TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik, Institut fir Ktnstliche Intelligenz, Professur Computational Logic

THEORETISCHE INFORMATIK UND LOGIK

16. Vorlesung: Logisches SchlieBen — Unentscheidbarkeit

Sebastian Rudolph

Folien: © Markus Krotzsch, https://iccl.inf. tu-dresden.de/web/TheolLog2017, CC BY 3.0 DE

TU Dresden, 16. Juni 2025

https://iccl.inf.tu-dresden.de/web/Computational_Logic
https://iccl.inf.tu-dresden.de/web/TheoLog2025
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch

Schlie3en ist schwer

Erinnerung: Aus F folgt G genau dann, wenn alle Modelle von F auch Modelle von G
sind.
® Es ist nicht offensichtlich, wie man das Uberpriifen sollte, denn es gibt unendlich
viele Modelle.
® Ebenso schwer erscheinen die gleichwertigen Probleme der Unerfiillbarkeit und
Allgemeingultigkeit.

Folie 2 von 32

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Schlie3en ist schwer

Erinnerung: Aus F folgt G genau dann, wenn alle Modelle von F auch Modelle von G
sind.
® Es ist nicht offensichtlich, wie man das Uberprifen sollte, denn es gibt unendlich
viele Modelle.
® Ebenso schwer erscheinen die gleichwertigen Probleme der Unerfiillbarkeit und
Allgemeingultigkeit.
Intuition: Pradikatenlogisches SchlieB3en ist unentscheidbar.

Wie kann man das beweisen?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 2 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Schlie3en ist schwer

Erinnerung: Aus F folgt G genau dann, wenn alle Modelle von F auch Modelle von G
sind.

® Es ist nicht offensichtlich, wie man das Uberpriifen sollte, denn es gibt unendlich
viele Modelle.

® Ebenso schwer erscheinen die gleichwertigen Probleme der Unerfiillbarkeit und
Allgemeingultigkeit.
Intuition: Prédikatenlogisches SchlieBen ist unentscheidbar.

Wie kann man das beweisen?

Durch Reduktion eines bekannten unentscheidbaren Problems, z.B.
® Halteproblem
® Postsches Korrespondenzproblem
¢ Aquivalenzproblem kontextfreier Sprachen

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 2 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit (1)

Satz: Logisches SchlieBen (Unerfillbarkeit, Allgemeingultigkeit, logische Konsequenz)
in der Pradikatenlogik ist unentscheidbar.

Beweis: Durch Reduktion vom CFG-Schnittproblem:

Gegeben: Kontextfreie Grammatiken G, und G».
Frage: Gibt es ein Wort w € L(G) N L(G,)?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 3 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit (1)

Satz: Logisches SchlieBen (Unerfillbarkeit, Allgemeingultigkeit, logische Konsequenz)
in der Pradikatenlogik ist unentscheidbar.

Beweis: Durch Reduktion vom CFG-Schnittproblem:

Gegeben: Kontextfreie Grammatiken G, und G».
Frage: Gibt es ein Wort w € L(G) N L(G,)?

Idee: Wir kodieren Wérter in der Prédikatenlogik als Ketten von binaren Relationen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 3 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit (1)

Satz: Logisches SchlieBen (Unerfillbarkeit, Allgemeingultigkeit, logische Konsequenz)
in der Pradikatenlogik ist unentscheidbar.

Beweis: Durch Reduktion vom CFG-Schnittproblem:

Gegeben: Kontextfreie Grammatiken G, und G».
Frage: Gibt es ein Wort w € L(G) N L(G,)?

Idee: Wir kodieren Wérter in der Prédikatenlogik als Ketten von binaren Relationen.

Zum Beispiel wirde das Wort russell in einer Interpretation 7 wie folgt aussehen:
OO OO OO DO
Diese Skizze soll bedeuten, dass z.B. (9>, d3), (d3,04) € pg.

Wir verwenden ein binares Pradikatensymbol p, flr jedes Alphabetssymbol a.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 3 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit (2)

Satz: Logisches SchlieBen (Unerfillbarkeit, Allgemeingultigkeit, logische Konsequenz)
in der Pradikatenlogik ist unentscheidbar.

Beweis (Fortsetzung): Zusatzlich verwenden wir bindre Pradikatensymbole pa fir
jedes Nichtterminalsymbol A.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 4 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit (2)

Satz: Logisches SchlieBen (Unerfillbarkeit, Allgemeingultigkeit, logische Konsequenz)
in der Pradikatenlogik ist unentscheidbar.

Beweis (Fortsetzung): Zusatzlich verwenden wir binare Pradikatensymbole pa fur
jedes Nichtterminalsymbol A.

Die Kodierung von Grammatiken ist nun direkt mdoglich:
* Wir nehmen 0.B.d.A. an, dass G; und G, keine Nichtterminale gemeinsam haben.
® Eine Produktionsregel A — o - - - 0, kodieren wir als Formel:

VX0, - oo s Xn-((Pory (X0, X1) A oo A P, (Xn—1, X)) = PA(X0, X))

® |dee: Die Formel erkennt, ob eine gegebene Kette aus Terminalen und
Nichtterminalen aus einem anderen Nichtterminal entstehen kann.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 4 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit (3)

Satz: Logisches SchlieBen (Unerfillbarkeit, Allgemeingultigkeit, logische Konsequenz)
in der Pradikatenlogik ist unentscheidbar.

Beweis (Fortsetzung): Seien S; und S, die Startsymbole von G; und G,. Dann wollen
wir das Schnittproblem kodieren, indem wir fragen, ob die folgende Formel folgt:

Ax, y.(ps, (x,¥) A ps,(x,¥))
Was fehlt?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 5 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit (3)

Satz: Logisches SchlieBen (Unerfillbarkeit, Allgemeingultigkeit, logische Konsequenz)
in der Pradikatenlogik ist unentscheidbar.

Beweis (Fortsetzung): Seien S; und S, die Startsymbole von G; und G,. Dann wollen
wir das Schnittproblem kodieren, indem wir fragen, ob die folgende Formel folgt:

dx, y.(ps, (x,¥) A ps,(x,¥))

Was fehlt?
* Die Grammatik-Formeln kdnnen erkennen, ob eine Zeichenkette aus Sy oder S,
abgeleitet werden kann.

® Jede Interpretation, welche die Kodierung eines Wortes w € L(G) N L(G,) enthéalt,
muss daher auch die Formel 3x, y.(ps, (x,y) A ps,(x,y)) erfillen.

e Aber: Es kann auch Interpretationen geben, welche keine Kodierung von w
enthalten. (Diese verhindern die gewlinschte Schlussfolgerung.)

~> Alle méglichen Wérter missten kodiert vorkommen . ..

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 5 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit (4)

Satz: Logisches SchlieBen (Unerfillbarkeit, Allgemeingultigkeit, logische Konsequenz)
in der Pradikatenlogik ist unentscheidbar.

Beweis (Fortsetzung): Alle mdglichen Wérter miissten kodiert vorkommen ...
Dazu fugen wir noch folgende Séatze hinzu:

Vx.Ay.p.(x,y) fir jedes Terminalsymbol a

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 6 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit (4)

Satz: Logisches SchlieBen (Unerfillbarkeit, Allgemeingultigkeit, logische Konsequenz)
in der Pradikatenlogik ist unentscheidbar.

Beweis (Fortsetzung): Alle mdglichen Wérter miissten kodiert vorkommen ...
Dazu fugen wir noch folgende Séatze hinzu:

Vx.Ay.p.(x,y) fir jedes Terminalsymbol a

® Jedes Modell dieser Theorie muss Kodierungen aller Worter enthalten (aber
eventuell als zyklische oder Uberlappende Pfade, z.B. in einer Interpretation mit nur
einem Element, welches in jeder mdglichen Relation zu sich selbst steht).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 6 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit (4)

Satz: Logisches SchlieBen (Unerfillbarkeit, Allgemeingultigkeit, logische Konsequenz)
in der Pradikatenlogik ist unentscheidbar.

Beweis (Fortsetzung): Alle mdglichen Wérter miissten kodiert vorkommen ...
Dazu fugen wir noch folgende Séatze hinzu:

Vx.Ay.p.(x,y) fir jedes Terminalsymbol a

® Jedes Modell dieser Theorie muss Kodierungen aller Worter enthalten (aber
eventuell als zyklische oder Uberlappende Pfade, z.B. in einer Interpretation mit nur
einem Element, welches in jeder mdglichen Relation zu sich selbst steht).

® Gibt es ein Wort w € L(G) N L(G,), dann muss auch dieses Wort kodiert
vorkommen: Es folgt dx, y.(ps, (x,y) A ps,(x,y)).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 6 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit (4)

Satz: Logisches SchlieBen (Unerfillbarkeit, Allgemeingultigkeit, logische Konsequenz)
in der Pradikatenlogik ist unentscheidbar.

Beweis (Fortsetzung): Alle mdglichen Wérter miissten kodiert vorkommen ...
Dazu fugen wir noch folgende Séatze hinzu:

Vx.Ay.p.(x,y) fir jedes Terminalsymbol a

® Jedes Modell dieser Theorie muss Kodierungen aller Worter enthalten (aber
eventuell als zyklische oder Uberlappende Pfade, z.B. in einer Interpretation mit nur
einem Element, welches in jeder mdglichen Relation zu sich selbst steht).

® Gibt es ein Wort w € L(G) N L(G,), dann muss auch dieses Wort kodiert
vorkommen: Es folgt dx, y.(ps, (x,y) A ps,(x,y)).

* Folgt dx, y.(ps, (x,y) A ps,(x,)), erfullen alle Modelle diesen Satz, insbesondere
auch das Modell, welches man erhalt, indem man einen unendlichen Baum aller
Worter aufbaut.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 6 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit (5)

Satz: Logisches SchlieBen (Unerfillbarkeit, Allgemeingultigkeit, logische Konsequenz)
in der Pradikatenlogik ist unentscheidbar.

Beweis (Fortsetzung): Skizze des ,kanonischen“ baumférmigen Modells, welches
keine Zyklen oder parallelen Relationen enthalt, Gber Alphabet {a, b} (ohne eventuelle
Kanten fir Nichtterminale):

p @ Db

7 N\
Pb

Falls ,sogar” dieses Modell Ax, y.(ps, (x,y) A ps,(x, y)) erfullt, dann muss es ein Wort
w € L(Gy) N L(G,) geben.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 7 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit (6)

Satz: Logisches SchlieBen (Unerfillbarkeit, Allgemeingultigkeit, logische Konsequenz)
in der Pradikatenlogik ist unentscheidbar.

Beweis (Zusammenfassung): Wir konstruieren aus G; und G, eine logische Theorie
7 mit den folgenden Séatzen:

e firr jede Produktionsregel A — o - -- 0, von G| oder G:
v-)‘707 ce >xn~((pa'1(x0;xl) AN po'n(-xn—lvxn)) - p/-\(XOa-xn))
® Fir jedes Terminalsymbol a:
Vx.dy.pax,y)
Dann gilt 7 E 3x, y.(ps, (x,¥) A ps,(x,y)) genau dann, wenn es ein Wort
w € L(Gy) N L(G>) gibt.

Die Unentscheidbarkeit von Unerflllbarkeit und Allgemeingultigkeit folgt, weil man
logische Konsequenz auf diese Probleme reduzieren kann. O

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 8 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Einfache Folgerungen

Offensichtlich wird das Schlief3en nicht einfacher, wenn man auch noch Gleichheit erlaubt:

Korollar: Logisches SchlieBen (Unerflllbarkeit, Allgemeingultigkeit, logische Konse-
quenz) in der Pradikatenlogik mit Gleichheit ist unentscheidbar.

Umgekehrt kann man aus dem Beweis noch starkere Ergebnisse folgern, z.B.:

Korollar: Logisches SchlieBen (Unerflllbarkeit, Allgemeingultigkeit, logische Konse-
quenz) in der Pradikatenlogik ist bereits unentscheidbar, wenn nur binare Pradikaten-
symbole verwendet werden.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 9 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: Unentscheidbarkeit der Pradikatenlogik

Quiz: Welche der folgenden Problem sind per Korollar aus dem soeben gezeigten Re-
sultat ebenfalls unentscheidbar? ...

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 10 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit hat viele Beweise

Unser Unentscheidbarkeitsbeweis ist nicht der Einzige ...
* Mit Pradikatenlogik kann man viele mathematische Definitionen direkt ausdricken.
® Viele Probleme lassen sich dadurch ziemlich einfach kodieren.

® Der erste Schritt ist am wichtigsten:
Wie wollen wir das Problem in logischen Interpretationen mit Relationen
darstellen?

® Sind die Pradikatensymbole einmal festgelegt, dann muss man ,nur noch” die
Problemdefinition in diese Kodierung Ubersetzen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 11 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Unentscheidbarkeit hat viele Beweise

Unser Unentscheidbarkeitsbeweis ist nicht der Einzige ...
* Mit Pradikatenlogik kann man viele mathematische Definitionen direkt ausdricken.
* Viele Probleme lassen sich dadurch ziemlich einfach kodieren.

® Der erste Schritt ist am wichtigsten:
Wie wollen wir das Problem in logischen Interpretationen mit Relationen
darstellen?

® Sind die Pradikatensymbole einmal festgelegt, dann muss man ,nur noch” die
Problemdefinition in diese Kodierung Ubersetzen.

Beispiel: Wir kénnten das Halteproblem von TMs direkt kodieren, aber dabei bendtigt
man viel mehr Pradikate. Es ist nicht schwer, Aussagen zu kodieren wie z.B. ,Falls

es einen Zeitpunkt 7 gibt, an dem die TM in Zustand ¢ an Position y das Zeichen a
liest, dann folgt auf 7 ein Zeitpunkt ¢/, an dem die TM in Zustand ¢’ ist.“ Der Beweis ist
leicht, sofern man keine relevante Aussage vergisst.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 11 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 12 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zwischenstand

Wir haben bisher zwei Dinge erkannt:

(1) Pradikatenlogik ist sehr ausdrucksstark: Mit ihr kdnnen wir z.B. das mathematische
Konzept der Gleichheit axiomatisieren oder Probleme Uber formale Sprachen
beschreiben.

(2) Pradikatenlogisches SchlieBen ist unentscheidbar: Man kann Probleme definieren,
die nicht mehr algorithmisch lésbar sind.

Eignet sich Pradikatenlogik also als universelle Beschreibungssprache fur die
Mathematik (und darlber hinaus)?

Dazu hat Kurt Gédel (1906—1978) einiges zu sagen ...

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 13 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

GoOdels Einsichten

Godel zeigte einige wesentliche Dinge:

(1) Goddelscher Vollstandigkeitssatz (1930):
,ES gibt ein konsistentes Verfahren, das alle Konsequenzen einer
pradikatenlogischen Theorie effektiv beweisen kann.*

— Alle wahren Satze kdnnen endlich bewiesen werden.
— Préadikatenlogisches SchlieBBen ist semi-entscheidbar.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16

Folie 14 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

GoOdels Einsichten

Godel zeigte einige wesentliche Dinge:

(1) Goddelscher Vollstandigkeitssatz (1930):
,ES gibt ein konsistentes Verfahren, das alle Konsequenzen einer
pradikatenlogischen Theorie effektiv beweisen kann.*

— Alle wahren Satze kdnnen endlich bewiesen werden.
— Préadikatenlogisches SchlieBBen ist semi-entscheidbar.

(2) 1. Godelscher Unvollstandigkeitssatz (1931):
,ES gibt kein konsistentes Verfahren, das alle Konsequenzen der elementaren
Arithmetik effektiv beweisen kann.”
— Fir jedes Verfahren gibt es allgemeingliltige Satze Uiber elementare
arithmetische Zusammenhange, die nicht bewiesen werden kénnen.
— Die Wahrheit elementarer arithmetischer Zusammenhéange ist nicht
semi-entscheidbar.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 14 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

GoOdels Einsichten

Godel zeigte einige wesentliche Dinge:

(1) Goddelscher Vollstandigkeitssatz (1930):
,ES gibt ein konsistentes Verfahren, das alle Konsequenzen einer
pradikatenlogischen Theorie effektiv beweisen kann.*
— Alle wahren Satze kdnnen endlich bewiesen werden.
— Préadikatenlogisches SchlieBBen ist semi-entscheidbar.
(2) 1. Godelscher Unvollstandigkeitssatz (1931):
,ES gibt kein konsistentes Verfahren, das alle Konsequenzen der elementaren
Arithmetik effektiv beweisen kann.”

— Fir jedes Verfahren gibt es allgemeingliltige Satze Uiber elementare
arithmetische Zusammenhange, die nicht bewiesen werden kénnen.

— Die Wahrheit elementarer arithmetischer Zusammenhéange ist nicht
semi-entscheidbar.

(3) 2. Gddelscher Unvollstandigkeitssatz (1931): spater
Mehr dazu in spateren Vorlesungen ...

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 14 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Algorithmen zum logischen Schlie3en

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 15 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Wie kdnnen wir logisch schlie3en?

Godel betrachtete ein konkretes Verfahren zum logischen SchlieBen, basierend auf:
® Einer Menge an vorgegebenen Tautologien;

® einer Menge von Regeln, mit denen man aus bereits bekannten Tautologien neue
ableiten kann.

Diese Art von Verfahren war seit der Antike bekannt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 16 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Wie kdnnen wir logisch schlie3en?

Godel betrachtete ein konkretes Verfahren zum logischen SchlieBen, basierend auf:
® Einer Menge an vorgegebenen Tautologien;

® einer Menge von Regeln, mit denen man aus bereits bekannten Tautologien neue
ableiten kann.

Diese Art von Verfahren war seit der Antike bekannt.

Godel zeigte, dass dieses Verfahren die Semantik der Pradikatenlogik genau
charakterisiert:

® Das Verfahren ist korrekt (es leitet nur echte Tautologien ab) — das war bekannt.

® Das Verfahren ist vollstédndig (es kann jede Tautologie auch ableiten) — ein
Durchbruch, Gédels Vollstandigkeitssatz.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 16 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Theorie und Praxis

Godel zeigte damit auch die Semi-Entscheidbarkeit des logischen Schlie3ens:
* Man kann systematisch alle méglichen Ableitungen neuer Tautologien bilden.
® |st eine Formel eine Tautologie, dann wird sie irgendwann abgeleitet.
® |st eine Formel keine Tautologie, dann werden wir es auf diese Art nie erfahren.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 17 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Theorie und Praxis

Godel zeigte damit auch die Semi-Entscheidbarkeit des logischen Schlie3ens:
* Man kann systematisch alle méglichen Ableitungen neuer Tautologien bilden.
® |st eine Formel eine Tautologie, dann wird sie irgendwann abgeleitet.
® |st eine Formel keine Tautologie, dann werden wir es auf diese Art nie erfahren.

Das ist nicht sehr praktisch, wenn man wissen will, ob eine gegebene Formel F eine
Tautologie ist . ..

Geht es besser?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 17 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Theorie und Praxis

Godel zeigte damit auch die Semi-Entscheidbarkeit des logischen Schlie3ens:
* Man kann systematisch alle méglichen Ableitungen neuer Tautologien bilden.
® |st eine Formel eine Tautologie, dann wird sie irgendwann abgeleitet.
® |st eine Formel keine Tautologie, dann werden wir es auf diese Art nie erfahren.

Das ist nicht sehr praktisch, wenn man wissen will, ob eine gegebene Formel F eine
Tautologie ist . ..

Geht es besser?

® Logisches SchlieBen ist unentscheidbar: Kein Verfahren kann die Frage nach
Allgemeingultigkeit sicher beantworten.

® Aber: Es gibt effizientere, zielgerichtetere Methoden.

Fir echte Implementierungen (Jahrzehnte spater) wurden bessere Algorithmen
entwickelt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 17 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Bessere Algorithmen

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 18 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Bessere Algorithmen

Ein besonders erfolgreicher Algorithmus in praktischen Implementierungen ist
Resolution.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 18 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Bessere Algorithmen

Ein besonders erfolgreicher Algorithmus in praktischen Implementierungen ist
Resolution.

Riickblick: Resolution in Aussagenlogik (Formale Systeme, VL 23)
® Methode zum Test auf Unerfiullbarkeit
® Die Formel wird zunachst in Klauselform umgeformt — konjunktive Normalform
(KNF) in Mengenschreibweise.

® |n jedem Ableitungsschritt leitet man aus zwei zueinander passenden Klauseln

eine neue ab:
{le"'anvA} {_'A7L177L;/n}

{Liy.oy Loy Ly L)

® Das Verfahren endet, wenn man entweder die leere Klausel erhélt (unerfillbar)
oder, andernfalls, wenn keine neuen Klauseln mehr erzeugt werden kénnen
(erfullbar).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 18 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Resolution in Pradikatenlogik

Resolution in der Pradikatenlogik funktioniert ganz &hnlich:
(1) Umformung in Klauselform;

(2) Durchfiihrung von Resolutionsschritten, bei denen jeweils zwei Klauseln kombiniert
werden;

(3) Terminierung wenn die leere Klausel auftritt oder keine neuen Klauseln mehr
entstehen.

Wir missen aber mehr beachten als zuvor:
® Die Umformung in Klauselform muss jetzt Quantoren bertcksichtigen.

® Die Resolutionsschritte missen die kompliziertere Form von Atomen (Pradikate
mit Termen als Parameter) berticksichtigen.

* Es wird im Allgemeinen mdglich sein, unendlich viele Klauseln abzuleiten, ohne
jemals die leere Klausel zu erzeugen — Terminierung ist nicht garantiert.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 19 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Syntaktische Umformungen in der Pradikatenlogik

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 20 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Formeln umformen

Wir haben bereits gelernt (Vorlesung 14):

* |n pradikatenlogischen Formeln darf man Teilformeln durch semantisch
aquivalente Formeln ersetzten (Ersetzungstheorem).

* Fir die aussagenlogischen Junktoren gelten die gleichen Aquivalenzen wie in der
Aussagenlogik.

~> Damit kann man schon viele Umformungen vornehmen.

Es fehlen uns aber noch Aquivalenzen zum Umgang mit Quantoren.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 21 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Aquivalenzen mit Quantoren
Es gelten die folgenen Beziehungen:

—=dx.F = Vx.—-F

Negation von Quantoren
—-Vx.F = dx.-F

Ax.Ay.F = dy.Ix.F
Vx.Vy.F = Vy.Vx.F

Kommutativitat

Ax.(F v G) = (Ax.F vV Ax.G) Distributivitat 4/v
Vx.(F A G) = (Vx.F AVx.G) Distributivitat V/A

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 22 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Aquivalenzen mit Quantoren
Es gelten die folgenen Beziehungen:

—=dx.F = Vx.—-F

Negation von Quantoren
=Vx.F = dx.=F

Ax.Ay.F = dy.Ix.F
Vx.Vy.F = VyVx.F

Kommutativitat

A (FV G) = (Ax.F VvV Ir.G) Distributivitat 3/v
Vx.(F A G) = (Vx.F AVx.G) Distributivitat /A

Beweis: Die Beweise ergeben sich direkt aus der Definition der Semantik, z.B.:

7, ZE-IFgdw. I, Z i x.F

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 22 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Aquivalenzen mit Quantoren
Es gelten die folgenen Beziehungen:

—=dx.F = Vx.—-F

Negation von Quantoren
=Vx.F = dx.=F

Ax.Jy.F = dy.Ax.F
Vx.Vy.F = VyVx.F

Kommutativitat

A (FV G) = (Ax.F VvV Ir.G) Distributivitat 3/v
Vx.(F A G) = (Vx.F AVx.G) Distributivitat /A

Beweis: Die Beweise ergeben sich direkt aus der Definition der Semantik, z.B.:

I, ZkE-IxFgdw. I, Z ¢ x.F
gdw. es gibtkeins e A mit 7, Z[x — 6] F

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 22 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Aquivalenzen mit Quantoren
Es gelten die folgenen Beziehungen:

—=dx.F = Vx.—-F

Negation von Quantoren
=Vx.F = dx.=F

Ax.Jy.F = dy.Ax.F
Vx.Vy.F = VyVx.F

Kommutativitat

A (FV G) = (Ax.F VvV Ir.G) Distributivitat 3/v
Vx.(F A G) = (Vx.F AVx.G) Distributivitat /A

Beweis: Die Beweise ergeben sich direkt aus der Definition der Semantik, z.B.:
I, ZE-Ax.Fgdw. I, Z £ Ax.F

gdw. es gibtkeins e A mit 7, Z[x — 6] F
gdw. firalle s € AT qilt 7, Z[x — 6] £ F

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 22 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Aquivalenzen mit Quantoren
Es gelten die folgenen Beziehungen:

—=dx.F = Vx.—-F

Negation von Quantoren
=Vx.F = dx.=F

Ax.Jy.F = dy.Ax.F
Vx.Vy.F = VyVx.F

Kommutativitat

A (FV G) = (Ax.F VvV Ir.G) Distributivitat 3/v
Vx.(F A G) = (Vx.F AVx.G) Distributivitat /A

Beweis: Die Beweise ergeben sich direkt aus der Definition der Semantik, z.B.:

I,ZE-AxFgdw. 7, Z I IeF
gdw. es gibtkein s € A mit 7, Z[x = 6] £ F
gdw. firalle s € AT qilt 7, Z[x — 6] £ F
gdw. firr alle § € A qilt 7, Z[x - 6] E =F

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 22 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Aquivalenzen mit Quantoren
Es gelten die folgenen Beziehungen:

—=dx.F = Vx.—-F

Negation von Quantoren
=Vx.F = dx.=F

Ax.Jy.F = dy.Ax.F
Vx.Vy.F = VyVx.F

Kommutativitat

A (FV G) = (Ax.F VvV Ir.G) Distributivitat 3/v
Vx.(F A G) = (Vx.F AVx.G) Distributivitat /A

Beweis: Die Beweise ergeben sich direkt aus der Definition der Semantik, z.B.:

I,ZE-AxFgdw. 7, Z I IeF
gdw. es gibtkein s € A mit 7, Z[x = 6] £ F
gdw. firalle s € AT qilt 7, Z[x — 6] £ F
gdw. firr alle § € A qilt 7, Z[x - 6] E =F
gdw. 7, Z | VYx.=F O

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 22 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Nicht-Aquivalenzen mit Quantoren

Andere, ahnliche Beziehungen gelten nicht.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 23 von 32

https://en.wikipedia.org/wiki/G%C3%B6del%27s_ontological_proof
https://en.wikipedia.org/wiki/G%C3%B6del%27s_ontological_proof
https://users.drew.edu/~jlenz/whynot.html
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Nicht-Aquivalenzen mit Quantoren

Andere, ahnliche Beziehungen gelten nicht.

Es gilt Ax.Vy.F # Vy.Jx.F.

Zum Beispiel bedeutet Yx.dy.hatVater(x, y) ,Jeder hat einen Vater* dagegen
dy.Vx.hatVater(x, y) ,Jemand ist Vater aller.”
(Anmerkung: Godel war religios und hat einen philosophischen Gottesbeweis in modaler Logik formalisiert [siehe ,Godel’s ontological

proof‘]; Russell war engagierter Atheist und scharfer Kritiker der Kirchen [siehe z.B. ,Why | am not a Christian,* 1927; deutsche Uber-
setzung erstmals 1932 in Dresden veréffentlicht].)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 23 von 32

https://en.wikipedia.org/wiki/G%C3%B6del%27s_ontological_proof
https://en.wikipedia.org/wiki/G%C3%B6del%27s_ontological_proof
https://users.drew.edu/~jlenz/whynot.html
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Nicht-Aquivalenzen mit Quantoren

Andere, ahnliche Beziehungen gelten nicht.

Es gilt Ax.Vy.F # Vy.Jx.F.

Zum Beispiel bedeutet Yx.dy.hatVater(x, y) ,Jeder hat einen Vater* dagegen
dy.Vx.hatVater(x, y) ,Jemand ist Vater aller.”
(Anmerkung: Godel war religios und hat einen philosophischen Gottesbeweis in modaler Logik formalisiert [siehe ,Godel’s ontological

proof‘]; Russell war engagierter Atheist und scharfer Kritiker der Kirchen [siehe z.B. ,Why | am not a Christian,* 1927; deutsche Uber-
setzung erstmals 1932 in Dresden veréffentlicht].)

Es qgilt Vx.(F Vv G) # (Vx.F V ¥x.G).

Zum Beispiel ist Vx.(gllcklich(x) v —gllcklich(x)) (,Jeder ist entweder glicklich oder
nicht.”) eine Tautologie, (¥x.gllcklich(x) v Vx.—gllcklich(x)) (,Entweder sind alle glick-
lich oder keiner.“) dagegen nicht.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 23 von 32

https://en.wikipedia.org/wiki/G%C3%B6del%27s_ontological_proof
https://en.wikipedia.org/wiki/G%C3%B6del%27s_ontological_proof
https://users.drew.edu/~jlenz/whynot.html
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quiz: Aquivalenzen mit Quantoren

Quiz: Welche der folgenden Aquivalenzen gelten fiir beliebige pradikatenlogische For-
meln F und G? ...

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 24 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Negationsnormalform

Eine Formel F ist genau dann in Negationsnormalform (NNF) wenn
(a) sie nur Quantoren und die Junktoren A, V und - enthalt und
(b) der Junktor = nur direkt vor Atomen vorkommt.

Formeln, die negierte oder nicht-negierte Atome sind, nennt man Literale.

In NNF darf Negation also nur in Literalen vorkommen.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16

Folie 25 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Negationsnormalform

Eine Formel F ist genau dann in Negationsnormalform (NNF) wenn
(a) sie nur Quantoren und die Junktoren A, V und - enthalt und

(b) der Junktor = nur direkt vor Atomen vorkommt.

Formeln, die negierte oder nicht-negierte Atome sind, nennt man Literale.
In NNF darf Negation also nur in Literalen vorkommen.

Beispiele:
® Yx.(px) A dy.(=r(x,y) V q(y))) ist in NNF
® —VYx.p(x) ist nicht in NNF
® dx.——p(x) ist nicht in NNF
® Jx.(p(x) & p(x)) ist nicht in NNF

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 25 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Umwandlung in NNF (1)

Es ist mdglich, eine Formel rekursiv in NNF umzuformen.

Dazu ersetzten wir zun&chst alle Vorkommen von — und < unter Verwendung der
bekannten Aquivalenzen:

(F > G)=(=FVG)
(Fe G =((-FVG) ARGV F))

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 26 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Umwandlung in NNF (2)

Sei F eine Formel, die nur Quantoren und die Junktoren A, vV und — enthalt.
Wir definieren eine Formel NNF(F) rekursiv wie folgt:

NNF(F) = F falls F ein Atom ist
NNF(F A G) = NNF(F) A NNF(G)
NNF(F v G) = NNF(F) v NNF(G)
NNF(Jx.F) = Ax.NNF(F)

NNF(VYx.F) = Vx.NNF(F)

NNF(=F) = =F falls F ein Atom ist
NNF(==F) = NNF(F)

NNF(=(F A G)) = NNF(=F) V NNF(=G)
NNF(=(F V G)) = NNF(=F) A NNF(=G)
NNF(=3x.F) = Vx.NNF(=F)
NNF(=Vx.F) = Ax.NNF(=F)

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16

Folie 27 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quantoren, die nichts binden

Offensichtlich gilt

Ax.F =F =Vx.F falls x in F nicht als freie Variable vorkommt

?
weil die Zuweisung von x bei der Frage 7, Z E F keine Rolle spielt.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 28 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Quantoren, die nichts binden

Offensichtlich gilt

Ax.F =F =Vx.F falls x in F nicht als freie Variable vorkommt

?
weil die Zuweisung von x bei der Frage 7, Z E F keine Rolle spielt.

Dieses Prinzip funktioniert in vielen Fallen.

Kommt x in F nicht als freie Variable vor, dann gilt:

Ax.(F A G) = (F A3Jx.G) = (Ax.F Adx.G)
Vx.(FV G) = (FVVYx.G) = (¥x.F VVYx.G)
Ax.Vy.F = Vy.dx.F
Vx.dy.F = dy.Vx.F

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 28 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Variablenumbenennung

Man kann durch Quantoren gebundene Vorkommen von Variablen einheitlich
umbenennen, ohne die Semantik der Formel zu andern.

Satz: Sei Ox.F mit O € {34, V} eine Formel, sei y eine Variable, die nicht in F vor-
kommt, und sei F{x y} die Formel, die man erhélt, wenn man alle freien Vorkommen
von x in F durch y ersetzt. Dann gilt Ox.F = Oy.F{x — y}.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 29 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Variablenumbenennung

Man kann durch Quantoren gebundene Vorkommen von Variablen einheitlich
umbenennen, ohne die Semantik der Formel zu andern.

Satz: Sei Ox.F mit O € {34, V} eine Formel, sei y eine Variable, die nicht in F vor-
kommt, und sei F{x — y} die Formel, die man erhalt, wenn man alle freien Vorkommen
von x in F durch y ersetzt. Dann gilt Ox.F = Oy.F{x — y}.

Es ist aber wichtig, dass die eingesetzte Variable nicht schon in F vorkommt (auch nicht
gebunden):

Beispiel: Sei G die Formel VYx.dy.hatVater(x, y).

e Wir kbnnen x in z umbenennen und erhalten die semantisch aquivalente Formel
Vz.dy.hatVater(z, y).

® Benennen wir x dagegen in y um, dann entsteht
Vy.dy.hatVater(y, y) = dy.hatVater(y, y) (,Jemand ist sein eigener Vater®).

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 29 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Bereinigte Formeln

Eine Formel F ist bereinigt, wenn sie die folgenden beiden Eigenschaften hat:
(1) Keine Variable in F kommt sowohl frei als auch gebunden vor.
(2) Keine Variable in F wird von mehr als einem Quantor gebunden.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 30 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Bereinigte Formeln

Eine Formel F ist bereinigt, wenn sie die folgenden beiden Eigenschaften hat:
(1) Keine Variable in F kommt sowohl frei als auch gebunden vor.
(2) Keine Variable in F wird von mehr als einem Quantor gebunden.

Man kann jede Formel leicht durch Umbenennung gebundener Variablen bereinigen.

Beispiel: Die Formel

Vy.(p(x,y) = Ix.(r(y, x) A Vy.q(x,y)))

kann wie folgt bereinigt werden:

Vy.(px,y) = Fz.(r(y, 2) A ¥v.q(z,V)))

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 30 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Zusammenfassung und Ausblick
Logisches SchlieBen in Pradikatenlogik ist unentscheidbar (gezeigt) aber
semi-entscheidbar (noch zu zeigen).

Resolution kann auch in der Pradikatenlogik zum logischen SchlieBen eingesetzt
werden.

Mit Hilfe semantischer Aquivalenzen kann man beliebige Formeln in einheitliche
Normalformen uberfuhren.

Was erwartet uns als nachstes?
® Funktionen
® Resolution
® |ogik Uber endlichen Interpretationen und ihre praktische Anwendung

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 31 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Bildrechte

Folie 12: Fotografie um 1926, gemeinfrei

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 32 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

