Review

There are many well-defined static optimisation tasks that are independent of the database

- query equivalence, containment, emptiness

Unfortunately, all of them are undecidable for FO queries

- Slogan: “all interesting questions about FO queries are undecidable”

Let’s look at simpler query languages

Optimisation for Conjunctive Queries

Optimisation is simpler for conjunctive queries

Example 10.1: Conjunctive query containment:

\[Q_1 : \exists x, y, z. R(x, y) \land R(y, y) \land R(y, z) \]
\[Q_2 : \exists u, v, w, t. R(u, v) \land R(v, w) \land R(w, t) \]

- \(Q_1 \) find \(R \)-paths of length two with a loop in the middle
- \(Q_2 \) find \(R \)-paths of length three

- in a loop one can find paths of any length
- \(Q_1 \sqsubseteq Q_2 \)

Deciding Conjunctive Query Containment

Consider conjunctive queries \(Q_1[x_1, \ldots, x_n] \) and \(Q_2[y_1, \ldots, y_n] \).

Definition 10.2: A query homomorphism from \(Q_2 \) to \(Q_1 \) is a mapping \(\mu \) from terms (constants or variables) in \(Q_2 \) to terms in \(Q_1 \) such that:

- \(\mu \) does not change constants, i.e., \(\mu(c) = c \) for every constant \(c \)
- \(x_i = \mu(y_i) \) for each \(i = 1, \ldots, n \)
- if \(Q_2 \) has a query atom \(R(t_1, \ldots, t_m) \)
 then \(Q_1 \) has a query atom \(R(\mu(t_1), \ldots, \mu(t_m)) \)

Theorem 10.3 (Homomorphism Theorem): \(Q_1 \sqsubseteq Q_2 \) if and only if there is a query homomorphism \(Q_2 \rightarrow Q_1 \).

- decidable (only need to check finitely many mappings from \(Q_2 \) to \(Q_1 \))
Example

\[Q_1 : \exists x, y, z. R(x, y) \land R(y, y) \land R(y, z) \]
\[Q_2 : \exists u, v, w, t. R(u, v) \land R(v, w) \land R(w, t) \]

Proof of the Homomorphism Theorem

\textbf{“⇐”:} \(Q_1 \sqsubseteq Q_2 \) if there is a query homomorphism \(Q_2 \rightarrow Q_1 \).

1. Let \(\langle d_1, \ldots, d_n \rangle \) be a result of \(Q_1[x_1, \ldots, x_n] \) over database \(I \).
2. Then there is a homomorphism \(\nu \) from \(Q_1 \) to \(I \).
3. By assumption, there is a query homomorphism \(\mu : Q_2 \rightarrow Q_1 \).
4. But then the composition \(\nu \circ \mu \), which maps each term \(t \) to \(\nu(\mu(t)) \), is a homomorphism from \(Q_2 \) to \(I \).
5. Hence \(\langle \nu(\mu(y_1)), \ldots, \nu(\mu(y_n)) \rangle \) is a result of \(Q_2[y_1, \ldots, y_n] \) over \(I \).
6. Since \(\nu(\mu(y_i)) = \nu(x_i) = d_i \), we find that \(\langle d_1, \ldots, d_n \rangle \) is a result of \(Q_2[y_1, \ldots, y_n] \) over \(I \).

Since this holds for all results \(\langle d_1, \ldots, d_n \rangle \) of \(Q_1 \), we have \(Q_1 \sqsubseteq Q_2 \).

(See board for a sketch showing how we compose homomorphisms here)

Review: CQs and Homomorphisms

If \(\langle d_1, \ldots, d_n \rangle \) is a result of \(Q_1[x_1, \ldots, x_n] \) over database \(I \) then:

- there is a mapping \(\nu \) from variables in \(Q_1 \) to the domain of \(I \)
- \(d_i = \nu(x_i) \) for all \(i = 1, \ldots, m \)
- for all atoms \(R(t_1, \ldots, t_m) \) of \(Q_1 \), we find \(\langle \nu(t_1), \ldots, \nu(t_m) \rangle \in R^I \)
(\text{where we take } \nu(c) \text{ to mean } c \text{ for constants } c \text{)}

\(\sim I \models Q_1[d_1, \ldots, d_n] \) if there is such a homomorphism \(\nu \) from \(Q_1 \) to \(I \)

(Note: this is a slightly different formulation from the “homomorphism problem” discussed in a previous lecture, since we keep constants in queries here)

Proof of the Homomorphism Theorem

\textbf{“⇒”:} there is a query homomorphism \(Q_2 \rightarrow Q_1 \) if \(Q_1 \sqsubseteq Q_2 \).

1. Turn \(Q_1[x_1, \ldots, x_n] \) into a database \(I_1 \) in the natural way:
 - The domain of \(I_1 \) are the terms in \(Q_1 \)
 - For every relation \(R \), we have \(\langle t_1, \ldots, t_m \rangle \in R^{I_1} \) exactly if \(R(t_1, \ldots, t_m) \) is an atom in \(Q_1 \)
2. Then \(Q_2 \) has a result \(\langle x_1, \ldots, x_n \rangle \) over \(I_1 \)
 (the identity mapping is a homomorphism – actually even an isomorphism)
3. Therefore, since \(Q_1 \sqsubseteq Q_2 \), \(\langle x_1, \ldots, x_n \rangle \) is also a result of \(Q_2 \) over \(I_1 \)
4. Hence there is a homomorphism \(\nu \) from \(Q_2 \) to \(I_1 \)
5. This homomorphism \(\nu \) is also a query homomorphism \(Q_2 \rightarrow Q_1 \).
Implications of the Homomorphism Theorem

The proof has highlighted another useful fact:

The following two are equivalent:
• Finding a homomorphism from \(Q_2 \) to \(Q_1 \)
• Finding a query result for \(Q_2 \) over \(I_1 \)

\(\leadsto \) all complexity results for CQ query answering apply

Application: CQ Minimisation

Definition 10.5: A conjunctive query \(Q \) is minimal if:
• for all subqueries \(Q' \) of \(Q \) (that is, queries \(Q' \) that are obtained by dropping one or more atoms from \(Q \)),
• we find that \(Q' \neq Q \).

A minimal CQ is also called a core.

It is useful to minimise CQs to avoid unnecessary joins in query answering.

CQ Minimisation the Direct Way

A simple idea for minimising \(Q \):
• Consider each atom of \(Q \), one after the other
• Check if the subquery obtained by dropping this atom is contained in \(Q \)
 (Observe that the subquery always contains the original query.)
• If yes, delete the atom; continue with the next atom

Example 10.6: Example query \(Q \{v, w\} \):

\[\exists x, y, z. R(a, y) \land R(x, y) \land S(y, y) \land S(y, z) \land S(z, y) \land T(y, v) \land T(y, w) \]

\(\leadsto \) Simpler notation: write as set and mark answer variables

\[\{ R(a, y), R(x, y), S(y, y), S(y, z), S(z, y), T(y, v), T(y, w) \} \]

CQ Minimisation Example

Core: \(\exists y. R(a, y) \land S(y, y) \land T(y, v) \land T(y, w) \)

Can we map the left side homomorphically to the right side?

- \(R(a, y) \):
 - \(R(a, y) \): Keep (cannot map constant \(a \))
- \(R(x, y) \):
 - \(R(x, y) \): Drop; map \(R(x, y) \) to \(R(a, y) \)
- \(S(y, y) \):
 - \(S(y, y) \): Keep (no other atom of form \(S(t, t) \))
- \(S(y, z) \):
 - \(S(y, z) \): Drop; map \(S(y, z) \) to \(S(y, y) \)
- \(S(z, y) \):
 - \(S(z, y) \): Drop; map \(S(z, y) \) to \(S(y, y) \)
- \(T(y, \bar{v}) \):
 - \(T(y, \bar{v}) \): Keep (cannot map answer variable)
- \(T(y, \bar{w}) \):
 - \(T(y, \bar{w}) \): Keep (cannot map answer variable)
Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof: We reduce 3-colourability of connected graphs to this special kind of homomorphism problem. (If a graph consists of several connected components, then 3-colourability can be solved independently for each, hence 3-colourability is NP-hard when considering only connected graphs.)

Let G be a connected, undirected graph. Let $< \uparrow$ be an arbitrary total order on G's vertices.

Query Q is defined as follows:
- Q contains atoms $R(r, g), R(g, r), R(r, b), R(b, r), R(g, b)$, and $R(b, r)$ (the colouring template)
- For every undirected edge (e, f) in G with $e < f$, Q contains an atom $R(e, f)$
- For a single (arbitrarily chosen) edge (e, f) in G with $e < f$, Q contains an atom $A = R(f, e)$

Claim: G is 3-colourable if and only if there is a homomorphism $Q \rightarrow Q \setminus \{A\}$

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (continued): (\Rightarrow) If G is 3-colourable then there is a homomorphism $Q \rightarrow Q \setminus \{A\}$.
- Then there is a homomorphism μ from G to the colouring template
- We can extend μ to the colouring template (mapping each colour to itself)
- Then μ is a homomorphism $Q \rightarrow Q \setminus \{A\}$

(\Leftarrow) If there is a homomorphism $Q \rightarrow Q \setminus \{A\}$ then G is 3-colourable.
- Let μ be such a homomorphism, and let $A = R(f, e)$.
- Since $Q \setminus \{A\}$ contains the pattern $R(s, t), R(t, s)$ only in the colouring template, $\mu(e) \in \{r, g, b\}$ and $\mu(f) \in \{r, g, b\}$.
- Since the colouring template is not connected to other atoms of Q, μ must therefore map all elements of Q to the colouring template.
- Hence, μ induces a 3-colouring.

CQ Minimisation: Complexity

Even when considering single atoms, the homomorphism question is NP-hard:

Theorem 10.8: Given a conjunctive query Q with an atom A, it is NP-complete to decide if there is a homomorphism from Q to $Q \setminus \{A\}$.

Proof (summary): For an arbitrary connected graph G, we constructed a query Q with atom A, such that
- G is 3-colourable if and only if
- there is a homomorphism $Q \rightarrow Q \setminus \{A\}$.

Since the former problem is NP-hard, so is the latter. Inclusion in NP is obvious (just guess the homomorphism). Checking minimality is the dual problem, hence:

Theorem 10.9: Deciding if a conjunctive query Q is minimal (that is: a core) is coNP-complete.

However, the size of queries is usually small enough for minimisation to be feasible.
Perfect query optimisation is possible for conjunctive queries
\[\leadsto \] Homomorphism problem, similar to query answering
\[\leadsto \] NP-complete

Using this, conjunctive queries can effectively be minimised

Coming up next:
- How to study expressivity of queries
- The limits of FO queries
- Datalog