALC-LTL strongly depends on which of the above cases one considers. Note that
it does not really make sense to consider satisfiability w.r.t. rigid role names,
but without rigid concept names, as a separate case when investigating the
complexity of the satisfiability problem. In fact, rigid concepts can be simulated
by rigid roles: just introduce a new rigid role name rA for each rigid concept
name A, and then replace A by ∃rA.>.

Another dimension that influences the complexity of the satisfiability prob-
lem is whether GCIs occur globally or locally in the formula. Intuitively, a GCI
occurs globally if it must hold in every world of the ALC-LTL structure.

Definition 5. We say that φ is an ALC-LTL formula with global GCIs iff it is
of the form φ = 2B ∧ ϕ where B is a conjunction of ALC-axioms and ϕ is an
ALC-LTL formula that does not contain GCIs. We denote the fragment of ALC-
LTL that contains only ALC-LTL formulae with global GCIs by ALC-LTL|gGCI.

Note that saying, in the above definition, that B is a conjunction of ALC-
axioms just means that B is a TBox together with an ABox. We could have
restricted B to being a conjunction of GCIs (i.e., a TBox) since assertions α
in B could be moved as conjuncts 2α to ϕ.3 However, it turns out to be more
convenient to allow also ABox assertions to occur in the “global part” 2B of
φ. Also note that it is important to restrict B to being a conjunction of ALC-
axioms rather than an arbitrary Boolean ALC-knowledge base. In fact, the lower
complexity for the case of satisfiability w.r.t. rigid concepts obtained in this case
(see Table 1) would not hold without this restriction (see Corollary 6.8 in [8]).

Table 1 summarizes the results of our investigation of the complexity of the
satisfiability problem in ALC-LTL and its fragments.

4 Reasoning with rigid names

In this section, we investigate the complexity of the satisfiability problem in
ALC-LTL and ALC-LTL|gGCI if rigid concepts and roles are available.

3 This is the reason why we talk about ALC-LTL formulae with global GCIs in this
case, rather than about ALC-LTL formulae with global axioms.

Theorem 1. Satisfiability w.r.t. rigid names is 2-ExpTime-complete both in
ALC-LTL and in ALC-LTL|gGCI.

2-ExpTime-hardness for satisfiability w.r.t. rigid names and with global
GCIs (i.e., in ALC-LTL|gGCI) can be shown by a (quite intricate) reduction
of the word problem for exponentially space bounded alternating Turing ma-
chines (see [8]). Obviously, this also yields 2-ExpTime-hardness for the more
general case with arbitrary GCIs (i.e., in ALC-LTL).

In the following, we prove the complexity upper bound for ALC-LTL. Ob-
viously, this also establishes the same upper bound for the restricted case of
ALC-LTL|gGCI. Thus, let φ be an ALC-LTL formula to be tested for satisfiabil-
ity w.r.t. rigid names. We build its propositional abstraction φ̂ by replacing each
ALC-axiom by a propositional variable such that there is a 1–1 relationship be-
tween the ALC-axioms α1, . . . , αn occurring in φ and the propositional variables
p1, . . . , pn used for the abstraction. We assume in the following that pi was used
to replace αi (i = 1, . . . , n).

Consider a set S ⊆ P({p1, . . . , pn}), i.e., a set of subsets of {p1, . . . , pn}. Such
a set induces the following (propositional) LTL formula:

φ̂S := φ̂ ∧2

 ∨
X∈S

 ∧
p∈X

p ∧
∧

p6∈X

¬p

If φ is satisfiable in an ALC-LTL structure I = (Ii)i=0,1,..., then there is an
S ⊆ P({p1, . . . , pn}) such that φ̂S is satisfiable in a propositional LTL structure.
In fact, for each ALC-interpretation Ii of I, we define the set

Xi := {pj | 1 ≤ j ≤ n and Ii satisfies αj},

and then take S = {Xi | i = 0, 1, . . .}. The fact that I satisfies φ implies that
its propositional abstraction satisfies φ̂S , where the propositional abstraction
Î = (wi)i=0,1,... of I is defined such that world wi makes variable pj true iff
Ii satisfies αj . However, guessing such a set S ⊆ P({p1, . . . , pn}) and then
testing whether the induced propositional LTL formula φ̂S is satisfiable is not
sufficient for checking satisfiability w.r.t. rigid names of the ALC-LTL formula
φ. We must also check whether the guessed set S can indeed be induced by some
ALC-LTL structure that respects the rigid concept and role names.

To this purpose, assume that a set S = {X1, . . . , Xk} ⊆ P({p1, . . . , pn}) is
given. For every i, 1 ≤ i ≤ k, and every flexible concept name A (flexible role
name r) occurring in α1, . . . , αn, we introduce a copy A(i) (r(i)). We call A(i)

(r(i)) the ith copy of A (r). The ALC-axiom α
(i)
j is obtained from αj by replacing

every occurrence of a flexible name by its ith copy. The setsXi (1 ≤ i ≤ k) induce
the following Boolean ALC-knowledge bases:

Bi :=
∧

pj∈Xi

α
(i)
j ∧

∧
pj 6∈Xi

¬α(i)
j

Lemma 1. The ALC-LTL formula φ is satisfiable w.r.t. rigid names iff there
is a set S = {X1, . . . , Xk} ⊆ P({p1, . . . , pn}) such that the propositional LTL
formula φ̂S is satisfiable and the Boolean ALC-knowledge base B :=

∧
1≤i≤k Bi

is consistent.

A detailed proof of this lemma can be found in [8]. It remains to show that it
provides us with a decision procedure for satisfiability in ALC-LTL w.r.t. rigid
names that runs in deterministic double-exponential time.

First, note that there are 22n

many subsets S of P({p1, . . . , pn}) to be tested,
where n is of course linearly bounded by the size of φ. For each of these subsets
S = {X1, . . . , Xk}, whose cardinality k is bounded by 2n, we need to check
satisfiability of φ̂S and consistency of B =

∧
1≤i≤k Bi.

The size of φ̂S is at most exponential in the size of φ, and the complexity
of the satisfiability problem in propositional LTL is in PSpace, and thus in
particular in ExpTime. Consequently, satisfiability of φ̂S can be tested in double-
exponential time in the size of φ.

The Boolean ALC-knowledge base B is a conjunction of k ≤ 2n Boolean
ALC-knowledge bases Bi, where the size of each Bi is polynomial in the size
of φ. The consistency problem for Boolean ALC-knowledge base is ExpTime-
complete (see, e.g., Theorem 2.27 in [11]). Consequently, consistency of B can
also be tested in double-exponential time in the size of the input formula φ.

Overall, we thus have double-exponentially many tests, where each test takes
double-exponential time. This provides us with a double-exponential bound for
testing satisfiability in ALC-LTL w.r.t. rigid names based on Lemma 1.

5 Reasoning with rigid concepts

In this section, we consider the case where rigid concept names are available,
but not rigid role names. First, note that, in contrast to temporal DLs where
temporal operator may occur inside of concept descriptions, rigid concept names
cannot easily be expressed within the logic without rigid concept names. In fact,
the GCIs A v 2A and ¬A v 2¬A express that A must be interpreted in a rigid
way. However, they are not allowed by the syntax of ALC-LTL since the box is
applied directly to a concept, and not to an axiom. We will show below that, for
ALC-LTL, the presence of rigid concept names indeed increases the complexity
of the satisfiability problem, unless GCIs are restricted to being global. First, we
treat the case of arbitrary GCIs, and then the special case of global GCIs.

Theorem 2. Satisfiability in ALC-LTL w.r.t. rigid concepts is NExpTime-
complete.

A detailed proof of the lower bound can be found in [8]. In the proof of
the upper bound, we want to reuse Lemma 1. If we apply this lemma in the
case where only concept names can be rigid, then we know that the Boolean
ALC-knowledge bases Bi are built over disjoint sets of role names. The only

shared names are the rigid concept names. Obviously, we can guess a set S =
{X1, . . . , Xk} ⊆ P({p1, . . . , pn}), within NExpTime. However, there are two
obstacles on our way to a NExpTime decision procedure.

First, the propositional LTL formula φ̂S is of size exponential in the size of
φ. Thus, a direct application of the PSpace decision procedure for satisfiabil-
ity in propositional LTL would only yield an ExpSpace upper bound, which
is not good enough. However, note that the only effect of the box-formula in
φ̂ bS is to restrict the worlds w in a propositional LTL structure satisfying φ̂ to
being induced by one of the elements of Ŝ. One way of deciding satisfiability
of a propositional LTL formula φ̂ is to construct a Büchi automaton Abφ that

accepts the propositional LTL structures satisfying φ̂. To be more precise, let
Σ := P({p1, . . . , pn}). Then a given propositional LTL structure Î = (wι)ι=0,1,...

can be represented by an infinite word X0X1 . . . over Σ, where Xι consists of the
propositional variables that wι makes true. The Büchi automaton Abφ is built
such that it accepts exactly those infinite words over Σ that represent proposi-
tional LTL structures satisfying φ̂. Consequently, φ̂ is satisfiable iff the language
accepted by Abφ is non-empty. The size of Abφ is exponential in the size of φ̂, and
the emptiness test for Büchi automata is polynomial in the size of the automa-
ton. The automaton Abφ can now easily be modified into one accepting exactly

the words representing propositional LTL structures satisfying φ̂ bS . In fact, we
just need to remove all transitions that use a letter from Σ \ Ŝ. Obviously, this
modification can be done in time polynomial in the size of Abφ, and thus in time

exponential in the size of φ̂. The size of the resulting automaton is obviously still
only exponential in the size of φ̂, and thus its emptiness can be tested in time
exponential in the size of φ̂ (and hence of φ).

The second obstacle is the fact that B =
∧

1≤i≤k Bi is of exponential size,
and thus testing it directly for consistency using the known ExpTime decision
procedure for satisfiability of Boolean ALC-knowledge bases would provide us
with a double-exponential time bound. Instead of testing the consistency of B
directly we reduce this test to k separate consistency tests, each requiring time
exponential in the size of φ. Before we can do this, we need another guessing
step. Assume that A1, . . . , Ar are all the rigid concept names occurring in φ,
and that a1, . . . , as are all the individual names occurring in φ. We guess a set
T ⊆ P({A1, . . . , Ar}) and a mapping t : {a1, . . . , as} → T . Again, this guess can
clearly be done within NExpTime.

Given T and t, we extend the knowledge bases Bi to knowledge bases B̂i(T , t)
as follows. For Y ⊆ {A1, . . . , Ar}, let CY be the concept description

CY := u
A∈Y

A uu
A 6∈Y

¬A.

We define B̂i(T , t) as

B̂i(T , t) := Bi ∧
∧

t(a)=Y

a : CY ∧ > v t
Y ∈T

CY ∧
∧

Y ∈T
¬(> v ¬CY).

Lemma 2. The Boolean ALC-knowledge base B :=
∧

1≤i≤k Bi is consistent iff
there is a set T ⊆ P({A1, . . . , Ar}) and a mapping t : {a1, . . . , as} → T such that
the Boolean knowledge bases B̂i(T , t) for i = 1, . . . , k are separately consistent.

A proof of this lemma can be found in [8]. To finish the proof of Theorem 2, we
must show that the consistency of B̂i(T , t) can be decided in time exponential
in the size of the input formula φ. Note that this is not trivial. In fact, while the
size of Bi ∧

∧
t(a)=Y a : CY is polynomial in the size of φ, the cardinality of

T , and thus the size of

> v t
Y ∈T

CY ∧
∧

Y ∈T
¬(> v ¬CY), (3)

can be exponential in the size of φ. Decidability of the consistency of B̂i(T , t)
in time exponential in the size of φ is, however, an immediate consequence of
the next lemma. To formulate this lemma, we need to introduce one more no-
tation. Let B̂ be a Boolean ALC-knowledge base of size n, A1, . . . , Ar concept
names occurring in B̂, and T ⊆ P({A1, . . . , Ar}). Note that this implies that
the cardinality of T is at most exponential in n, and the size of each Y ∈ T is
linear in n. We say that B̂ is consistent w.r.t. T iff it has a model that is also a
model of (3). The following lemma can be shown by an adaptation of the proof
of Theorem 2.27 in [11], which shows that the consistency problem for Boolean
ALC-knowledge bases is in ExpTime (see [8] for details).

Lemma 3. Let B̂ be a Boolean ALC-knowledge base of size n, A1, . . . , Ar con-
cept names occurring in B̂, and T ⊆ P({A1, . . . , Ar}). Then, consistency of B̂
w.r.t. T can be decided in time exponential in n.

Overall, this completes the proof of Theorem 2. In fact, after two NExpTime
guesses, all we have to do are k (i.e., exponentially many) ExpTime consistency
tests.

Restricting GCIs to global ones decreases the complexity of the satisfiability
problem.

Theorem 3. Satisfiability in ALC-LTL|gGCI w.r.t. rigid concepts is ExpTime-
complete.

ExpTime-hardness is an easy consequence of the well-known fact that con-
cept satisfiability in ALC w.r.t. a single GCI is ExpTime-complete: C is satis-
fiable w.r.t. D1 v D2 iff a : C ∧2(D1 v D2) is satisfiable.

To prove the ExpTime upper bound, we consider an ALC-LTL formula φ =
2B∧ϕ, where B is a conjunction of ALC-axioms and ϕ is an ALC-LTL formula
that does not contain GCIs. We say that B is φ-exhaustive if, for every individual
name a and every rigid concept name A, either a : A or a : ¬A occurs as a
conjunct in B. We can assume without loss of generality that B is φ-exhaustive.
In fact, given an arbitrary Boolean ALC-knowledge base B, we can build all the

φ-exhaustive knowledge bases B′ that are obtained from B by conjoining to it, for
every individual name a and every rigid concept name A, either a : A or a : ¬A.
Obviously, φ = 2B∧ϕ is satisfiable w.r.t. rigid concepts iff 2B′ ∧ϕ is satisfiable
w.r.t. rigid concepts for one of the extension B′ of B obtained this way. Since
the size of each such an extension is polynomial and there are only exponentially
many such extensions, it is sufficient to show that testing satisfiability of 2B′∧ϕ
w.r.t. rigid concepts for φ-exhaustive knowledge bases B′ is in ExpTime.

Following the approach used in the proof of Theorem 1, we abstract every
ABox assertion αi occurring in ϕ by a propositional variable pi, thus building
the propositional LTL-formula ϕ̂. Next, we compute the set Ŝ, which consists of
those X ⊆ {p1, . . . , pn} for which the Boolean ALC-knowledge base

BX := B ∧
∧

pj∈X

αj ∧
∧

pj 6∈X

¬αj

is consistent. This computation can be done in exponential time since it requires
exponentially many ExpTime consistency tests.

Lemma 4. Let φ = 2B ∧ ϕ be such that B is a φ-exhaustive conjunction of
ALC-axioms and ϕ is an ALC-LTL formula not containing GCIs. Then φ is
satisfiable w.r.t. rigid concepts iff the propositional LTL formula

ϕ̂ bS := ϕ̂ ∧2(
∨

X∈ bS
(

∧
pj∈X

pj ∧
∧

pj 6∈X

¬pj))

is satisfiable.

The proof of this lemma can again be found in [8]. Note that this actually
completes the proof of Theorem 3. In fact, as shown in the proof of Theorem 2,
satisfiability of ϕ̂ bS can be decided in exponential time.

6 Reasoning without rigid names

In this section, we consider the case where we have no rigid names at all.

Theorem 4. Satisfiability without rigid names in ALC-LTL and in its fragment
ALC-LTL|gGCI is ExpTime-complete.

ExpTime-hardness is again an easy consequence of the fact that concept
satisfiability in ALC w.r.t. a single GCI is ExpTime-complete. As already men-
tioned in the introduction, the ExpTime upper bound follows from more general
results proved in Chapter 11 of [11] (see the remark following Theorem 14.14
on page 605 of [11]). A direct proof of the upper bound, which is similar to the
proof of Theorem 3, is given in [8].

References

1. Artale, A., and Franconi, E. 1998. A temporal description logic for reasoning about
actions and plans. JAIR 9.

2. Artale, A., and Franconi, E. 2000. A survey of temporal extensions of description
logics. AMAI 30.

3. Artale, A., and Franconi, E. 2001. Temporal description logics. In Handbook of
Time and Temporal Reasoning in AI. The MIT Press.

4. Artale, A.; Franconi, E.; Wolter, F.; and Zakharyaschev, M. 2002. A tempo-
ral description logic for reasoning over conceptual schemas and queries. In Proc.
JELIA’2002, Springer LNCS 2424.

5. Artale, A.; Kontchakov, R.; Lutz, C.; Wolter, F.; and Zakharyaschev, M. 2007.
Temporalising tractable description logics. In Proc. TIME’07, IEEE Press.

6. Artale, A.; Lutz, C.; and Toman, D. 2007. A description logic of change. In Proc.
IJCAI’07, AAAI Press.

7. Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and Patel-Schneider, P. F.,
eds. 2003. The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press.

8. Baader, F.; Ghilardi, S.; and Lutz, C. 2008. LTL over description logic
axioms. LTCS-Report 08-01, TU Dresden, Germany. See http://lat.inf.tu-
dresden.de/research/reports.html.

9. Blackburn, P.; de Rijke, M.; and Venema, Y. 2001. Modal Logic. Cambridge
University Press.

10. Finger, M., and Gabbay, D. 1992. Adding a temporal dimension to a logic system.
JoLLI 2.

11. Gabbay, D.; Kurusz, A.; Wolter, F.; and Zakharyaschev, M. 2003. Many-
dimensional Modal Logics: Theory and Applications. Elsevier.

12. Lutz, C.; Wolter, F.; and Zakharyaschev, M. 2008. Temporal description logics: A
survey. In Proc. TIME’08, IEEE Press.

13. Lutz, C. 2001. Interval-based temporal reasoning with general TBoxes. In Proc.
IJCAI’01, AAAI Press.

14. Pnueli, A. 1977. The temporal logic of programs. In Proc. FOCS’77.
15. Schild, K. 1993. Combining terminological logics with tense logic. In Proc.

EPIA’93, Springer LNCS 727.
16. Schmidt-Schauß, M., and Smolka, G. 1991. Attributive concept descriptions with

complements. AIJ 48.
17. Schmiedel, A. 1990. A temporal terminological logic. In Proc. AAAI’90, AAAI

Press.
18. Schulz, S.; Markó, K.; and Suntisrivaraporn, B. 2006. Complex occurrents in

clinical terminologies and their representation in a formal language. In Proc. 1st
European Conference on SNOMED CT (SMCS’06).

19. Wolter, F., and Zakharyaschev, M. 1999. Temporalizing description logics. In
Proc. FroCoS’98, Wiley.

