

EXERCISE 6

Human Reasoning and Computational Logic

Steffen Hölldobler, Emmanuelle Dietz Saldanha

European Master's Program in Computational Logic — winter semester 2017/18

Problem 6.1

1. Consider the following definite programs \mathcal{P}_1 and \mathcal{P}_2 :

$$\begin{aligned}\mathcal{P}_1 &= \{ \quad \text{even}(0) \leftarrow \top, \\ &\quad \text{odd}(s(0)) \leftarrow \top, \\ &\quad \text{even}(s(X)) \leftarrow \text{odd}(X), \\ &\quad \text{odd}(s(X)) \leftarrow \text{even}(X) \quad \} \\ \mathcal{P}_2 &= \{ \quad \text{even}(0) \leftarrow \top, \\ &\quad \text{even}(s(s(0))) \leftarrow \text{even}(X), \\ &\quad \text{even}(X) \leftarrow \text{even}(s(s(X))) \quad \}\end{aligned}$$

Which interpretation is a two-valued model of \mathcal{P}_1 and \mathcal{P}_2 ?

2. Consider the following definition for definite programs:

Acceptable Definite Program Let \mathcal{P} be a definite program, ℓ a level mapping for \mathcal{P} and \mathcal{M} a two-valued model of \mathcal{P} . \mathcal{P} is called *acceptable with respect to ℓ and \mathcal{M}* if for every clause $A \leftarrow B_1, \dots, B_m \in g\mathcal{P}$ the following implication holds for all i with $1 \leq i \leq m$:

$$M(B_1 \wedge \dots \wedge B_i - 1) = \top \text{ implies } \ell(A) > \ell(B_i).$$

\mathcal{P} is called *acceptable* if it is acceptable with respect to some level mapping and some model of \mathcal{P} .

3. Are \mathcal{P}_1 and \mathcal{P}_2 acceptable programs? Motivate your answer.

Problem 6.2

Show that the following proposition holds:

Proposition 19 Let \mathcal{P} be a program, ℓ a (total) level mapping for \mathcal{P} , \mathcal{I} the set of (three-valued) interpretations for \mathcal{P} , and $I, J \in \mathcal{I}$. The function $d_\ell : \mathcal{I} \times \mathcal{I} \mapsto \mathbb{R}$ defined as

$$d_\ell(I, J) = \begin{cases} (\frac{1}{2})^n & I \neq J \text{ and } I(A) = J(A) \neq U \text{ for all } A \text{ with } \ell(A) < n \text{ and} \\ & I(A) \neq J(A) \text{ or } I(A) = J(A) = U \text{ for some } A \text{ with } \ell(A) = n \\ 0 & \text{otherwise.} \end{cases}$$

is a metric.

Problem 6.3

Show that the deduction theorem is not satisfied under Łukasiewicz and Kleene logic.

Problem 6.4

Show that the following lemma holds:

Lemma 22 Let I be the least fixed point of $\Phi_{\mathcal{P}}$ and J be a model of $wc\mathcal{P}$. Then for every ground atom A , the following holds:

$$(1) \text{ If } I(A) = \top \text{ then } J(A) = \top \quad \text{and} \quad (2) \text{ If } I(A) = \perp \text{ then } J(A) = \perp.$$