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Schließen ist schwer

Erinnerung: Aus F folgt G genau dann, wenn alle Modelle von F auch Modelle von G
sind.

• Es ist nicht offensichtlich, wie man das überprüfen sollte, denn es gibt unendlich
viele Modelle.

• Ebenso schwer erscheinen die gleichwertigen Probleme der Unerfüllbarkeit und
Allgemeingültigkeit.

Intuition: Prädikatenlogisches Schließen ist unentscheidbar.

Wie kann man das beweisen?

Durch Reduktion eines bekannten unentscheidbaren Problems, z.B.

• Halteproblem

• Postsches Korrespondenzproblem

• Äquivalenzproblem kontextfreier Sprachen

• . . .
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Unentscheidbarkeit (1)

Satz: Logisches Schließen (Unerfüllbarkeit, Allgemeingültigkeit, logische Konsequenz)
in der Prädikatenlogik ist unentscheidbar.

Beweis: Durch Reduktion vom CFG-Schnittproblem:

Gegeben: Kontextfreie Grammatiken G1 und G2.
Frage: Gibt es ein Wort w ∈ L(G1) ∩ L(G2)?

Idee: Wir kodieren Wörter in der Prädikatenlogik als Ketten von binären Relationen.

Zum Beispiel würde das Wort russell in einer Interpretation I wie folgt aussehen:

δ0 δ1 δ2 δ3 δ4 δ5 δ6 δ7
pr pu ps ps pe pl pl

Diese Skizze soll bedeuten, dass z.B. ⟨δ2, δ3⟩, ⟨δ3, δ4⟩ ∈ pIs .
Wir verwenden ein binäres Prädikatensymbol pa für jedes Alphabetssymbol a.
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Unentscheidbarkeit (2)

Satz: Logisches Schließen (Unerfüllbarkeit, Allgemeingültigkeit, logische Konsequenz)
in der Prädikatenlogik ist unentscheidbar.

Beweis (Fortsetzung): Zusätzlich verwenden wir binäre Prädikatensymbole pA für
jedes Nichtterminalsymbol A.

Die Kodierung von Grammatiken ist nun direkt möglich:

• Wir nehmen o.B.d.A. an, dass G1 und G2 keine Nichtterminale gemeinsam haben.

• Eine Produktionsregel A→ σ1 · · ·σn kodieren wir als Formel:

∀x0, . . . , xn.
(
( pσ1 (x0, x1) ∧ . . . ∧ pσn (xn−1, xn))→ pA(x0, xn)

)
• Idee: Die Formel erkennt, ob eine gegebene Kette aus Terminalen und

Nichtterminalen aus einem anderen Nichtterminal entstehen kann.
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Unentscheidbarkeit (3)

Satz: Logisches Schließen (Unerfüllbarkeit, Allgemeingültigkeit, logische Konsequenz)
in der Prädikatenlogik ist unentscheidbar.

Beweis (Fortsetzung): Seien S1 und S2 die Startsymbole von G1 und G2. Dann wollen
wir das Schnittproblem kodieren, indem wir fragen, ob die folgende Formel folgt:

∃x, y.( pS1 (x, y) ∧ pS2 (x, y))

Was fehlt?

• Die Grammatik-Formeln können erkennen, ob eine Zeichenkette aus S1 oder S2

abgeleitet werden kann.

• Jede Interpretation, welche die Kodierung eines Wortes w ∈ L(G1) ∩ L(G2) enthält,
muss daher auch die Formel ∃x, y.( pS1 (x, y) ∧ pS2 (x, y)) erfüllen.

• Aber: Es kann auch Interpretationen geben, welche keine Kodierung von w
enthalten. (Diese verhindern die gewünschte Schlussfolgerung.)

{ Alle möglichen Wörter müssten kodiert vorkommen . . .
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Unentscheidbarkeit (4)

Satz: Logisches Schließen (Unerfüllbarkeit, Allgemeingültigkeit, logische Konsequenz)
in der Prädikatenlogik ist unentscheidbar.

Beweis (Fortsetzung): Alle möglichen Wörter müssten kodiert vorkommen . . .
Dazu fügen wir noch folgende Sätze hinzu:

∀x.∃y.pa(x, y) für jedes Terminalsymbol a

• Jedes Modell dieser Theorie muss Kodierungen aller Wörter enthalten (aber
eventuell als zyklische oder überlappende Pfade, z.B. in einer Interpretation mit nur
einem Element, welches in jeder möglichen Relation zu sich selbst steht).

• Gibt es ein Wort w ∈ L(G1) ∩ L(G2), dann muss auch dieses Wort kodiert
vorkommen: Es folgt ∃x, y.( pS1 (x, y) ∧ pS2 (x, y)).

• Folgt ∃x, y.( pS1 (x, y) ∧ pS2 (x, y)), erfüllen alle Modelle diesen Satz, insbesondere
auch das Modell, welches man erhält, indem man einen unendlichen Baum aller
Wörter aufbaut.
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Unentscheidbarkeit (5)

Satz: Logisches Schließen (Unerfüllbarkeit, Allgemeingültigkeit, logische Konsequenz)
in der Prädikatenlogik ist unentscheidbar.

Beweis (Fortsetzung): Skizze des „kanonischen“ baumförmigen Modells, welches
keine Zyklen oder parallelen Relationen enthält, über Alphabet {a, b} (ohne eventuelle
Kanten für Nichtterminale):

δ

δ0 δ1

δ00 δ01 δ10 δ11

pa pb

pa pb pa pb

. . . . . . . . .

Falls „sogar“ dieses Modell ∃x, y.( pS1 (x, y) ∧ pS2 (x, y)) erfüllt, dann muss es ein Wort
w ∈ L(G1) ∩ L(G2) geben.
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Unentscheidbarkeit (6)

Satz: Logisches Schließen (Unerfüllbarkeit, Allgemeingültigkeit, logische Konsequenz)
in der Prädikatenlogik ist unentscheidbar.

Beweis (Zusammenfassung): Wir konstruieren aus G1 und G2 eine logische Theorie
T mit den folgenden Sätzen:

• für jede Produktionsregel A→ σ1 · · ·σn von G1 oder G2:

∀x0, . . . , xn.
(
( pσ1 (x0, x1) ∧ . . . ∧ pσn (xn−1, xn))→ pA(x0, xn)

)
• Für jedes Terminalsymbol a:

∀x.∃y.pa(x, y)

Dann gilt T |= ∃x, y.( pS1 (x, y) ∧ pS2 (x, y)) genau dann, wenn es ein Wort
w ∈ L(G1) ∩ L(G2) gibt.

Die Unentscheidbarkeit von Unerfüllbarkeit und Allgemeingültigkeit folgt, weil man
logische Konsequenz auf diese Probleme reduzieren kann. □
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Einfache Folgerungen

Offensichtlich wird das Schließen nicht einfacher, wenn man auch noch Gleichheit erlaubt:

Korollar: Logisches Schließen (Unerfüllbarkeit, Allgemeingültigkeit, logische Konse-
quenz) in der Prädikatenlogik mit Gleichheit ist unentscheidbar.

Umgekehrt kann man aus dem Beweis noch stärkere Ergebnisse folgern, z.B.:

Korollar: Logisches Schließen (Unerfüllbarkeit, Allgemeingültigkeit, logische Konse-
quenz) in der Prädikatenlogik ist bereits unentscheidbar, wenn nur binäre Prädikaten-
symbole verwendet werden.
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Quiz: Unentscheidbarkeit der Prädikatenlogik

Quiz: Welche der folgenden Problem sind per Korollar aus dem soeben gezeigten Re-
sultat ebenfalls unentscheidbar? . . .
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Unentscheidbarkeit hat viele Beweise

Unser Unentscheidbarkeitsbeweis ist nicht der Einzige . . .

• Mit Prädikatenlogik kann man viele mathematische Definitionen direkt ausdrücken.

• Viele Probleme lassen sich dadurch ziemlich einfach kodieren.

• Der erste Schritt ist am wichtigsten:
Wie wollen wir das Problem in logischen Interpretationen mit Relationen
darstellen?

• Sind die Prädikatensymbole einmal festgelegt, dann muss man „nur noch“ die
Problemdefinition in diese Kodierung übersetzen.

Beispiel: Wir könnten das Halteproblem von TMs direkt kodieren, aber dabei benötigt
man viel mehr Prädikate. Es ist nicht schwer, Aussagen zu kodieren wie z.B. „Falls
es einen Zeitpunkt t gibt, an dem die TM in Zustand q an Position y das Zeichen a
liest, dann folgt auf t ein Zeitpunkt t′, an dem die TM in Zustand q′ ist.“ Der Beweis ist
leicht, sofern man keine relevante Aussage vergisst.
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Gödel
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Zwischenstand

Wir haben bisher zwei Dinge erkannt:

(1) Prädikatenlogik ist sehr ausdrucksstark: Mit ihr können wir z.B. das mathematische
Konzept der Gleichheit axiomatisieren oder Probleme über formale Sprachen
beschreiben.

(2) Prädikatenlogisches Schließen ist unentscheidbar: Man kann Probleme definieren,
die nicht mehr algorithmisch lösbar sind.

Eignet sich Prädikatenlogik also als universelle Beschreibungssprache für die
Mathematik (und darüber hinaus)?

Dazu hat Kurt Gödel (1906–1978) einiges zu sagen . . .
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Gödels Einsichten

Gödel zeigte einige wesentliche Dinge:

(1) Gödelscher Vollständigkeitssatz (1930):
„Es gibt ein konsistentes Verfahren, das alle Konsequenzen einer
prädikatenlogischen Theorie effektiv beweisen kann.“

– Alle wahren Sätze können endlich bewiesen werden.
– Prädikatenlogisches Schließen ist semi-entscheidbar.

(2) 1. Gödelscher Unvollständigkeitssatz (1931):
„Es gibt kein konsistentes Verfahren, das alle Konsequenzen der elementaren
Arithmetik effektiv beweisen kann.“

– Für jedes Verfahren gibt es allgemeingültige Sätze über elementare
arithmetische Zusammenhänge, die nicht bewiesen werden können.

– Die Wahrheit elementarer arithmetischer Zusammenhänge ist nicht
semi-entscheidbar.

(3) 2. Gödelscher Unvollständigkeitssatz (1931): später

Mehr dazu in späteren Vorlesungen . . .
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Algorithmen zum logischen Schließen
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Wie können wir logisch schließen?

Gödel betrachtete ein konkretes Verfahren zum logischen Schließen, basierend auf:

• Einer Menge an vorgegebenen Tautologien;

• einer Menge von Regeln, mit denen man aus bereits bekannten Tautologien neue
ableiten kann.

Diese Art von Verfahren war seit der Antike bekannt.

Gödel zeigte, dass dieses Verfahren die Semantik der Prädikatenlogik genau
charakterisiert:

• Das Verfahren ist korrekt (es leitet nur echte Tautologien ab) – das war bekannt.

• Das Verfahren ist vollständig (es kann jede Tautologie auch ableiten) – ein
Durchbruch, Gödels Vollständigkeitssatz.
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Theorie und Praxis

Gödel zeigte damit auch die Semi-Entscheidbarkeit des logischen Schließens:

• Man kann systematisch alle möglichen Ableitungen neuer Tautologien bilden.

• Ist eine Formel eine Tautologie, dann wird sie irgendwann abgeleitet.

• Ist eine Formel keine Tautologie, dann werden wir es auf diese Art nie erfahren.

Das ist nicht sehr praktisch, wenn man wissen will, ob eine gegebene Formel F eine
Tautologie ist . . .

Geht es besser?

• Logisches Schließen ist unentscheidbar: Kein Verfahren kann die Frage nach
Allgemeingültigkeit sicher beantworten.

• Aber: Es gibt effizientere, zielgerichtetere Methoden.

Für echte Implementierungen (Jahrzehnte später) wurden bessere Algorithmen
entwickelt.
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Bessere Algorithmen

Ein besonders erfolgreicher Algorithmus in praktischen Implementierungen ist
Resolution.

Rückblick: Resolution in Aussagenlogik (Formale Systeme, VL 23)

• Methode zum Test auf Unerfüllbarkeit

• Die Formel wird zunächst in Klauselform umgeformt – konjunktive Normalform
(KNF) in Mengenschreibweise.

• In jedem Ableitungsschritt leitet man aus zwei zueinander passenden Klauseln
eine neue ab:

{L1, . . . , Ln, A} {¬A, L′1, . . . , L′m}
{L1, . . . , Ln, L′1, . . . , L′m}

• Das Verfahren endet, wenn man entweder die leere Klausel erhält (unerfüllbar)
oder, andernfalls, wenn keine neuen Klauseln mehr erzeugt werden können
(erfüllbar).
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Resolution in Prädikatenlogik

Resolution in der Prädikatenlogik funktioniert ganz ähnlich:

(1) Umformung in Klauselform;

(2) Durchführung von Resolutionsschritten, bei denen jeweils zwei Klauseln kombiniert
werden;

(3) Terminierung wenn die leere Klausel auftritt oder keine neuen Klauseln mehr
entstehen.

Wir müssen aber mehr beachten als zuvor:

• Die Umformung in Klauselform muss jetzt Quantoren berücksichtigen.

• Die Resolutionsschritte müssen die kompliziertere Form von Atomen (Prädikate
mit Termen als Parameter) berücksichtigen.

• Es wird im Allgemeinen möglich sein, unendlich viele Klauseln abzuleiten, ohne
jemals die leere Klausel zu erzeugen – Terminierung ist nicht garantiert.
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Syntaktische Umformungen in der Prädikatenlogik
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Formeln umformen

Wir haben bereits gelernt (Vorlesung 14):

• In prädikatenlogischen Formeln darf man Teilformeln durch semantisch
äquivalente Formeln ersetzten (Ersetzungstheorem).

• Für die aussagenlogischen Junktoren gelten die gleichen Äquivalenzen wie in der
Aussagenlogik.

{ Damit kann man schon viele Umformungen vornehmen.

Es fehlen uns aber noch Äquivalenzen zum Umgang mit Quantoren.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 21 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Äquivalenzen mit Quantoren
Es gelten die folgenen Beziehungen:

¬∃x.F ≡ ∀x.¬F

¬∀x.F ≡ ∃x.¬F
Negation von Quantoren

∃x.∃y.F ≡ ∃y.∃x.F

∀x.∀y.F ≡ ∀y.∀x.F
Kommutativität

∃x.(F ∨ G) ≡ (∃x.F ∨ ∃x.G) Distributivität ∃ /∨

∀x.(F ∧ G) ≡ (∀x.F ∧ ∀x.G) Distributivität ∀/∧

Beweis: Die Beweise ergeben sich direkt aus der Definition der Semantik, z.B.:

I,Z |= ¬∃x.F gdw. I,Z ̸|= ∃x.F
gdw. es gibt kein δ ∈ ∆I mit I,Z[x 7→ δ] |= F
gdw. für alle δ ∈ ∆I gilt I,Z[x 7→ δ] ̸|= F
gdw. für alle δ ∈ ∆I gilt I,Z[x 7→ δ] |= ¬F
gdw. I,Z |= ∀x.¬F □
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Nicht-Äquivalenzen mit Quantoren

Andere, ähnliche Beziehungen gelten nicht.

Es gilt ∃x.∀y.F . ∀y.∃x.F.

Zum Beispiel bedeutet ∀x.∃y.hatVater(x, y) „Jeder hat einen Vater“ dagegen
∃y.∀x.hatVater(x, y) „Jemand ist Vater aller.“
(Anmerkung: Gödel war religiös und hat einen philosophischen Gottesbeweis in modaler Logik formalisiert [siehe „Gödel’s ontological
proof“]; Russell war engagierter Atheist und scharfer Kritiker der Kirchen [siehe z.B. „Why I am not a Christian,“ 1927; deutsche Über-
setzung erstmals 1932 in Dresden veröffentlicht].)

Es gilt ∀x.(F ∨ G) . (∀x.F ∨ ∀x.G).

Zum Beispiel ist ∀x.(glücklich(x) ∨ ¬glücklich(x)) („Jeder ist entweder glücklich oder
nicht.“) eine Tautologie, (∀x.glücklich(x) ∨ ∀x.¬glücklich(x)) („Entweder sind alle glück-
lich oder keiner.“) dagegen nicht.
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Quiz: Äquivalenzen mit Quantoren

Quiz: Welche der folgenden Äquivalenzen gelten für beliebige prädikatenlogische For-
meln F und G? . . .
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Negationsnormalform

Eine Formel F ist genau dann in Negationsnormalform (NNF) wenn

(a) sie nur Quantoren und die Junktoren ∧, ∨ und ¬ enthält und

(b) der Junktor ¬ nur direkt vor Atomen vorkommt.

Formeln, die negierte oder nicht-negierte Atome sind, nennt man Literale.
In NNF darf Negation also nur in Literalen vorkommen.

Beispiele:

• ∀x.( p(x) ∧ ∃y.(¬r(x, y) ∨ q(y))) ist in NNF

• ¬∀x.p(x) ist nicht in NNF

• ∃x.¬¬p(x) ist nicht in NNF

• ∃x.( p(x)↔ p(x)) ist nicht in NNF

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 25 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Negationsnormalform

Eine Formel F ist genau dann in Negationsnormalform (NNF) wenn

(a) sie nur Quantoren und die Junktoren ∧, ∨ und ¬ enthält und

(b) der Junktor ¬ nur direkt vor Atomen vorkommt.

Formeln, die negierte oder nicht-negierte Atome sind, nennt man Literale.
In NNF darf Negation also nur in Literalen vorkommen.

Beispiele:

• ∀x.( p(x) ∧ ∃y.(¬r(x, y) ∨ q(y))) ist in NNF

• ¬∀x.p(x) ist nicht in NNF

• ∃x.¬¬p(x) ist nicht in NNF

• ∃x.( p(x)↔ p(x)) ist nicht in NNF

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 16 Folie 25 von 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Umwandlung in NNF (1)

Es ist möglich, eine Formel rekursiv in NNF umzuformen.

Dazu ersetzten wir zunächst alle Vorkommen von→ und↔ unter Verwendung der
bekannten Äquivalenzen:

(F → G) ≡ (¬F ∨ G)

(F ↔ G) ≡
(
(¬F ∨ G) ∧ (¬G ∨ F)

)
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Umwandlung in NNF (2)

Sei F eine Formel, die nur Quantoren und die Junktoren ∧, ∨ und ¬ enthält.
Wir definieren eine Formel NNF(F) rekursiv wie folgt:

• NNF(F) = F falls F ein Atom ist

• NNF(F ∧ G) = NNF(F) ∧ NNF(G)
• NNF(F ∨ G) = NNF(F) ∨ NNF(G)
• NNF(∃x.F) = ∃x.NNF(F)
• NNF(∀x.F) = ∀x.NNF(F)
• NNF(¬F) = ¬F falls F ein Atom ist

• NNF(¬¬F) = NNF(F)
• NNF(¬(F ∧ G)) = NNF(¬F) ∨ NNF(¬G)
• NNF(¬(F ∨ G)) = NNF(¬F) ∧ NNF(¬G)
• NNF(¬∃x.F) = ∀x.NNF(¬F)
• NNF(¬∀x.F) = ∃x.NNF(¬F)
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Quantoren, die nichts binden

Offensichtlich gilt

∃x.F ≡ F ≡ ∀x.F falls x in F nicht als freie Variable vorkommt

weil die Zuweisung von x bei der Frage I,Z
?
|= F keine Rolle spielt.

Dieses Prinzip funktioniert in vielen Fällen.

Kommt x in F nicht als freie Variable vor, dann gilt:

∃x.(F ∧ G) ≡ (F ∧ ∃x.G) ≡ (∃x.F ∧ ∃x.G)

∀x.(F ∨ G) ≡ (F ∨ ∀x.G) ≡ (∀x.F ∨ ∀x.G)

∃x.∀y.F ≡ ∀y.∃x.F

∀x.∃y.F ≡ ∃y.∀x.F
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Variablenumbenennung

Man kann durch Quantoren gebundene Vorkommen von Variablen einheitlich
umbenennen, ohne die Semantik der Formel zu ändern.

Satz: Sei Qx.F mit Q∈ {∃,∀} eine Formel, sei y eine Variable, die nicht in F vor-
kommt, und sei F{x 7→ y} die Formel, die man erhält, wenn man alle freien Vorkommen
von x in F durch y ersetzt. Dann gilt Qx.F ≡ Qy.F{x 7→ y}.

Es ist aber wichtig, dass die eingesetzte Variable nicht schon in F vorkommt (auch nicht
gebunden):

Beispiel: Sei G die Formel ∀x.∃y.hatVater(x, y).
• Wir können x in z umbenennen und erhalten die semantisch äquivalente Formel
∀z.∃y.hatVater(z, y).

• Benennen wir x dagegen in y um, dann entsteht
∀y.∃y.hatVater(y, y) ≡ ∃y.hatVater(y, y) („Jemand ist sein eigener Vater“).
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Bereinigte Formeln

Eine Formel F ist bereinigt, wenn sie die folgenden beiden Eigenschaften hat:

(1) Keine Variable in F kommt sowohl frei als auch gebunden vor.

(2) Keine Variable in F wird von mehr als einem Quantor gebunden.

Man kann jede Formel leicht durch Umbenennung gebundener Variablen bereinigen.

Beispiel: Die Formel

∀y.
(

p(x, y)→ ∃x.(r(y, x) ∧ ∀y.q(x, y))
)

kann wie folgt bereinigt werden:

∀y.
(

p(x, y)→ ∃z.(r(y, z) ∧ ∀v.q(z, v))
)
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Zusammenfassung und Ausblick

Logisches Schließen in Prädikatenlogik ist unentscheidbar (gezeigt) aber
semi-entscheidbar (noch zu zeigen).

Resolution kann auch in der Prädikatenlogik zum logischen Schließen eingesetzt
werden.

Mit Hilfe semantischer Äquivalenzen kann man beliebige Formeln in einheitliche
Normalformen überführen.

Was erwartet uns als nächstes?

• Funktionen

• Resolution

• Logik über endlichen Interpretationen und ihre praktische Anwendung
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