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1 Lattice Theory
Exercise 1 (line diagram)

a) Define: What is a lattice?

b) Find a preferably small lattice and draw its line diagram.

c) Which of the following line diagrams does not represent a lattice? Why?

(i) (ii) (iii) (iv) (v)

Solution:

a) A pair (M,≤) consisting of a set M together with a reflexive, transitive, and antisymmetric
relation ≤ is called ordered set. For a subset A of M an element s ∈M is an upper (lower)
bound of A, if s ≤ a (a ≤ s) holds for all a ∈ A. If a largest (smallest) upper (lower) bound
of A exists, then it is called infimum (supremum) – in symbols: inf A (supA) or

∧
A (

∨
A).

For two-elemental subsets {x, y} ⊆M we simply write x ∧ y (x ∨ y).

A lattice V is an ordered set (V,≤) such that x ∧ y and x ∨ y exist for all x, y ∈ V .

b) Choose, for example V := ({0}, {(0, 0)}).

c)
(i) does not represent a lattice, be-
cause, for instance, there exists no
infimum for the elements {x, y}:



(v) does not represent a lattice, be-
cause, for instance, there exists no in-
fimum for the elements {x, y}:

x y

Exercise 2 (complete lattice)
a) Define: What is a complete lattice?

b) Can you find a complete lattice among the lattices of Exercise 1c?

c) Let P := (M,≤) be an ordered set such that for every subset X of M the infimum
∧

X
exists. Show that P is a complete lattice.

Solution:

a) An ordered set V := (V,≤) is a complete lattice if
∨
X and

∧
X exist for all subsets X of

V .
b) Every finite lattice is also a complete lattice.
c) We have to show that

∨
X exists for all subsets X of M .

For X ⊆ M we set S := {s ∈ M | ∀a ∈ X : a ≤ s} (S is the set of upper bounds of X). It
holds that S ⊆M and hence also

∧
S︸︷︷︸

=:⊥

∈M .

Furthermore, every element a ∈ X is a lower bound of S and hence a ≤⊥ holds for all
a ∈ X. Therefore, ⊥∈ S holds and thus also ⊥=

∨
X.

Exercise 3
Prove the following theorem:

Let (L,6) be a lattice with supremum and infimum defined as usual. For any elements x, y, z ∈
L holds:
(i) x ∧ y = y ∧ x

(iii) x ∧ (y ∧ z) = (x ∧ y) ∧ z

(v) x ∧ (x ∨ y) = x

(vii) x ∧ x = x

(ii) x ∨ y = y ∨ x

(iv) x ∨ (y ∨ z) = (x ∨ y) ∨ z

(vi) x ∨ (x ∧ y) = x

(viii) x ∨ x = x

Solution:
First note that the proofs for equations (ii), (iv), (vi), and (viii) can be directly obtained from
the proofs of the equations (i), (iii), (v), and (vii), respectively, by duality. We now prove those.

(i) x ∧ y = y ∧ x
x ∧ y =

∧
{x, y} =

∧
{y, x} = y ∧ x

(iii) x ∧ (y ∧ z) = (x ∧ y) ∧ z
Obviously, for any two lattice elements u and v holds that they are equal if and only if
their sets of lower bounds are the same. Thus we can prove the above equality by showing
that any element w is a lower bound of x∧(y∧z) exactly if it is a lower bound of (x∧y)∧z:
w ≤ x ∧ (y ∧ z)⇔ w ≤ x, w ≤ (y ∧ z)⇔ w ≤ x, w ≤ y, w ≤ z ⇔ w ≤ x ∧ y, w ≤ z ⇔
w ≤ (x ∧ y) ∧ z
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(v) x ∧ (x ∨ y) = x
We first show that u ≤ v implies u ∧ v = u:
If u ≤ v, then the lower bounds of u are a subset of the lower bounds of v. Consequently
the common lower bounds of u and v are just the lower bounds of u therefore, the greatest
common lower bound of u and v is the greatest lower bound of u which is u.

Now we are ready to prove the above equality: First we see that x ∨ y ≥ x, since every
common upper bound of x and y is an upper bound of x and hence must be greater than
x. Then, using the correspondence shown before, we obtain x ∧ (x ∨ y) = x

(vii) x ∧ x = x
x ∧ x =

∧
{x, x} =

∧
{x} = x

3


