Problem 6.1

1. Consider the following definite programs P_1 and P_2:

 $$P_1 = \{ \text{even}(0) \leftarrow \top, \text{odd}(s(0)) \leftarrow \top, \text{even}(s(X)) \leftarrow \text{odd}(X), \text{odd}(s(X)) \leftarrow \text{even}(X) \}$$

 $$P_2 = \{ \text{even}(0) \leftarrow \top, \text{even}(s(s(0))) \leftarrow \text{even}(X), \text{even}(X) \leftarrow \text{even}(s(s(X))) \}$$

Which interpretation is a two-valued model of P_1 and P_2?

2. Consider the following definition for definite programs:

 Acceptable Definite Program Let P be a definite program, ℓ a level mapping for P and M a two-valued model of P. P is called **acceptable with respect to ℓ and M** if for every clause $A \leftarrow B_1, \ldots, B_m \in gP$ the following implication holds for all i with $1 \leq i \leq m$:

 $$M(B_1 \land \cdots \land B_{i-1}) = \top \implies \ell(A) > \ell(B_i).$$

 P is called **acceptable** if it is acceptable with respect to some level mapping and some model of P.

3. Are P_1 and P_2 acceptable programs? Motivate your answer.

Problem 6.2

Show that the following proposition holds:

Proposition 19 Let P be a program, ℓ a (total) level mapping for P, I the set of (three-valued) interpretations for P, and $I, J \in I$. The function $d_\ell : I \times I \rightarrow \mathbb{R}$ defined as

$$d_\ell(I, J) = \begin{cases}
\left(\frac{1}{2}\right)^n & I \neq J \text{ and } I(A) = J(A) \neq U \text{ for all } A \text{ with } \ell(A) < n \\
0 & I(A) \neq J(A) \text{ or } I(A) = J(A) = U \text{ for some } A \text{ with } \ell(A) = n
\end{cases}$$

is a metric.

Problem 6.3

Show that the deduction theorem is not satisfied under Łukasiewicz and Kleene logic.

Problem 6.4

Show that the following lemma holds:

Lemma 22 Let I be the least fixed point of Φ_P and J be a model of $\text{wc} \ P$. Then for every ground atom A, the following holds:

(1) If $I(A) = \top$ then $J(A) = \top$ and (2) If $I(A) = \bot$ then $J(A) = \bot$.