Agenda

- Recap Tableau Calculus
- Tableau with \mathcal{ALC} TBoxes
- Tableau for \mathcal{ALC} Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary
Agenda

- Recap Tableau Calculus
- Tableau with \mathcal{ALC} TBoxes
- Tableau for \mathcal{ALC} Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check of satisfiability of C by construction of an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check of satisfiability of C by construction of an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \(\Rightarrow\) easier rules
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check of satisfiability of C by construction of an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \Rightarrow easier rules
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$

TU Dresden, 14 May 2018 Deduction Systems slide 6 of 80
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check of satisfiability of C by construction of an abstraction of a model \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- concepts in negation normal form (NNF) \leadsto easier rules
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check of satisfiability of C by construction of an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \Rightarrow easier rules
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules
Tableau Algorithm for ALC Concepts and TBoxes

- check of satisfiability of C by construction of an abstraction of a model I such that $C^I \neq \emptyset$
- concepts in negation normal form (NNF) \leadsto easier rules
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{ C \}$
- extend G by applying tableau rules
 - \sqcup rule is non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (aka clash)
Tableau Algorithm for \(\mathcal{ALC} \) Concepts and TBoxes

- check of satisfiability of \(C \) by construction of an abstraction of a model \(\mathcal{I} \) such that \(C^\mathcal{I} \neq \emptyset \)
- concepts in negation normal form (NNF) \(\Rightarrow \) easier rules
- tableau (model abstraction) corresponds to a graph/tree \(G = \langle V, E, L \rangle \)
- initialize \(G \) with a node \(v \) such that \(L(v) = \{C\} \)
- extend \(G \) by applying tableau rules
 - \(\sqcup \) rule is non-deterministic (we guess)
- tableau branch closed if \(G \) contains an atomic contradiction (aka clash)
- tableau construction successful if no rules applicable and no contradiction
Tableau Algorithm for \mathcal{ALC} Concepts and TBoxes

- check of satisfiability of C by construction of an abstraction of a model \mathcal{I} such that $C^\mathcal{I} \neq \emptyset$
- concepts in negation normal form (NNF) \leadsto easier rules
- tableau (model abstraction) corresponds to a graph/tree $G = \langle V, E, L \rangle$
- initialize G with a node v such that $L(v) = \{C\}$
- extend G by applying tableau rules
 - \sqcap rule is non-deterministic (we guess)
- tableau branch closed if G contains an atomic contradiction (aka clash)
- tableau construction successful if no rules applicable and no contradiction
- C is satisfiable iff there is a successful tableau construction
Tableau Rules for \mathcal{ALC} Concepts

\sqcap-rule: For an $v \in V$ with $C \sqcap D \in L(v)$ and $
\{C, D\} \not\subseteq L(v)$, let $L(v) := L(v) \cup \{C, D\}$.

\sqcup-rule: For an $v \in V$ with $C \sqcup D \in L(v)$ and $
\{C, D\} \cap L(v) = \emptyset$, choose $X \in \{C, D\}$ and let
$L(v) := L(v) \cup \{X\}$.

\exists-rule: For an $v \in V$ with $\exists r. C \in L(v)$ such that
there is no r-successor v' of v with $C \in L(v')$,
let $V = V \cup \{v'\}$, $E = E \cup \{(v, v')\}$, $L(v') := \{C\}$ and
$L(v, v') := \{r\}$ for v' a new node.

\forall-rule: For $v, v' \in V$, v' r-successor of v,
$\forall r. C \in L(v)$ and $C \notin L(v')$, let $L(v') := L(v') \cup \{C\}$.
Agenda

- Recap Tableau Calculus
- Tableau with \mathcal{ALC} TBoxes
- Tableau for \mathcal{ALC} Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary
Tableau Algorithm for TBoxes

We extend the tableau algorithm to capture \mathcal{ALC} TBoxes

- a TBox contains axioms (GCIs) of the form $C \sqsubseteq D$
- assumption: occurrences of $C \equiv D$ have been replaced by $C \sqsubseteq D$ and $D \sqsubseteq C$
- every GCI is equivalent to $\top \sqsubseteq \neg C \sqcup D$

We can compress the whole TBox into one axiom (we say we “internalize” it):

$$T = \{C_i \sqsubseteq D_i \mid 1 \leq i \leq n\}$$

is equivalent to:

$$T' = \{\top \sqsubseteq \bigcap_{1 \leq i \leq n} \neg C_i \sqcup D_i\}$$

Let C_T be the concept on the rhs of the GCI in NNF.
Tableau Algorithm for TBoxes

We extend the rules of the \mathcal{ALC} tableau algorithm with the rule:

\mathcal{T} rule: For an arbitrary $v \in V$ with $C_T \notin L(v)$, let $L(v) := L(v) \cup \{C_T\}$.

Example: Let $\mathcal{T} = A \sqsubseteq \exists r.A$. Is A satisfiable given \mathcal{T}?
Tableau Algorithm for TBoxes

We extend the rules of the \mathcal{ALC} tableau algorithm with the rule:

\mathcal{T} rule: For an arbitrary $v \in V$ with $C_T \notin L(v)$, let $L(v) := L(v) \cup \{C_T\}$.

Example: Let $\mathcal{T} = A \sqsubseteq \exists r.A$. Is A satisfiable given \mathcal{T}?

the tableau algorithm doesn’t terminate any more!
Tableau Algorithm for TBoxes

We extend the rules of the \mathcal{ALC} tableau algorithm with the rule:

\mathcal{T} rule: For an arbitrary $v \in V$ with $C_T \notin L(v)$,
let $L(v) := L(v) \cup \{C_T\}$.

Example: Let $\mathcal{T} = A \sqsubseteq \exists r.A$. Is A satisfiable given \mathcal{T}?

the tableau algorithm doesn’t terminate any more!

the quantifier depth does not necessarily decrease for newly introduced child nodes
We extend the rules of the \mathcal{ALC} tableau algorithm with the rule:

\mathcal{T} rule: For an arbitrary $v \in V$ with $C_T \notin L(v)$, let $L(v) := L(v) \cup \{C_T\}$.

Example: Let $\mathcal{T} = A \sqsubseteq \exists r.A$. Is A satisfiable given \mathcal{T}?

the tableau algorithm doesn’t terminate any more!

the quantifier depth does not necessarily decrease for newly introduced child nodes

solution: we will recognize cycles (that is, repeating node labellings)
Definition (Blocking)

A node $v \in V$ blocks a node $v' \in V$ directly, if:

1. v' is reachable from v,
2. $L(v') \subseteq L(v)$; and
3. there is no directly blocking node v'' such that v' is reachable from v''.

A node $v' \in V$ is blocked if either

1. v' is blocked directly or
2. there is a directly blocked node v, such that v' is reachable from v.

The application of the \exists rule is restricted to nodes that are not blocked.
Definition (Blocking)

A node \(v \in V \) blocks a node \(v' \in V \) directly, if:

1. \(v' \) is reachable from \(v \),
2. \(L(v') \subseteq L(v) \); and
3. there is no directly blocking node \(v'' \) such that \(v' \) is reachable from \(v'' \).

A node \(v' \in V \) is blocked if either

1. \(v' \) is blocked directly or
2. there is a directly blocked node \(v \), such that \(v' \) is reachable from \(v \).

The application of the \(\exists \) rule is restricted to nodes that are not blocked.
Example: Let $\mathcal{T} = A \sqsubseteq \exists r.A$. Is A satisfiable w.r.t. \mathcal{T}?

we obtain the following contradiction-free tableau:

\[
\begin{align*}
L(v_0) &= \{A, C_\mathcal{T}, \exists r.A\} \\
L(v_1) &= \{A, C_\mathcal{T}, \exists r.A\}
\end{align*}
\]

wherein v_1 is directly blocked by v_0
Tableau Algorithm with Blocking

Example: Let $T = A \sqsubseteq \exists r.A$. Is A satisfiable w.r.t. T?

we obtain the following contradiction-free tableau:

\[
\begin{align*}
v_0 & \quad L(v_0) = \{A, C_T, \exists r.A\} \\
r & \\
v_1 & \quad L(v_1) = \{A, C_T, \exists r.A\}
\end{align*}
\]

wherein v_1 is **directly blocked** by v_0

again, the algorithm constructs finite trees

- from a contradiction-free tableau, we can construct a model
- if there is no contradiction-free tableau, there is no model
From the Tableau to the Model

again, we can construct a finite model from a contradiction-free tableau:

\[\Delta^\mathcal{I} = \{v_0\} \]
\[A^\mathcal{I} = \Delta^\mathcal{I} \]
\[r^\mathcal{I} = \{\langle v_0, v_0 \rangle\} \]

- blocked nodes do not represent elements of the model
- when constructing the model, an edge from a node \(v \) to a directly blocked node \(v' \) will be “translated” into an “edge” from \(v \) to the node, that directly blocks \(v' \)
From the Tableau to the Model

again, we can construct a finite model from a contradiction-free tableau:

\[\Delta^I = \{ v_0 \} \]
\[A^I = \Delta^I \]
\[r^I = \{ \langle v_0, v_0 \rangle \} \]

- blocked nodes do not represent elements of the model
- when constructing the model, an edge from a node \(v \) to a directly blocked node \(v' \) will be “translated” into an “edge” from \(v \) to the node, that directly blocks \(v' \)

\[\sim \sim \text{ we have the finite model property} \]
\[\sim \sim \text{ constructed model is not necessarily tree-shaped} \]
Example: Let $\mathcal{T} = A \subseteq \exists r.A \sqcap \exists s.B$. Is A satisfiable w.r.t. \mathcal{T}?

We obtain the following contradiction-free tableau:

$$
\begin{align*}
L(v_0) &= \{A, C_\mathcal{T}, \exists r.A \sqcap \exists s.B, \exists r.A, \exists s.B\} \\
L(v_1) &= \{A, C_\mathcal{T}, \exists r.A \sqcap \exists s.B, \exists r.A, \exists s.B\} \\
L(v_2) &= \{B, C_\mathcal{T}, \neg A\}
\end{align*}
$$

in which v_1 is again directly blocked by v_0
From the Tableau to a Model II

again, we can construct a finite model from a contradiction-free tableau:

\[\Delta^I = \{v_0, v_2\} \]
\[A^I = \{v_0\} \]
\[B^I = \{v_2\} \]
\[r^I = \{\langle v_0, v_0 \rangle\} \]
\[s^I = \{\langle v_0, v_2 \rangle\} \]
Agenda

- Recap Tableau Calculus
- Tableau with \mathcal{ALC} TBoxes
- Tableau for \mathcal{ALC} Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary
Treatment of ABoxes

to take an ABox \mathcal{A} into account, initialize G such that

- V contains a node v_a for each individual a occurring in \mathcal{A}

the tableau rules can then be applied to this initialized graph
Treatment of ABoxes

to take an ABox \mathcal{A} into account, initialize G such that

- V contains a node v_a for each individual a occurring in \mathcal{A}
- $L(v_a) = \{ C \mid C(a) \in \mathcal{A} \}$
Treatment of ABoxes

to take an ABox \(\mathcal{A} \) into account, initialize \(G \) such that

- \(V \) contains a node \(v_a \) for each individual \(a \) occurring in \(\mathcal{A} \)
- \(L(v_a) = \{ C \mid C(a) \in \mathcal{A} \} \)
- \(\langle v_a, v_b \rangle \in E \) and \(r \in L(\langle v_a, v_b \rangle) \) iff \(r(a, b) \in \mathcal{A} \)
Treatment of ABoxes

to take an ABox \mathcal{A} into account, initialize G such that

- V contains a node v_a for each individual a occurring in \mathcal{A}
- $L(v_a) = \{C \mid C(a) \in \mathcal{A}\}$
- $\langle v_a, v_b \rangle \in E$ and $r \in L(\langle v_a, v_b \rangle)$ iff $r(a, b) \in \mathcal{A}$

the tableau rules can then be applied to this initialized graph
Agenda

- Recap Tableau Calculus
- Tableau with \mathcal{ALC} TBoxes
- Tableau for \mathcal{ALC} Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary
Tableau for \mathcal{ALC} with Inverse Roles

in order to take into account inverse roles, we have to make the following changes

1. edge labels may contain inverse roles (r^-),
Tableau for \mathcal{ALC} with Inverse Roles

In order to take into account inverse roles, we have to make the following changes:

1. Edge labels may contain inverse roles (r^-),
2. A node v' is an r-neighbor of a node v if either
 - v' is an r-successor of v or
 - v is an r^--successor of v'
Tableau for \mathcal{ALC} with Inverse Roles

In order to take into account inverse roles, we have to make the following changes:

1. Edge labels may contain inverse roles (r^-),
2. A node v' is an r-neighbor of a node v if either
 - v' is an r-successor of v or
 - v is an r^--successor of v'
3. Replace the term “r-successor” in the \forall- and the \exists-rule with “r-neighbor”

The \exists-rule still generates

- an r-successor for a concept $\exists r.C$ (if no fitting neighbor exists yet)
- an r^--successor for a concept $\exists r^- . C$ (if no fitting neighbor exists yet)
Example: is A satisfiable w.r.t. \mathcal{T}?

$$\mathcal{T} = \{ A \equiv \exists r . \neg A \land (\forall r . (\neg A \lor \exists s . B)) \}$$

Is the algorithm thus correct? No!
Tableau Example with Inverses

Example: is \(A \) satisfiable w.r.t. \(T \)?

\[
T = \{ A \equiv \exists r^- . A \land (\forall r . (\neg A \lor \exists s . B)) \}
\]

\[
C_T = (\neg A \lor \exists r^- . A) \land (\neg A \lor \forall r . (\neg A \lor \exists s . B)) \land
(\forall r^- . (\neg A) \lor \exists r . (A \land \forall s . (\neg B)) \lor A)
\]
Example: is A satisfiable w.r.t. \mathcal{T}?

$$\mathcal{T} = \{ A \equiv \exists r^- . A \land (\forall r. (\neg A \lor \exists s. B)) \}$$

$$C_\mathcal{T} = (\neg A \lor \exists r^- . A) \lor (\neg A \lor \forall r. (\neg A \lor \exists s. B)) \lor$$

$$\land (\forall s^- . (\neg A) \lor \exists r . (A \land \forall s . (\neg B)) \lor A)$$

$L(v_0) = \{ A, C_\mathcal{T}, \exists r^- . A, \forall r. (\neg A \lor \exists s. B),\neg A \lor \exists s. B, \exists s. B \}$

$L(v_1) = \{ A, C_\mathcal{T}, \exists r^- . A, \forall r. (\neg A \lor \exists s. B) \}$

$L(v_2) = \{ B, C_\mathcal{T}, \neg A, \forall r^-. (\neg A) \}$

v_0 blocks v_1
Tableau Example with Inverses

Example: is \(A \) satisfiable w.r.t. \(T \)?

\[
T = \{ A \equiv \exists r^-. A \cap (\forall r.(\neg A \cup \exists s.B)) \}
\]

\[
C_T = (\neg A \cup \exists r^- . A) \cap (\neg A \cup \forall r.(\neg A \cup \exists s.B)) \cap
\]

\[
(\forall r^-.(\neg A) \cup \exists r.(A \cap \forall s.(\neg B)) \cup A)
\]

\[
L(v_0) = \{ A, C_T, \exists r^- . A, \forall r.(\neg A \cup \exists s.B),
\]

\[
\neg A \cup \exists s.B, \exists s.B \}
\]

\[
L(v_1) = \{ A, C_T, \exists r^- . A, \forall r.(\neg A \cup \exists s.B) \}
\]

\[
L(v_2) = \{ B, C_T, \neg A, \forall r^-.(\neg A) \}
\]

Is the algorithm thus correct?

\(v_0 \) blocks \(v_1 \)
Tableau Example with Inverses

Example: is \(A \) satisfiable w.r.t. \(\mathcal{T} \)?

\[
\mathcal{T} = \{ A \equiv \exists r^- . A \land (\forall r. (\neg A \lor \exists s . B)) \}
\]

\[
C_{\mathcal{T}} = (\neg A \lor \exists r^- . A) \land (\neg A \lor \forall r. (\neg A \lor \exists s . B)) \land \\
(\forall r^- . (\neg A) \lor \exists r . (A \lor \forall s . (\neg B)) \lor A)
\]

\[
L(v_0) = \{ A, C_{\mathcal{T}}, \exists r^- . A, \forall r. (\neg A \lor \exists s . B), \\
\neg A \lor \exists s . B, \exists s . B \}
\]

\[
L(v_1) = \{ A, C_{\mathcal{T}}, \exists r^- . A, \forall r. (\neg A \lor \exists s . B) \}
\]

\[
L(v_2) = \{ B, C_{\mathcal{T}}, \neg A, \forall r^- . (\neg A) \}
\]

\(v_0 \) blocks \(v_1 \)

Is the algorithm thus correct? No!
Example: Is $C \cap \exists s. C$ satisfiable w.r.t. \mathcal{T}?

$$\mathcal{T} = \{ \top \subseteq \forall r^-.(\forall s^-.(\neg C)) \cap \exists r.C \}$$
Tableau Example with Inverses II

Example: Is $C \cap \exists s.C$ satisfiable w.r.t. \mathcal{T}?

$$\mathcal{T} = \{ \top \subseteq \forall r^-. (\forall s^-.(\neg C)) \cap \exists r.C \}$$

$$C_{\mathcal{T}} = \forall r^-.(\forall s^-.(\neg C)) \cap \exists r.C$$
Tableau Example with Inverses II

Example: Is $C \sqcap \exists s. C$ satisfiable w.r.t. T?

Example:

\[T = \{ \top \sqsubseteq \forall r^-. (\forall s^-. (\neg C)) \sqcap \exists r. C \} \]
\[C_T = \forall r^-.(\forall s^-.(\neg C)) \sqcap \exists r. C \]

\[L(v_0) = \{ C, \exists s. C, C_T, \forall r^-. (\forall s^-.(\neg C)), \exists r. C, \forall s^-.(\neg C) \} \]
\[L(v_1) = \{ C, C_T, \forall r^-. (\forall s^-.(\neg C)), \exists r. C \} \]
\[L(v_2) = \{ C, C_T, \forall r^-.(\forall s^-.(\neg C)), \exists r. C \} \]

\[v_0 \text{ blocks } v_1 \text{ and } v_2 \leadsto \text{tableau complete} \]
Tableau Example with Inverses II

Example: Is $C \cap \exists s. C$ satisfiable w.r.t. T?

$T = \{ \top \subseteq \forall r^-.(\forall s^-.(\neg C)) \cap \exists r.C \}$

$L(v_0) = \{ C, \exists s.C, C_T, \forall r^-.(\forall s^-.(\neg C)), \exists r.C, \forall s^-.(\neg C) \}$

$L(v_1) = \{ C, C_T, \forall r^-.(\forall s^-.(\neg C)), \exists r.C \}$

$L(v_2) = \{ C, C_T, \forall r^-.(\forall s^-.(\neg C)), \exists r.C \}$

v_0 blocks v_1 and $v_2 \leadsto$ tableau complete but $v_0 \leadsto$ tableau incomplete

$L(v_3) = \{ C, C_T, \forall r^-.(\forall s^-.(\neg C)), \exists r.C \}$
Example: Is \(C \cap \exists s.C \) satisfiable w.r.t. \(T \)?

\[
T = \{ \top \subseteq \forall r^-.(\forall s^-.(\neg C)) \cap \exists r.C \}
\]

\[
C_T = \forall r^-.(\forall s^-.(\neg C)) \cap \exists r.C
\]

\[
L(v_0) = \{ C, \exists s.C, C_T, \forall r^-.(\forall s^-.(\neg C)), \exists r.C, \forall s^-.(\neg C) \}
\]

\[
L(v_1) = \{ C, C_T, \forall r^-.(\forall s^-.(\neg C)), \exists r.C \} \cup \{ \forall s^-.(\neg C) \}
\]

\[
L(v_2) = \{ C, C_T, \forall r^-.(\forall s^-.(\neg C)), \exists r.C \}
\]

\[v_0 \text{ blocks } v_1 \text{ and } v_2 \leadsto \text{tableau complete but}\]

\[
L(v_3) = \{ C, C_T, \forall r^-.(\forall s^-.(\neg C)), \exists r.C \}
\]
Tableau Example with Inverses II

Example: Is $C \sqcap \exists s.C$ satisfiable w.r.t. T?

$$T = \{ \top \sqsubseteq \forall r^-. (\forall s^-.(\neg C)) \sqcap \exists r. C \}$$

$$C_T = \forall r^-.(\forall s^-.(\neg C)) \sqcap \exists r. C$$

$$L(v_0) = \{ C, \exists s.C, C_T, \forall r^-.(\forall s^-.(\neg C)), \exists r. C, \forall s^-.(\neg C) \} \sqcup \{ \neg C \}$$

$$L(v_1) = \{ C, C_T, \forall r^-.(\forall s^-.(\neg C)), \exists r. C \} \sqcup \{ \forall s^-.(\neg C) \}$$

$$L(v_2) = \{ C, C_T, \forall r^-.(\forall s^-.(\neg C)), \exists r. C \}$$

v_0 blocks v_1 and $v_2 \leadsto$ tableau complete but

$$L(v_3) = \{ C, C_T, \forall r^-.(\forall s^-.(\neg C)), \exists r. C \}$$
Tableau Example with Inverses II

Example: Is $C \sqcap \exists s.C$ satisfiable w.r.t. \mathcal{T}?

$\mathcal{T} = \{ \top \sqsubseteq \forall r^-.(\forall s^-.(\neg C)) \sqcap \exists r.C \}$

$C_{\mathcal{T}} = \forall r^-.(\forall s^-.(\neg C)) \sqcap \exists r.C$

$L(v_0) = \{ C, \exists s.C, C_{\mathcal{T}}, \forall r^-.(\forall s^-.(\neg C)), \exists r.C, \forall s^-.(\neg C) \} \cup \{ \neg C \}$

$L(v_1) = \{ C, C_{\mathcal{T}}, \forall r^-.(\forall s^-.(\neg C)), \exists r.C \} \cup \{ \forall s^-.(\neg C) \}$

$L(v_2) = \{ C, C_{\mathcal{T}}, \forall r^-.(\forall s^-.(\neg C)), \exists r.C \}$

v_0 blocks v_1 and $v_2 \leadsto$ tableau complete but

$L(v_3) = \{ C, C_{\mathcal{T}}, \forall r^-.(\forall s^-.(\neg C)), \exists r.C \}$

We have blocked too early!
Example: Is $C \sqcap \exists s.C$ satisfiable w.r.t. T?

$T = \{ \top \sqsubseteq \forall r^-.(\forall s^-.\neg C) \sqcap \exists r.C \}$

$C_T = \forall r^-.(\forall s^-.(\neg C)) \sqcap \exists r.C$

$L(v_0) = \{ C, \exists s.C, C_T, \forall r^-.(\forall s^-.(\neg C)), \exists r.C, \forall s^-.(\neg C) \} \cup \{ \neg C \}$

$L(v_1) = \{ C, C_T, \forall r^-.(\forall s^-.(\neg C)), \exists r.C \} \cup \{ \forall s^-.(\neg C) \}$

$L(v_2) = \{ C, C_T, \forall r^-.(\forall s^-.(\neg C)), \exists r.C \}$

v_0 blocks v_1 and $v_2 \leadsto$ tableau complete but

$L(v_3) = \{ C, C_T, \forall r^-.(\forall s^-.(\neg C)), \exists r.C \}$

We have blocked too early! Correctness can be retained by replacing subset blocking with equality blocking i.e., replace $L(v') \subseteq L(v)$ by $L(v') = L(v)$ in the blocking condition.
Why does subset blocking not work anymore?
We cannot build a cyclic model as we could up to now!

Example: early blocked tableau from previous example would yield:

\[
\begin{array}{c}
\neg r, s \\
\exists v_0 \ C
\end{array}
\]

However, this is not a model of \(T \subseteq \forall r^{-}.(\forall s^{-}.(\neg C)) \cap \exists r.C \).
Example with Inverses & Equality Blocking

Example: Is $C \cap \exists s.C$ satisfiable w.r.t. T?

Example:

$$
T = \{ \top \sqsubseteq \forall r^-. (\forall s^-.(\neg C)) \cap \exists r.C \}
$$

$$
C_T = \forall r^-.(\forall s^-.(\neg C)) \cap \exists r.C
$$

$$
L(v_0) = \{ C, \exists s.C, C_T, \forall r^-.(\forall s^-.(\neg C)), \exists r.C, \forall s^-.(\neg C) \}
$$

$$
L(v_1) = \{ C, C_T, \forall r^-.(\forall s^-.(\neg C)), \exists r.C \}
$$

$$
L(v_2) = \{ C, C_T, \forall r^-.(\forall s^-.(\neg C)), \exists r.C \}
$$

v_1 blocks v_3 but \forall-rule applicable

Now unsatisfiability is recognized!
Example with Inverses & Equality Blocking

Example: Is $C \cap \exists s.C$ satisfiable w.r.t. \mathcal{T}?

$\mathcal{T} = \{\top \subseteq \forall r^-.(\forall s^-.(\neg C)) \cap \exists r.C\}$

$C_{\mathcal{T}} = \forall r^-.(\forall s^-.(\neg C)) \cap \exists r.C$

$L(v_0) = \{C, \exists s.C, C_{\mathcal{T}}, \forall r^-.(\forall s^-.(\neg C)), \exists r.C, \forall s^-.(\neg C)\}$

$L(v_1) = \{C, C_{\mathcal{T}}, \forall r^-.(\forall s^-.(\neg C)), \exists r.C\}$

$L(v_2) = \{C, C_{\mathcal{T}}, \forall r^-.(\forall s^-.(\neg C)), \exists r.C\}$

$L(v_3) = \{C, C_{\mathcal{T}}, \forall r^-.(\forall s^-.(\neg C)), \exists r.C\}$

v_1 blocks v_3 but \forall-rule applicable
Example with Inverses & Equality Blocking

Example: Is $C \cap \exists s.C$ satisfiable w.r.t. \mathcal{T}?

Let $
\begin{align*}
\mathcal{T} &= \{ \top \subseteq \forall r^-.(\forall s^-.(\neg C)) \cap \exists r.C \} \\
C_{\mathcal{T}} &= \forall r^-.(\forall s^-.(\neg C)) \cap \exists r.C
\end{align*}
$

Let
\begin{align*}
L(v_0) &= \{ C, \exists s.C, C_{\mathcal{T}}, \forall r^-.(\forall s^-.(\neg C)), \exists r.C, \forall s^-.(\neg C) \} \\
L(v_1) &= \{ C, C_{\mathcal{T}}, \forall r^-.(\forall s^-.(\neg C)), \exists r.C \} \cup \{ \forall s^-.(\neg C) \} \\
L(v_2) &= \{ C, C_{\mathcal{T}}, \forall r^-.(\forall s^-.(\neg C)), \exists r.C \} \\
L(v_3) &= \{ C, C_{\mathcal{T}}, \forall r^-.(\forall s^-.(\neg C)), \exists r.C \}
\end{align*}

v_1 blocks v_3 but \forall rule applicable

Now unsatisfiability is recognized!
Example with Inverses & Equality Blocking

Example: Is $C \cap \exists s. C$ satisfiable w.r.t. \mathcal{T}?

\[
\mathcal{T} = \{ \top \sqsubseteq \forall r^-.\forall s^-.\neg C \} \cap \exists r.C
\]

\[
C_{\mathcal{T}} = \forall r^-.\forall s^-.\neg C \cap \exists r.C
\]

\[
L(v_0) = \{ C, \exists s. C, C_{\mathcal{T}}, \forall r^-.(\forall s^-.(\neg C)), \exists r.C, \forall s^-.(\neg C) \} \cup \{ \neg C \}
\]

\[
L(v_1) = \{ C, C_{\mathcal{T}}, \forall r^-.(\forall s^-.(\neg C)), \exists r.C \} \cup \{ \forall s^-.(\neg C) \}
\]

\[
L(v_2) = \{ C, C_{\mathcal{T}}, \forall r^-.(\forall s^-.(\neg C)), \exists r.C \}
\]

\[
L(v_3) = \{ C, C_{\mathcal{T}}, \forall r^-.(\forall s^-.(\neg C)), \exists r.C \}
\]

v_1 blocks v_2 but \forall rule applicable

Now unsatisfiability is recognized!
Agenda

- Recap Tableau Calculus
- Tableau with \(ALC \) TBoxes
- Tableau for \(ALC \) Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary
Tableau with Functional Roles

Example: is A satisfiable w.r.t. T?

Note: $\top \sqsubseteq 1_f$ expresses functionality of the role f

$$T = \{ A \sqsubseteq \exists f.B \cap \exists f.(\neg B), \top \sqsubseteq 1_f \}$$
Tableau with Functional Roles

Example: is \(A \) satisfiable w.r.t. \(\mathcal{T} \)?

Note: \(\top \sqsubseteq \leq_1 f \) expresses functionality of the role \(f \)

\[
\mathcal{T} = \{ A \sqsubseteq \exists f.B \cap \exists f.(-B), \top \sqsubseteq \leq_1 f \}
\]

\[
C_\mathcal{T} = (\neg A \cup (\exists f.B \cap \exists f.(-B))) \cap \leq_1 f
\]
Tableau with Functional Roles

Example: is A satisfiable w.r.t. \mathcal{T}?

Note: $\top \sqsubseteq 1f$ expresses functionality of the role f

\[
\mathcal{T} = \{ A \sqsubseteq \exists f. B \sqcap \exists f. (\neg B), \top \sqsubseteq 1f \} \\
C_{\mathcal{T}} = (\neg A \sqcup (\exists f. B \sqcap \exists f. (\neg B))) \sqcap 1f
\]

\[
L(v_0) = \{ A, C_{\mathcal{T}}, \ldots, \exists f. B, \exists f. (\neg B), 1f \} \\
L(v_1) = \{ B, C_{\mathcal{T}}, \ldots, \neg A, 1f \} \\
L(v_2) = \{ \neg B, C_{\mathcal{T}}, \ldots, \neg A, 1f \}
\]
Tableau with Functional Roles

Example: is A satisfiable w.r.t. \mathcal{T}?

Note: $\top \sqsubseteq f \leq 1$ expresses functionality of the role f

$$\mathcal{T} = \{A \sqsubseteq \exists f.B \cap \exists f.(-B), \top \sqsubseteq \leq 1f\}$$

$$C_T = \neg A \sqcup (\exists f.B \cap \exists f.(-B)) \sqcap \leq 1f$$

$$L(v_0) = \{A, C_T, \ldots, \exists f.B, \exists f.(-B), \leq 1f\}$$

$$L(v_1) = \{B, C_T, \ldots, \neg A, \leq 1f\}$$

$$L(v_2) = \{\neg B, C_T, \ldots, \neg A, \leq 1f\}$$

Functionality requires $v_1 = v_2$!

\leadsto we need a new tableau rule for treating functional roles
Tableau Rules for \textit{ALCIF} Concepts and TBoxes

\[\begin{array}{ll}
\sqcap\text{-rule:} & \text{For an } v \in V \text{ with } C \sqcap D \in L(v) \text{ and } \\
& \{C, D\} \not\subseteq L(v), \text{ let } L(v) := L(v) \cup \{C, D\}.
\\
\sqcup\text{-rule:} & \text{For an } v \in V \text{ with } C \sqcup D \in L(v) \text{ and } \\
& \{C, D\} \cap L(v) = \emptyset, \text{ choose } X \in \{C, D\} \text{ and let } \\
& L(v) := L(v) \cup \{X\}.
\\
\exists\text{-rule:} & \text{For a non-blocked } v \in V \text{ with } \exists_r C \in L(v) \text{ such that } \\
& \text{there is no } r\text{-neighbor } v' \text{ of } v \text{ with } C \in L(v'), \\
& \text{let } V = V \cup \{v'\}, E = E \cup \{(v, v')\}, L(v') := \{C\} \text{ and } \\
& L(v, v') := \{r\} \text{ for } v' \text{ a new node.}
\\
\forall\text{-rule:} & \text{For } v, v' \in V, v' \text{ } r\text{-neighbor of } v, \\
& \forall_r C \in L(v) \text{ and } C \notin L(v'), \text{ let } L(v') := L(v') \cup \{C\}.
\\
\leq 1\text{-rule:} & \text{For a functional role } f \text{ and a } v \in V \text{ with two } \\
& f\text{-neighbors } v_1 \text{ and } v_2, \text{ execute } \text{merge}(v_1, v_2).
\\
T\text{-rule:} & \text{For a } v \in V \text{ with } C_T \notin L(v), \\
& \text{let } L(v) := L(v) \cup \{C_T\}.
\end{array}\]
Merging Nodes

we define merge(v_1, v_2) as follows:

- if v_1 is an ancestor of v_2,
 let $v_i = v_1$ and $v_o = v_2$;
- otherwise let $v_i = v_2$ and $v_o = v_1$.

let $L(v_i) = L(v_i) \cup L(v_o)$ and execute prune(v_o).

where prune(v_o) is defined as:

- $V_o = \{ v \mid v \text{ belongs to the subtree with root } v_o \}$,
- let $V = V \setminus V_o$ and $E = E \setminus \{ \langle v, v_o \rangle \mid v_o \in V_o, \langle v, v_o \rangle \in E \}$.
Tableau with Functional Roles

Example: Is $\exists f. A$ satisfiable w.r.t. \mathcal{T}?

$\mathcal{T} = \{ A \sqsubseteq \exists f. A, \top \sqsubseteq 1f \}$

v_1 blocks v_2, but cyclic model construction does not work (functionality violated)!
Tableau with Functional Roles

Example: Is $\exists f.A$ satisfiable w.r.t. \mathcal{T}?

$$\mathcal{T} = \{ A \sqsubseteq \exists f.A, \top \sqsubseteq 1 f^- \}$$

$$C_{\mathcal{T}} = (\neg A \sqcup \exists f.A) \sqcap 1 f^-$$
Tableau with Functional Roles

Example: Is $\exists f.A$ satisfiable w.r.t. \mathcal{T}?

\[\begin{array}{c}
 v_0 \\
 f \\
 v_1 \\
 f \\
 v_2
\end{array}\]

\[\begin{align*}
 \mathcal{T} &= \{ A \sqsubseteq \exists f.A, \top \sqsubseteq 1 f^- \} \\
 C_{\mathcal{T}} &= (\neg A \sqcup \exists f.A) \sqcap 1 f^- \\
 L(v_0) &= \{ \exists f.A, C_{\mathcal{T}}, \neg A, \leq 1 f^- \} \\
 L(v_1) &= \{ A, C_{\mathcal{T}}, \exists f.A, \leq 1 f^- \} \\
 L(v_2) &= \{ A, C_{\mathcal{T}}, \exists f.A, \leq 1 f^- \}
\end{align*}\]
Example: Is $\exists f.A$ satisfiable w.r.t. T?

\[
\begin{align*}
T = \{ & A \sqsubseteq \exists f.A, \top \sqsubseteq 1 f^- \} \\
C_T = (\neg A \sqcup \exists f.A) \sqcap 1 f^- \\
L(v_0) = \{ & \exists f.A, C_T, \neg A, 1 f^- \} \\
L(v_1) = \{ & A, C_T, \exists f.A, 1 f^- \} \\
L(v_2) = \{ & A, C_T, \exists f.A, 1 f^- \}
\end{align*}
\]

v_1 blocks v_2, but cyclic model construction does not work (functionality violated)!
Agenda

- Recap Tableau Calculus
- Tableau with \mathcal{ALC} TBoxes
- Tableau for \mathcal{ALC} Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary
Unravelling

goal: we build an infinite model

How? Every blocked node is replaced by a subtree whose root is the corresponding blocking node.

\[
\begin{align*}
L(v_0) &= \{\exists f.A, C_T, \neg A, \leq 1 f^- \} \\
L(v_1) &= \{A, C_T, \exists f.A, \leq 1 f^- \} \\
L(v_2) &= \{A, C_T, \exists f.A, \leq 1 f^- \} \\
\end{align*}
\]

\(v_1\) blocks \(v_2\)
Unravelling

goal: we build an infinite model
How? Every blocked node is replaced by a subtree whose root is the corresponding blocking node.

\[
\begin{align*}
L(v_0) &= \{ \exists f. A, C_T, \neg A, \leq 1f^- \} \\
L(v_1) &= \{ A, C_T, \exists f. A, \leq 1f^- \} \\
L(v_2) &= \{ A, C_T, \exists f. A, \leq 1f^- \}
\end{align*}
\]

\[
v_1 \text{ blocks } v_2
\]
Unravelling

goal: we build an infinite model
How? Every blocked node is replaced by a subtree whose root is the corresponding blocking node.

\[L(v_0) = \{ \exists f. A, C_T, \neg A, \leq 1 f^- \} \]
\[L(v_1) = \{ A, C_T, \exists f. A, \leq 1 f^- \} \]
\[L(v_2) = \{ A, C_T, \exists f. A, \leq 1 f^- \} \]

\(v_1 \) blocks \(v_2 \)}
Unravelling

goal: we build an infinite model
How? Every blocked node is replaced by a subtree whose root is the corresponding blocking node.

\[L(v_0) = \{ \exists f.A, C_T, \neg A, \leq 1f^- \} \]

\[L(v_1) = \{ A, C_T, \exists f.A, \leq 1f^- \} \]

\[L(v_2) = \{ A, C_T, \exists f.A, \leq 1f^- \} \]

\(v_1 \) blocks \(v_2 \)
Blocking: Inverse and Functional Roles

Example: Is $\neg C \cap \exists f.\ D$ satisfiable w.r.t. T?

$$T = \{ D \subseteq C \cap \exists f. (\neg C) \cap \exists f.\ D , \top \subseteq 1f \}$$
Blocking: Inverse and Functional Roles

Example: Is $\neg C \sqcap \exists f^{-}.D$ satisfiable w.r.t. \mathcal{T}?

$$\mathcal{T} = \{ D \sqsubseteq C \sqcap \exists f.(\neg C) \sqcap \exists f^{-}.D, \top \sqsubseteq 1f \}$$

$$C_{\mathcal{T}} = (\neg D \sqcup (C \sqcap \exists f.(\neg C) \sqcap \exists f^{-}.D)) \sqcap 1f$$
Example: Is $\neg C \sqcap \exists f^- . D$ satisfiable w.r.t. \mathcal{T}?

$$\mathcal{T} = \{ D \sqsubseteq C \sqcap \exists f . (\neg C) \sqcap \exists f^- . D, \top \sqsubseteq \leq f \}$$

$$C_T = (\neg D \sqcup (C \sqcap \exists f . (\neg C) \sqcap \exists f^- . D)) \sqcap \leq f$$

$$L(v_0) = \{ \neg C, \exists f^- . D, C_T, \ldots, \neg D, \leq f \}$$

$$L(v_1) = \{ D, C_T, \ldots, C, \exists f . (\neg C), \exists f^- . D, \leq f \}$$

$$L(v_2) = \{ D, C_T, \ldots, C, \exists f . (\neg C), \exists f^- . D, \leq f \}$$

v_1 blocks v_2 (same label)
Blocking: Inverse and Functional Roles

Example: Is \(\neg C \sqcap \exists f^- . D \) satisfiable w.r.t. \(T \)?

\[
T = \{ D \sqsubseteq C \sqcap \exists f . (\neg C) \sqcap \exists f^- . D , \top \sqsubseteq 1 f \}
\]

\[
C_T = (\neg D \sqcup (C \sqcap \exists f . (\neg C) \sqcap \exists f^- . D)) \sqsubseteq 1 f
\]

\[
L(v_0) = \{ \neg C, \exists f^- . D, C_T, \ldots, \neg D, \leq 1 f \}
\]

\[
L(v_1) = \{ D, C_T, \ldots, C, \exists f . (\neg C), \exists f^- . D, \leq 1 f \}
\]

\[
L(v'_1) = \{ D, C_T, \ldots, C, \exists f . (\neg C), \exists f^- . D, \leq 1 f \}
\]

\[
v_1 \text{ blocks } v_2 \text{ (same label) but}
\]

\[
L(v''_1) = \{ D, C_T, \ldots, C, \exists f . (\neg C), \exists f^- . D, \leq 1 f \}
\]

but we cannot build a model any more (neither cyclic nor infinite)!
Pairwise Blocking

A node x with predecessor x' blocks a node y with predecessor y' directly, if:

1. y is reachable from x,
2. $L(x) = L(y)$, $L(x') = L(y')$ and $L(x', x) = L(y', y)$; and
3. there is no directly blocked node z such that y is reachable from z.

A node $y \in V$ is blocked if either

1. y is directly blocked or
2. there is a directly blocked node x, such that y can be reached from x.
Pairwise Blocking: Inverses and Functional Roles

Example: Is \(\neg C \sqcap \exists f^-.D \) satisfiable w.r.t. \(\mathcal{T} \)?

\[
\mathcal{T} = \{ D \sqsubseteq C \sqcap \exists f. (\neg C) \sqcap \exists f^-.D, \top \sqsubseteq \leq f \} \\
C_\mathcal{T} = (\neg D \sqcup (C \sqcap \exists f. (\neg C) \sqcap \exists f^-.D)) \sqcap \leq f
\]

\[
L(v_0) = \{ \neg C, \exists f^-.D, C_\mathcal{T}, \ldots, \neg D, \leq f \} \\
L(v_1) = \{ D, C_\mathcal{T}, \ldots, C, \exists f. (\neg C), \exists f^-.D, \leq f \} \\
L(v_2) = \{ D, C_\mathcal{T}, \ldots, C, \exists f. (\neg C), \exists f^-.D, \leq f \}
\]

\(v_1 \) cannot block \(v_2 \) pairwise
Pairwise Blocking: Inverses and Functional Roles

Example: Is \(\neg C \sqcap \exists f^- . D \) satisfiable w.r.t. \(T \)?

\[T = \{ D \sqsubseteq C \sqcap \exists f . (\neg C) \sqcap \exists f^- . D, \top \sqsubseteq 1 f \} \]
\[C_T = (\neg D \sqcup (C \sqcap \exists f . (\neg C) \sqcap \exists f^- . D)) \sqcap 1 f \]

\begin{align*}
L(v_0) &= \{ \neg C, \exists f^- . D, C_T, \ldots, \neg D, \leq 1 f \} \\
L(v_1) &= \{ D, C_T, \ldots, C, \exists f . (\neg C), \exists f^- . D, \leq 1 f \} \\
L(v_2) &= \{ D, C_T, \ldots, C, \exists f . (\neg C), \exists f^- . D, \leq 1 f \}
\end{align*}

\(v_1 \) cannot block \(v_2 \) pairwise

\begin{align*}
L(v_3) &= \{ \neg C \}
\end{align*}
Example: Is $\neg C \cap \exists f^- . D$ satisfiable w.r.t. T?

$$T = \{ D \subseteq C \cap \exists f . (\neg C) \cap \exists f^- . D, \top \subseteq 1 f \}$$

$$C_T = (\neg D \sqcup (C \cap \exists f . (\neg C) \cap \exists f^- . D)) \sqcup 1 f$$

\[
\begin{array}{c}
v_0 \\
\downarrow f^- \\
v_1 \\
\downarrow f^- \\
v_2 \\
\downarrow f \\
v_3
\end{array}
\]

$$L(v_0) = \{ \neg C, \exists f^- . D, C_T, \ldots, \neg D, \leq 1 f \}$$

$$L(v_1) = \{ D, C_T, \ldots, C, \exists f . (\neg C), \exists f^- . D, \leq 1 f \}$$

$$L(v_2) = \{ D, C_T, \ldots, C, \exists f . (\neg C), \exists f^- . D, \leq 1 f \}$$

v_1 cannot block v_2 pairwise

$$L(v_3) = \{ \neg C \}$$
Example: Is $\neg C \sqcap \exists f^-.D$ satisfiable w.r.t. T?

$$T = \{D \sqsubseteq C \sqcap \exists f.(-C) \sqcap \exists f^- .D, \top \sqsubseteq 1f\}$$

$$C_T = (\neg D \sqcup (C \sqcap \exists f.(-C) \sqcap \exists f^- .D)) \sqsubseteq 1f$$

v_0

f^-

v_1

v_1 cannot block v_2 pairwise

$L(v_0) = \{-C, \exists f^- .D, C_T, \ldots, \neg D, \leq 1f\}$

$L(v_1) = \{D, C_T, \ldots, C, \exists f.(-C), \exists f^- .D, \leq 1f\}$

$L(v_2) = \{D, C_T, \ldots, C, \exists f.(-C), \exists f^- .D, \leq 1f\}$

v_3 is merged into v_1

$L(v_3) = \{-C\}$

$L(v_1) = L(v_1) \cup L(v_3) \supseteq \{-C, C\}$

Now the contradiction can be detected.
Agenda

- Recap Tableau Calculus
- Tableau with \mathcal{ALC} TBoxes
- Tableau for \mathcal{ALC} Knowledge Bases
- Extension by Inverse Roles
- Extension by Functional Roles
- Model Construction with Unravelling
- Summary
Summary

- we now have a tableau algorithm for $\mathcal{ALCI}F$ knowledge bases
 - treat the ABox like for \mathcal{ALC}
 - number restrictions can be handled similar to functional roles
- termination through cycle detection
 - becomes harder the more expressive the logic gets