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1 Introduction

The ontology language OWL, a W3C recommendation, is currently being re-
visited by a W3C working group. It is anticipated that the updated version of
the W3C recommendation produced by the working group will include a num-
ber of popular fragments of OWL that have more favourable computational
properties than the full language. One candidate for such a fragment is an ex-
tension of the lightweight description logic EL, which only provides conjunction
and existential restriction. It is well-known that, in EL and many of its exten-
sions, satisfiability, subsumption, and other standard reasoning problems can be
decided in polynomial time. In this paper, we give further evidence for the at-
tractive computational properties of EL by analyzing the practical feasibility of
two more involved reasoning problems, which can also be solved in polynomial
time: logical diff and the extraction of semantic modules.

The standard diff operation for text files is an indispensible tool for comparing
different versions of text files and source code files. In contrast, a purely syntactic
diff operation is hardly useful to compare ontologies, see e.g. [10]. Indeed, one
is usually not interested in syntactic differences between ontologies, but rather
in different consequences that the ontologies have. We use a logic-based diff
operation that compares the consequences of two ontologies, and is closely related
to the notion of a (deductive) conservative extension as studied in [8, 9, 5].

The purpose of module extraction is to identify, given a signature Σ and an
ontology T , a (preferably small) fragment T0 of T such that T0 contains the
same information about Σ as T and thus behaves in exactly the same way as T
in all applications using only symbols from Σ. Possible applications include (a)
importing, instead of T , the ontology T0 into another ontology, (b) computing
the classification of the terms in Σ, and (c) querying a database using T0 instead
of T . We use a logic-based, semantic definition of a module based on (model-
theoretic) conservative extensions which ensures that T and T0 “contain the
same information about Σ” in a very strong sense.

This paper is structured into two parts. The first part presents experiments
with the system CEX. This prototype computes, given two ontologies formulated
as (cyclic or acyclic) TBoxes in the description logic EL and a signatureΣ, a com-
plete list of concept names that are involved in a subsumption between (possibly
complex) Σ-concepts that is a consequence of one TBox, but not of the other.



By defining Σ as the set of shared symbols of the two TBoxes, we thus obtain
a list that can be regarded as the logical difference. Most of the experiments
with CEX are based on (different versions of) Snomed ct, the Systematized
Nomenclature of Medicine, Clinical Terms. This acyclic TBox comprises ∼0.4
million terms and underlies the systematized medical terminology used in the
health systems of the US, the UK, and other countries [12].

The second part of this paper presents experiments with the system MEX
that extracts modules from ontologies formulated as acyclic EL-TBoxes. Similar
to the systems described in [5, 2, 4, 11, 3], MEX takes as input a TBox T and a
set of symbols Σ, and extracts a self-contained module T0 of T that contains the
same information about Σ as T and is minimal with this property in a certain
sense. In contrast to most existing module extraction algorihms, MEX does not
collect the definitions of terms in Σ, but computes exactly what is required in
the applications mentioned above. The experiments for MEX are also based on
Snomed ct. Proofs and additional results are available at [7, 6].

2 Preliminaries

Let NC and NR be countably infinite and disjoint sets of concept names and role
names, respectively. In the description logic EL, concepts C are built according
to the syntax rule

C ::= > | A | C uD | ∃r.C,

where A ranges over NC, r ranges over NR, and C,D range over concepts. The
semantics of concepts is defined by means of interpretations I = (∆I , ·I), where
the interpretation domain ∆I is a non-empty set and ·I is a function mapping
each concept name A to a subset AI of ∆I and each role name rI to a binary
relation rI ⊆ ∆I × ∆I . The function ·I is inductively extended to arbitrary
concepts by setting >I := ∆I , (C uD)I := CI ∩DI , and (∃r.C)I := {d ∈ ∆I |
∃e ∈ CI : (d, e) ∈ rI}.

A TBox T is a finite set of axioms, where an axiom can be a concept inclusion
(CI) of the form A v C or a concept equation (CE) of the form A ≡ C with
A a concept name. It is required that no concept name occurs more than once
on the left hand side of an axiom in T . Define the relation ≺T ⊆ NC × NC by
setting A ≺T X iff there exists an axiom of the form A v C or A ≡ C in T
such that X occurs in C. Denote by ≺∗T the transitive closure of ≺T and set
dependT (A) = {X | A ≺∗T X}. Intuitively, dependT (A) consists of all concept
names which are used in the definition of A in T . A TBox T is called acyclic if
A 6∈ dependT (A) for any A ∈ NC.

An interpretation I satisfies a CI C v D (written I |= C v D) if CI ⊆ DI ;
it satisfies a CE C ≡ D (written I |= C ≡ D) if CI = DI . I is a model of a
TBox T if it satisfies all axioms in T . We write T |= C v D (T |= C ≡ D) if
every model of T satisfies C v D (C ≡ D, respectively).

A signature Σ is a finite subset of NC ∪ NR. The signature sig(C) (sig(α),
sig(T )) of a concept C (axiom α, TBox T ) is the set of concept and role names



which occur in C (α, T , respectively). If sig(C) ⊆ Σ, we also call C a Σ-concept
and similarly for axioms and TBoxes.

3 Logical Difference

In this section, we present the experimental results for CEX. We first give a
logical characterization of the algorithm underlying CEX.

Description of CEX : For any two EL-TBoxes T0 and T1 and signature Σ, the
algorithm implemented in CEX outputs, in polytime, the following two lists:

– the list DiffRΣ(T0, T1) consisting of all A ∈ Σ such that there is a Σ-concept
C with T0 6|= C v A and T1 |= C v A.

– the list DiffLΣ(T0, T1) consisting of all A ∈ Σ such that there is a Σ-concept
C with T0 6|= A v C and T1 |= A v C.

One can show that, if there exist Σ-concepts C and D such that T1 |= C v D
but T0 6|= C v D, then an A ∈ Σ occuring in C or D is in DiffRΣ(T0, T1) or
DiffLΣ(T0, T1), respectively. In particular, both lists are empty if, and only if,
T0 and T1 do not differ w.r.t. Σ. We illustrate the definition using the following
example. Let T0 be the TBox containing the following three axioms:

Neck injection v Operation (1)
Neck operation v Operation (2)

Removal foreign body from neck ≡ Neck operation u Removal foreign body (3)

Assume that T0 is refined by replacing axiom (1) by the axiom Neck injection v
Neck operation. Let T1 be the new TBox. To find out how this update influ-
ences the relationship between concepts distinct from Neck operation, one com-
putes the difference between T0 and T1 for the signature Σ consisting of all
symbols distinct from Neck operation. Then Removal foreign body from neck ∈
DiffRΣ(T0, T1) because of T1 implying Neck injection u Removal foreign body v
Removal foreign body from neck. Notice that no difference between T0 and T1 is
visible by comparing the induced class hierarchies over Σ.

CEX is an OCaml program [13]. The experiments use two versions of Snomed
ct: one dated 09 February 2005 (SM-05) and the other 30 December 2006
(SM-06) and having 379 691 and 389 472 axioms, respectively. As CEX currently
accepts acyclic EL-TBoxes only, the role inclusions of Snomed ct are not taken
into account. The tests have been carried out on a standard PC: Intel R© CoreTM

2 CPU at 2.13 GHz and 3 GB of RAM.

Logical difference between SM-05 and SM-06. Table 1 shows the average time
and memory consumption of CEX computing the lists DiffRΣ(SM-05,SM-06)
and DiffLΣ(SM-05,SM-06) and vice versa for 20 randomly generated signatures
Σ of size 100, 1 000, etc. The average size of the sets DiffRΣ(SM-05,SM-06)
and DiffLΣ(SM-05,SM-06) are provided. Observe that no differences have been



CEX: Diff(SM-05,SM-06) CEX: Diff(SM-06,SM-05)
Size of Time Memory |DiffLΣ | |DiffRΣ | Time Memory |DiffLΣ | |DiffRΣ |
Σ (Sec.) (MByte) (Sec.) (MByte)

100 513.1 1 393.7 0.0 0.0 514.9 1 393.5 0.0 0.0

1 000 512.4 1 394.6 2.5 2.5 514.7 1 395.2 1.5 2.5

10 000 517.7 1 424.3 183.2 122.0 519.9 1 424.7 194.4 123.3

100 000 559.8 1 473.2 11 322.1 4 108.5 563.1 1 472.6 11 869.7 4 119.4

Table 1. Logical difference between two Snomed ct versions

found for signatures of size 100. This means that the two versions of Snomed ct
are not distinguishable by any implied subsumptions formulated with concept
names from the 20 randomly generated signatures of size 100.

Comparison with the classification approach. We compare the size of DiffLΣ ∪
DiffRΣ as computed by CEX with the number of concept names A ∈ Σ for which
there is a difference in the class hierarchy restricted to Σ. The experiments
show how many of the differences between two TBoxes detected by CEX can be
extracted from a straightforward comparison of class hierarchies.

To facilitate the experiments, we use an empty TBox and an SM-05 frag-
ment containing about 140 000 axioms. For every number between 10 and 270
with the step of 10, we generated 500 samples of a random signature containing
this number of concepts and 20 roles. The results of the experiments are given in
Figure 1. (a) shows that, for these signatures, the number of concept names CEX
outputs is about five times larger than the number of concept names occuring
in differences between the class hierarchies. In (b), we do not count the number
of differences but analyse how often the two approaches detect differences at all.
More precisely, we give the percentage of cases when CEX detects a difference
between the two TBoxes and when a difference is visible in the class hierarchies.
For signatures larger than 200, both approaches almost always detect differ-
ences. But for smaller signatures there is again a significant gap between the
two approaches.

We note that the gap between differences detected by CEX and differences
visible in class hierarchies is less significant if less roles names are in the signature
Σ. But experiments show that even for signatures without role names CEX often
detects differences that do not occur in the class hierarchy.

Scalability. We demonstrated in the previous section that CEX is capable of find-
ing the logical difference in two unmodified versions of Snomed ct. In order to
see how CEX’s performance scales, we now test it on randomly generated acyclic
TBoxes of various sizes. Each randomly generated TBox contains a certain num-
ber of defined- and primitive concept names and role names. The ratio between
concept equations and concept inclusions is fixed, as is the ratio between exis-
tential restrictions and conjunctions. The random TBoxes were generated for a



(a) Difference size (b) Proportion

Fig. 1. Comparison of CEX and classification-based approach

(a) Execution time (b) Memory consumption

Fig. 2. Performance of CEX on randomly generated TBoxes

varying number of defined concept names using the parameters of SM-05: 62
role names; the average number of conjuncts is 2.59; the equality-inclusion ratio
is 0.102; and the exists-conjunction ratio is 0.652. For every chosen size, we gen-
erate a number of samples consisting of two random TBoxes as described above.
We apply CEX to find the logical difference of the two TBoxes over their joint sig-
nature. Figure 2 shows the time and memory consumption of CEX on randomly
generated TBoxes of various sizes, where the maximum length of conjunctions
was fixed as two (M=2).

The performance of CEX crucially depends on the length of conjunctions as
illustrated in Figures 3 and 4, where the number of conjuncts in each conjunction
is randomly selected between two and M . The curves break off at the point
where CEX runs out of memory. For example, in the case M = 22 this happens
for TBoxes with more than 9 500 defined concept names.

4 Semantic module extraction

The purpose of our second tool, MEX, is to extract modules from a TBox. We
use the following, logic-based definition of a module.



Fig. 3. CEX’s memory consumption for TBoxes with long conjunctions

Fig. 4. CEX’s execution time on TBoxes with long conjunctions

Definition 1 (Semantic modules). Let T0 ⊆ T1 be TBoxes and Σ ⊇ sig(T0).

– T0 is a weak semantic Σ-module of T1 if for every model I of T0 there exists
a model I ′ of T1 which coincides with I on Σ.

– T0 is a strong semantic Σ-module of T1 if for every model I there exists a
model I ′ of T1 \ T0 which coincides with I on Σ.

In any standard description logic, every strong semantic Σ-module is a weak
semantic Σ-module. The converse does not hold: if T0 = {A ≡ >}, T1 = T0 ∪
{B v A} and Σ = {A,B}, then T0 is a weak semantic Σ-module of T1, but
not a strong semantic Σ-module. Intuitively, the difference between weak and
strong modules is that strong modules additionally require the ontology without
the module to not imply any dependencies between symbols in Σ. This stronger
type of module has been introduced in [5].

Call an axioms α trivial if it is of the form A ≡ >, or A ≡ > u >, etc.
Surprisingly, for acyclic EL-TBoxes not containing trivial axioms the notions of
weak and strong semantic modules are equivalent:

Theorem 1. Let T0 ⊆ T1 be acyclic EL-TBoxes not containing trivial axioms
and Σ ⊇ sig(T0). Then T0 is a weak semantic Σ-module of T1 iff it is a strong
semantic Σ-module of T1.



We now discuss our tool MEX for extracting semantic modules.

Description of MEX. For any acyclic EL-TBox T1 not containing trivial axioms
and signature Σ, the algorithm implemented in MEX extracts the (uniquely
determined) smallest weak/strong semantic Σ ∪ sig(T0)-module T0 of T1.

Given Σ, the algorithm may thus return a Σ′-module for some Σ′ ⊇ Σ.
Intuitively, the purpose is to make the module self-contained in the sense that,
if a TBox T implies a dependency between symbols occuring in T0, then this
dependency is implied by T0 already.

The size of modules. We compare the modules generated by MEX with the
minimal modules generated by a number of other extraction algorithms. It is
not difficult to see that, when applied to an acyclic EL-TBox T1 and signature
Σ, the module extraction algorithms presented in [5, 4, 11] output a module T0
that is definition-closed, i.e., satisfies the following:

if A ∈ sig(T0) ∪Σ and α ∈ T1 has A on the left hand side, then α ∈ T0.

An exception are the modules generated using the >-based locality approach
of [5] (whereas the ⊥-based locality approach yields definition-closed modules).
One can show that any definition-closed module contains the module generated
by MEX.

Definition-closed modules are appropriate for several applications of extrac-
tion algorithms. For applications that do not need definitions of terms in the
input-signature, however, the smallest weak/strong semantic module appears to
provide exactly the information required. We show that this can significantly
reduce the size of modules. The following experiment compares the minimal
size of definition-closed modules with the size of modules generated using MEX,
when applied to Snomed ct. We note that the system MEX takes into account
also the role inclusions of Snomed ct. In the experiments below, it outputs a
weak (equivalently, strong) semantic module of Snomed ct, but because of the
role box this output of MEX is not necessarily a minimal semantic module. To
compute the minimal definition-closed modules, we use the module extraction
feature of the CEL reasoner [1] (Version 1.0b).

In Figure 5, an input signature consisted of a number of concept names that
were randomly selected from SM-05. The size of the input signatures varied
from 100 to 1 000 concept names. For every signature size, we use 1000 random
signatures.

Figure 5 shows the maximal, minimal, and average module sizes depending
on the size of the input signature. Figure 6 shows the frequency distribution
of the definition-closed modules, and Figure 7 the distribution for the semantic
modules. In each figure, there are five different histograms, one for each of the
signature sizes ranging over 100, 250, 500, 750, and 1 000. Each of these his-
tograms displays the distribution of the module sizes of 1 000 extracted SM-05
modules for randomly selected signatures of a certain size. For instance, the his-
togram labelled with CEL100 in Figure 6 shows the distribution of the size of



Fig. 5. Sizes of definition-closed modules and semantic modules

Fig. 6. Frequency distribution of the size of locality-based modules

1 000 definition-closed modules for the signature size 100 extracted from SM-05.
For the sake of comparison, the axes in both figures have the same scaling result-
ing in the histogram MEX100 being capped at 200 for empty semantic modules.
The missing value of MEX100 for empty modules is 547.

To facilitate the comparison of the module sizes, consider Table 2. It presents
the average module size together with the standard deviation of definition-closed
and semantic modules for random input signatures of various sizes. Recall that
the standard deviation indicates how much the module sizes vary from the av-
erage. Notice that, for small signature sizes, the standard deviation of semantic
module sizes is relatively high. The reason is that MEX extracts many small or
even empty semantic modules for small signature sizes. For instance, 547 of 1 000
extracted modules where empty for signature size 100. Intuitively, the reason for
an empty module is that Snomed ct does not imply any subsumptions between
concepts formulated in the chosen signature. When only considering the seman-
tic modules for signature size 100 that contain more than 10 axioms, the average
module size becomes 889.15 and the standard deviation decreases to 125.63; see
the last column of Table 2.



Fig. 7. Frequency distribution of the size of semantic modules

Size of definition- Size of semantic Size of semantic
Signature closed modules modules modules of Size > 10

size Average Standard Average Standard Average Standard
deviation deviation deviation

100 2 462.17 293.49 370.10 447.08 889.15 125.63

250 5 253.21 419.08 1 774.53 434.66 1 875.80 98.04

500 8 872.74 441.92 3 138.25 110.84 3 138.25 110.84

750 11 691.71 478.83 4 210.94 121.40 4 210.94 121.40

1 000 14 053.48 462.09 5 167.07 122.76 5 167.07 122.76

Table 2. Average and std. deviation definition-closed and semantic modules

5 Combining CEX and MEX

In this section, we show that MEX can be used to speed-up the computation
of the logical difference between TBoxes. The left hand side of Table 3 is taken
from Table 1 while its right hand side shows the average time and memory
consumption of computing the same lists, but here we first use MEX to extract
semantic Σ-modules T0 and T1 from SM-05 and SM-06, respectively, and then
CEX computes DiffRΣ(T0, T1) and DiffLΣ(T0, T1). Though CEX is already very
efficient, the results show that the latter procedure is even faster and gives results
almost instantaniously for small Σ.

6 Discussion

In this paper, we have proposed the novel notion of a logical diff and presented
a new logic-based notion of a module in a TBox. In both cases, we have devel-
oped polytime algorithms and presented an experimental evaluation on different
versions of Snomed ct. The experiments suggest that, in both cases, a rigorous
logic-based approach is computationally no more expensive than most ad-hoc
approaches while providing significant advantages. In the case of logical diff, the
advantage is that also subtle differences between TBoxes can be detected. In



CEX: Diff(SM-05,SM-06) CEX: Diff(Mod(SM-05),Mod(SM-06))
Size of Time Memory |DiffLΣ | |DiffRΣ | Time Memory
Σ (Sec.) (MByte) (Sec.) (MByte)

100 513.1 1 393.7 0.0 0.0 3.66 116.5

1 000 512.4 1 394.6 2.5 2.5 4.46 122.5

10 000 517.7 1 424.3 183.2 122.0 22.29 126.5

100 000 559.8 1 473.2 11 322.1 4 108.5 189.98 615.8

Table 3. Logical difference between semantic modules of two Snomed ct versions

module extraction, our approach leads to smaller modules than many other ap-
proaches. It has to be noted, however, that so far our approach is limited to EL.
Extending at least some of the techniques to more expressive languages remains
a challenging problem. For first results in this direction, we refer the reader to [7,
6].
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