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Ruckblick: Logelei

Wir kehren zurlick auf das Inselreich mit Menschen von Typ W (kennen und sagen die
Wabhrheit) und Typ L (kennen die Wahrheit und sagen deren Negation).

Smullyan' fragte die Bewohner nach ihren Rauchgewohnheiten.

e Auf Insel A antwortete jeder der Bewohner:
wJeder, der hier von Typ W ist, raucht.”

® Auf Insel B antwortete jeder der Bewohner:
,Einige von uns hier sind von Typ L und rauchen.”

e Auf Insel C hatten alle den gleichen Typ und jeder sagte:
.Falls ich rauche, dann raucht jeder hier.”

e Auf Insel D hatten alle den gleichen Typ und jeder sagte:
»Einige hier rauchen, aber ich nicht.”

Was kénnen wir jeweils Uber die Bewohner und ihre Gewohnheiten schlieBen?

'R. Smullyan: A Beginner’s Guide to Mathematical Logic, Dover 2014
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Pradikatenlogik: Syntax

Wir betrachten unendliche, disjunkte Mengen von Variablen V, Konstanten C und

Pradikatensymbolen P.

- -F

- (FAG)
- (FVG)
- (F-> 06
- (Fe 6)
— dx.F

- Vx.F

® Jedes Atom p(t,...,t,) ist eine pradikatenlogische Formel

® Wenn x € V eine Variable und F und G pradikatenlogische Formeln sind, dann
sind auch die folgenden pradikatenlogische Formeln:

Negation
Konjunktion
Disjunktion
Implikation
Aquivalenz
Existenzquantor
Allquantor

Ein pradikatenlogisches Atom ist ein Ausdruck p(t, ..., t,) flr ein n-stelliges Pradika-
tensymbol p € P und Terme ¢,,...,t, € VUC.
Die Menge der pradikatenlogische Formeln ist induktiv definiert:

Jhicht F*

»F und G*

+F oder G*

LF impliziert G*

,F ist dquivalent zu G*
Jur ein x gilt F*

Jur alle x gilt F*

Sebastian Rudolph, TU Dresden
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Semantik der Pradikatenlogik
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Interpretationen und Zuweisungen

Die Wertzuweisungen der Aussagenlogik werden also durch Interpretationen und
Zuweisungen fir Variablen ersetzt.

Eine Interpretation 7 ist ein Paar (A?, -7y bestehend aus einer nichtleeren Grundmen-
ge A (der Doméne) und einer Interpretationsfunktion -¥, welche:

* jede Konstante a € C auf ein Element a’ € A’ und
e jedes n-stellige Pradikatensymbol p € P auf eine Relation p? C (AI)n
abbildet.

Eine Zuweisung Z fir eine Interpretation I ist eine Funktion Z : V — AZ, die Varia-
blen auf Elemente der Doméne abbildet. Fiir x € V und § € A’ schreiben wir Z[x - §]
fir die Zuweisung, die x auf 6 und alle anderen Variablen y # x auf Z(y) abbildet.
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Atome interpretieren

Wir bestimmen dementsprechend die Wahrheit von Atomen unter einer Interpretation

und Zuweisung:

Sei I eine Interpretation und Z eine Zuweisung fir 7.
® Fiir eine Konstante ¢ definieren wir ¢/-< = ¢/,
e Fir eine Variable x definieren wir x’:< = Z(x).

Far ein Atom p(t4,...,t,) setzen wir sodann:
* ptr,...,ty"% = 1wenn (1, %,....t0%) € p” und
T, T,
o p(tr,....t,)yZ =0 wenn (%, ... 6%y ¢ pl
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Atome interpretieren

Wir bestimmen dementsprechend die Wahrheit von Atomen unter einer Interpretation
und Zuweisung:

Sei I eine Interpretation und Z eine Zuweisung fir 7.
* Fiir eine Konstante ¢ definieren wir ¢/-< = ¢,
® Fiir eine Variable x definieren wir x’:< = Z(x).

Far ein Atom p(t4,...,t,) setzen wir sodann:
* ptr,...,ty"% = 1wenn (1, %,....t0%) € p” und
TZ IZ
* p(ty,....to)" =0 wenn (", ... 5, ) ¢ pl

Achtung: Wir verwenden Interpretationen und Zuweisungen auf zwei Ebenen, die
man nicht verwechseln sollte:

(1) um Terme ¢ auf Elemente +/*< € A’ abzubilden;
(2) um Atome A auf Wahrheitswerte AZ< € {0, 1} abzubilden.
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Formeln interpretieren

Eine Interpretation 7 und eine Zuweisung Z fur I erfullen eine Formel F, in Symbolen
I,Z E F, wenn eine der folgenden rekursiven Bedingungen gilt:
F Atom F1Z=1 FIZ =9
-G I,ZKG I,ZEG
GiINGy) I,ZEG undI,ZkEG, I,ZKG, oderl,ZKEG,
(Gi1VvGy) I,ZEG oderI,ZEG, I,ZFEG undIl,ZEG,
(G—>Gy) I,ZKG oderl,ZEG, I,ZEG,undI,ZIFG,
(Gi<G) I,ZEG udI,ZEG, I,ZEG undI,ZFKFG,

oder oder
I, Z¥G ud I, ZFG, I, Z¥G und7,ZEG,

Vx.G I,Z[x—0lEG I.ZIx—0l¢EG
fur alle 6 € AT fir mindestens ein § € A7

WG I,Zx—6lEG I,Zlx 61 G

fir mindestens ein § € AT fiir alle 6 € AY
Gilt I  F flr einen Satz F, sagen wir: I ist ein Modell fir F.
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Beispiel

,Null ist eine natlrliche Zahl und jede naturliche Zahl hat einen Nachfolger, der ebenfalls
eine natdrliche Zahl ist.”

F = NatNum(null) A Yx.(NatNum(x) — Jy.(succ(x, y) A NatNum(y)))

Wir betrachten eine Interpretation 7 mit
¢ A’ = R die Menge der reellen Zahlen
e nulf =0
¢ NatNum’ = N C R die Menge der natiirlichen Zahlen
o succ! = {(d,e)|d,eeR,d < e}

Dann gilt 7 | F (unter jeder beliebigen Zuweisung) — 7 ist ein Modell von F.

Notation: Bei der Interpretation von Satzen (Formeln ohne freie Variablen) spielen
Zuweisungen keine Rolle. Wir schreiben sie in diesem Fall nicht.
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Logik auf Satzen

Wie im vorigen Beispiel interessieren uns oft nur Satze:
® |n den meisten Anwendungen arbeitet man nur mit Satzen.
* Dann geniigt es, Interpretationen zu betrachten.

® Zuweisungen sind in diesem Fall ein technisches Hilfsmittel zur Definition der
Bedeutung von Satzen.

Eine Menge von Satzen wird oft Theorie genannt.
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Logik auf Satzen

Wie im vorigen Beispiel interessieren uns oft nur Satze:
® |n den meisten Anwendungen arbeitet man nur mit Satzen.
* Dann geniigt es, Interpretationen zu betrachten.

® Zuweisungen sind in diesem Fall ein technisches Hilfsmittel zur Definition der
Bedeutung von Satzen.

Eine Menge von Satzen wird oft Theorie genannt.

Beispiel: Der Begriff stammt aus der Mathematik. Die Theorie der partiellen Ordnun-
gen kann man z.B. wie folgt definieren:

Vx.(x £ x) Reflexivitat
Yx,y,z(k K yAy=<z) > x=<2) Transitivitat
Y,y (= yAy=<x) > x=xYy) Antisymmetrie

Dies definiert die Eigenschaften eines bindren Pradikates < (hier infix geschrieben).
Dabei verwenden wir zudem ein Gleichheitspradikat ~ (dazu spater mehr).
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Semantische Grundbegriffe
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Modelltheorie

Wie definiert man logische Semantik ,,modelltheoretisch“?

abzahlbare Menge syn-
taktischer Ausdriicke

Menge semantischer
Strukturen

=
[}
=
—
(e}
LC
=
@
(=
.2
=
<
&
o
—
S
—
[}
9
=

Beziehung zwischen
Interpretationen & For-
meln: Welche Interpre-
tationen sind Modelle
welcher Formeln?

Erflllungs-
relation
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Modelltheorie

Wie definiert man logische Semantik ,,modelltheoretisch“?

Aussagenl.

% abzahlbare Menge syn- Aussagen-
E taktischer Ausdriicke logische
L Formeln
=
[}
=
el
© .
[3) Menge semantischer Wert-
= Strukturen zuweisungen
£

Beziehung zwischen Aussagen-

Interpretationen & For- logische
meln: Welche Interpre-  Erflllungs-
tationen sind Modelle relation
welcher Formeln?

.
()
o AL
c c
S O
= =
25
w 2
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Modelltheorie

Wie definiert man logische Semantik ,,modelltheoretisch“?

Aussagenl. Pradikatenl.
% abzahlbare Menge syn- Aussagen- Pradikaten-
£ taktischer Ausdriicke logische logische
£ Formeln Satze
=
[}
=
el
=
[3) Menge semantischer Wert- Pradikaten-
09; Strukturen zuweisungen logische
i Interpretationen
o Beziehung zwischen Aussagen- Pradikaten-
= %:L Interpretationen & For- logische logische
% =l meln: Welche Interpre-  Erfiillungs- Erfullungs-
2 ® . . . .
im 1@ tationen sind Modelle relation relation

welcher Formeln?
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Modelltheorie

Wie definiert man logische Semantik ,,modelltheoretisch“?

Aussagenl. Pradikatenl.
% abzahlbare Menge syn- Aussagen- Pradikaten-
E taktischer Ausdriicke logische logische
£ Formeln Satze
=
[}
=
.9
©
[3) Menge semantischer Wert- Pradikaten-
g Strukturen zuweisungen logische
i Interpretationen
o Beziehung zwischen Aussagen- Pradikaten-
= %:L Interpretationen & For- logische logische
% =l meln: Welche Interpre-  Erfiillungs- Erfullungs-
2 ® . . . .
im 1@ tationen sind Modelle relation relation

welcher Formeln?
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Pradikatenl. (offen)

Pradikatenlogische
Formeln (offen oder
geschlossen)

Pradikatenlogische
Interpretationen
+ Zuweisungen

Pradikatenlogische
Erfallungsrelation
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Modelltheorie: Intuition

Die Modelltheorie einer Logik legt (ziemlich abstrakt) fest, worliber die Logik etwas
aussagt:
* Formeln: Behauptungen, die wahr oder falsch sein kénnen.
® [nterpretationen: Mdgliche Welten, in denen manche Behauptungen gelten und
andere nicht.
* Modelle: Interpretationen, die eine bestimmte Formel oder Theorie erfillen.
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Modelltheorie: Intuition

Die Modelltheorie einer Logik legt (ziemlich abstrakt) fest, worliber die Logik etwas
aussagt:
* Formeln: Behauptungen, die wahr oder falsch sein kénnen.
® [nterpretationen: Mdgliche Welten, in denen manche Behauptungen gelten und
andere nicht.
* Modelle: Interpretationen, die eine bestimmte Formel oder Theorie erfillen.

Interpretationen E Formeln
I Rl
I F

I3'// .Fs

I4/ .F4
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Tautologien und Widerspriche

Man unterscheidet Typen von Formeln nach ihren Modellen:

® allgemeingultig (tautologisch): Eine Formel, die in allen Interpretationen wahr ist
(alle Interpretationen als Modelle hat).

e widersprlchlich (unerflllbar): Eine Formel, die in keiner Interpretation wahr ist
(kein Modell hat).

e erfullbar: Eine Formel, die in einer Interpretation wahr ist (ein Modell hat).

® widerlegbar: Eine Formel, die in einer Interpretation falsch ist (deren Negation ein
Modell hat).
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Tautologien und Widerspriche

Man unterscheidet Typen von Formeln nach ihren Modellen:

¢ allgemeingultig (tautologisch): Eine Formel, die in allen Interpretationen wahr ist

(alle Interpretationen als Modelle hat).

e widersprlchlich (unerflllbar): Eine Formel, die in keiner Interpretation wahr ist

(kein Modell hat).

e erfillbar: Eine Formel, die in einer Interpretation wabhr ist (ein Modell hat).

® widerlegbar: Eine Formel, die in einer Interpretation falsch ist (deren Negation ein

Modell hat).

7 Fi

I, F

I3’// 0F3

I4/ 0F4
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Tautologien und Widerspriche

Man unterscheidet Typen von Formeln nach ihren Modellen:

® allgemeingultig (tautologisch): Eine Formel, die in allen Interpretationen wahr ist
(alle Interpretationen als Modelle hat).

e widersprlchlich (unerflllbar): Eine Formel, die in keiner Interpretation wahr ist
(kein Modell hat).

e erfullbar: Eine Formel, die in einer Interpretation wahr ist (ein Modell hat).

® widerlegbar: Eine Formel, die in einer Interpretation falsch ist (deren Negation ein
Modell hat).

7 F: erflllbar, widerlegbar

@

I, F

I3’// 0F3

I4/ 0F4
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Tautologien und Widerspriche

Man unterscheidet Typen von Formeln nach ihren Modellen:

® allgemeingultig (tautologisch): Eine Formel, die in allen Interpretationen wahr ist
(alle Interpretationen als Modelle hat).

e widersprlchlich (unerflllbar): Eine Formel, die in keiner Interpretation wahr ist
(kein Modell hat).

e erfullbar: Eine Formel, die in einer Interpretation wahr ist (ein Modell hat).

® widerlegbar: Eine Formel, die in einer Interpretation falsch ist (deren Negation ein
Modell hat).

7 F: erflllbar, widerlegbar

7, F,: erfullbar, allgemeinglltig

I3'// .F3

I4/ 0F4
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Tautologien und Widerspriche

Man unterscheidet Typen von Formeln nach ihren Modellen:

® allgemeingultig (tautologisch): Eine Formel, die in allen Interpretationen wahr ist
(alle Interpretationen als Modelle hat).

e widersprlchlich (unerflllbar): Eine Formel, die in keiner Interpretation wahr ist
(kein Modell hat).

e erfullbar: Eine Formel, die in einer Interpretation wahr ist (ein Modell hat).

® widerlegbar: Eine Formel, die in einer Interpretation falsch ist (deren Negation ein
Modell hat).

7 F: erflllbar, widerlegbar

7, F,: erfullbar, allgemeinglltig

T '// . F;5: erfillbar, widerlegbar

I4/ 0F4
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Tautologien und Widerspriche

Man unterscheidet Typen von Formeln nach ihren Modellen:

® allgemeingultig (tautologisch): Eine Formel, die in allen Interpretationen wahr ist
(alle Interpretationen als Modelle hat).

e widersprlchlich (unerflllbar): Eine Formel, die in keiner Interpretation wahr ist
(kein Modell hat).

e erfullbar: Eine Formel, die in einer Interpretation wahr ist (ein Modell hat).

® widerlegbar: Eine Formel, die in einer Interpretation falsch ist (deren Negation ein
Modell hat).

7 F: erflllbar, widerlegbar

7, F,: erfullbar, allgemeinglltig

T '// . F;5: erfillbar, widerlegbar

7 / F,: unerfilllbar, widerlegbar
4 °
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Logisches Schliel3en

Aus der Modelltheorie ergibt sich, was logisches Schlie3en genau bedeutet und welche
Schlisse man ziehen darf:

® Wenn 7 E F, dann nennt man 7 ein Modell fir die Formel F und man sagt 7
erflllt F.

® [ ist ein Modell fir eine Formelmenge 7, in Symbolen 7 E 7, wenn I [ F flr
jede Formel F € 7.

® Eine Formel F ist eine logische Konsequenz aus einer Formel(menge) G, in
Symbolen G  F, wenn jedes Modell von G auch ein Modell von F ist, d.h.
I E G impliziert I E F.
Sonderfall: Ist F' eine Tautologie, dann schreiben wir | F.

e Zwei Formel(menge)n F und G sind semantisch aquivalent, in Symbolen F = G,
wenn sie die gleichen Modelle haben, d.h. wenn fur alle Interpretationen I gilt:
I EFgdw. 7 EG.
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Beispiel: Logisches Schlie3en

I, £y

7y £

7 F3

I4/ 0F4

Was folgt aus F3?

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 14

Folie 16 von 31


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel: Logisches Schlie3en

I, £y

7y £

I4/ 0F4

Was folgt aus F3?
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Beispiel: Logisches Schlie3en

F,

F
I4 / . 4
Was folgt aus F3?

® Die Modelle von F; sind 7, und 7.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 14 Folie 16 von 31


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Beispiel: Logisches SchlieBen

Was folgt aus F3?
® Die Modelle von F; sind 7, und 7.
® J, und 73 sind wiederum gemeinsame Modelle von zwei Formeln: F5 und Fj.
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Beispiel: Logisches Schlie3en

7 £y

—®

I, F

13// .

7, / ° Fs
Was folgt aus F5?

® Die Modelle von F; sind 7, und 7.
® J, und 73 sind wiederum gemeinsame Modelle von zwei Formeln: F5 und Fj.

Anders gesagt: ,Immer wenn F; wabhr ist, dann ist auch F, wahr.”
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Beispiel: Logisches Schlie3en

7 £y

—®

I, F

13// .

7, / ° Fs
Was folgt aus F5?

® Die Modelle von F; sind 7, und 7.
® J, und 73 sind wiederum gemeinsame Modelle von zwei Formeln: F5 und Fj.

Anders gesagt: ,Immer wenn F; wabhr ist, dann ist auch F, wahr.”
Es gilt also: F5 E F».
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Quiz: Logisches SchlieBen

Es gilt F = G gdw. jedes Modell fur F auch ein Modell fir G ist.

I, £

—.—®

Is.// .F3

I4/ ’F4

Quiz: Welche der folgenden Schiussfolgerungen gelten? ...
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Eigenschaften der semantischen Aquivalenz

Die aus der Aussagenlogik bekannten Eigenschaften von = gelten auch allgemein:

Satz: = ist eine Aquivalenzrelation, d.h. reflexiv, symmetrisch und transitiv.

Satz:
® Alle Tautologien sind semantisch aquivalent.
e Alle unerfiillbaren Formeln sind semantisch aquivalent.

Satz: Semantische Aquivalenz entspricht wechselseitiger logischer Konsequenz:

F=G genau dann wenn FEGund GEF

Die Behauptungen folgen jeweils direkt aus den Definitionen.
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Inseln mit Lignern und Wahrheitssagern

Ruckblick Logelei: ,Wir sind hier alle vom gleichen Typ.”
e Jeder Einwohner ist entweder Wahrheitssager oder Ligner.”
F1 = VYx.(W(x) A =L(x)) V (L(x) A =W(x)))
e Auf dieser Insel haben alle den gleichen Typ.*
Fry =Vx.W(x) Vv Vx.L(x)
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Inseln mit Lignern und Wahrheitssagern

Ruckblick Logelei: ,Wir sind hier alle vom gleichen Typ.”
e Jeder Einwohner ist entweder Wahrheitssager oder Ligner.”
Fy = VYx.(Wx) A =L(x)) V (L(x) A =W(x)))
e Auf dieser Insel haben alle den gleichen Typ.*
Fry =Vx.W(x) Vv Vx.L(x)
Wir betrachten einige ,reprasentative” Modelle von F, eine Formalisierung der
gegebenen Information und weitere Formeln:

F;
L L o
oLy .Hx.W(X)—>F2 Gegebene
L) = —F, Theorie
W'L °
L]
Vx.L(x)
W_w ©
e V. W(x)
[ ]
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Inseln mit Lignern und Wahrheitssagern

Ruckblick Logelei: ,Wir sind hier alle vom gleichen Typ.”
e Jeder Einwohner ist entweder Wahrheitssager oder Lugner.*
F1 = VYx.(W(x) A =L(x)) V (L(x) A =W(x)))
¢  Auf dieser Insel haben alle den gleichen Typ.”
F, =Vx.W(x) Vv Vx.L(x)
Wir betrachten einige ,reprasentative“ Modelle von F, eine Formalisierung der
gegebenen Information und weitere Formeln:

L,L ° Gegebene
Theorie
W, L,
Vx.L(x)
MWy ..Vx.W(x)
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F, =Vx.W(x) Vv Vx.L(x)
Wir betrachten einige ,reprasentative“ Modelle von F, eine Formalisierung der
gegebenen Information und weitere Formeln:

E L8 Gegebene
/ Theorie
W_L
L}
Vx.L(x)
W ]
e V. W(x)
(]
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Inseln mit Lignern und Wahrheitssagern

Ruckblick Logelei: ,Wir sind hier alle vom gleichen Typ.”
e Jeder Einwohner ist entweder Wahrheitssager oder Lugner.*
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¢  Auf dieser Insel haben alle den gleichen Typ.”
F, =Vx.W(x) Vv Vx.L(x)
Wir betrachten einige ,reprasentative“ Modelle von F, eine Formalisierung der
gegebenen Information und weitere Formeln:

Gegebene
Theorie

Vx.L(x)
Yx. W(x)
°
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Ruckblick Logelei: ,Wir sind hier alle vom gleichen Typ.”
e Jeder Einwohner ist entweder Wahrheitssager oder Lugner.*
F1 = VYx.(W(x) A =L(x)) V (L(x) A =W(x)))
¢  Auf dieser Insel haben alle den gleichen Typ.”
F, =Vx.W(x) Vv Vx.L(x)
Wir betrachten einige ,reprasentative“ Modelle von F, eine Formalisierung der
gegebenen Information und weitere Formeln:

Gegebene
Theorie

L}
/ Vox.L(x)
W,
W T W
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Inseln mit Lignern und Wahrheitssagern

Ruckblick Logelei: ,Wir sind hier alle vom gleichen Typ.”
e Jeder Einwohner ist entweder Wahrheitssager oder Lugner.*
F1 = VYx.(W(x) A =L(x)) V (L(x) A =W(x)))
¢  Auf dieser Insel haben alle den gleichen Typ.”
F, =Vx.W(x) Vv Vx.L(x)
Wir betrachten einige ,reprasentative“ Modelle von F, eine Formalisierung der
gegebenen Information und weitere Formeln:

L,L, Gegebene
Theorie
W_L
L}
/ Vox.L(x)
Wow

e \Vx.W(x)

Aus der Theorie folgt Vx.W(x): ,Alle Inselbewohner sind von Typ W.*
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Das Problem des logischen Schlie3ens

Zwei praktisch wichtige Fragen:

(1) Model Checking:
Fir eine gegebene Interpretation 7 und eine Formel F, gilt 7 E F?

(2) Logische Folgerung (Entailment):
Fir gegebene Formel(menge)n F und G, gilt F = G?
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Das Problem des logischen Schlie3ens

Zwei praktisch wichtige Fragen:

(1) Model Checking:
Far eine gegebene Interpretation 7 und eine Formel F, gilt I | F?

(2) Logische Folgerung (Entailment):
Far gegebene Formel(menge)n F und G, gilt F E G?

In der Aussagenlogik ist beides relativ einfach l6sbar:

(1) Berechne den Wahrheitswert unter einer Belegung (in linearer Zeit).

(2) Uberpriife Unerfillbarkeit von F A =G (coNP-vollstandig).
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Das Problem des logischen Schlie3ens

Zwei praktisch wichtige Fragen:

(1) Model Checking:
Far eine gegebene Interpretation 7 und eine Formel F, gilt I | F?

(2) Logische Folgerung (Entailment):
Far gegebene Formel(menge)n F und G, gilt F E G?

In der Aussagenlogik ist beides relativ einfach l6sbar:

(1) Berechne den Wahrheitswert unter einer Belegung (in linearer Zeit).

(2) Uberpriife Unerfillbarkeit von F A =G (coNP-vollstandig).

In der Pradikatenlogik ist das nicht so einfach:
Siehe kommende Vorlesungen.
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Monotonie und Tautologie

Aus der Definition von [= folgt Monotonie:
® Mehr Satze < weniger Modelle:

® Je mehr Satze in einer logischen Theorie gegeben sind,
desto weniger Modelle hat die gesamte Theorie,
desto mehr Schlussfolgerungen kann man aus ihr ziehen.

Das heif3t: ,Mehr Annahmen fihren zu mehr Schlussfolgerungen.”
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Monotonie und Tautologie

Aus der Definition von [= folgt Monotonie:
® Mehr Satze < weniger Modelle:

® Je mehr Satze in einer logischen Theorie gegeben sind,
desto weniger Modelle hat die gesamte Theorie,
desto mehr Schlussfolgerungen kann man aus ihr ziehen.

Das heif3t: ,Mehr Annahmen fihren zu mehr Schlussfolgerungen.”

Formal hei3t Monotonie:

Aus 7, C 7 folgt stets (F |71 = F}C{F |7, E F}.
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Monotonie und Tautologie

Aus der Definition von [= folgt Monotonie:
® Mehr Satze < weniger Modelle:
® Je mehr Satze in einer logischen Theorie gegeben sind,
desto weniger Modelle hat die gesamte Theorie,
desto mehr Schlussfolgerungen kann man aus ihr ziehen.

Das heif3t: ,Mehr Annahmen fihren zu mehr Schlussfolgerungen.”

Formal hei3t Monotonie:

Aus 7, C 7 folgt stets (F |71 = F}C{F |7, E F}.

Die Extremfalle dieses Prinzips sind:
® Tautologien: sind in jeder Interpretation wahr und daher logische Konsequenz jeder
Theorie.
® Unerfillbare Formeln: sind in keinem Modell wahr und haben daher alle anderen
Sétze als Konsequenz.
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Modelltheorie ist allgemein guiltig

Was wir bisher Uber Modelltheorie gesagt haben, gilt fiir jede Logik, deren Semantik auf
einer Modell-Beziehung k= von Interpretationen zu einzelnen Formeln basiert:

Aussagenlogik

Pradikatenlogik (nur Satze und Interpretationen)

Pradikatenlogik (beliebige Formeln und Interpretationen+Zuweisungen)
Logik zweiter Stufe

Modal-, Temporal- und Beschreibungslogiken

Mehrwertige Logiken

Nichtklassische Logiken

Andere Eigenschaften der Pradikatenlogik sind nicht ganz so allgemein.
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Pradikatenlogik und Aussagenlogik
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Verhaltnis zur Aussagenlogik

Die Semantik der Operatoren —, A, vV, — und « ist in Prédikatenlogik und
Aussagenlogik gleich definiert:

® Wir ersetzen Wertzuweisungen w durch Interpretationen 7 mit Zuweisungen Z.
® Ansonsten ist die Definition der Semantik genau gleich.
~» Alle aussagenlogischen Gesetze gelten analog.
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Verhaltnis zur Aussagenlogik

Die Semantik der Operatoren —, A, vV, — und « ist in Prédikatenlogik und
Aussagenlogik gleich definiert:

® Wir ersetzen Wertzuweisungen w durch Interpretationen 7 mit Zuweisungen Z.
® Ansonsten ist die Definition der Semantik genau gleich.
~» Alle aussagenlogischen Gesetze gelten analog.

Beispiel: Die De Morganschen Regeln gelten auch in der Pradikatenlogik, z.B. 7, Z E
—=(F A G) genau dann wenn 7, Z E (=F V =G), das heiBt =(F A G) = (=F V =G).

Aligemein gelten alle bekannten aussagenlogischen Aquivalenzen.
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”|: — H“ und ”E — H“

Auch die folgenden Satze gelten analog zur Aussagenlogik:
(Siehe Formale Systeme, Vorlesung 22)

Satz (Deduktionstheorem): Fiir jede Formelmenge # und Formeln G und H gilt
F E G — H genau dann wenn ¥ U {G} E H.

Korollar: F A G E H genau dann wenn F = G — H.

Korollar: F = G genau dann wenn E F & G.

Dennoch sind = und = nicht dasselbe wie — und «:

® Die Relationen = und = kdnnen sich auch auf (mdglicherweise unendliche)
Mengen von Formeln beziehen.

® Die Symbole — und < sind syntaktische Operatoren und kénnen (eventuell
geschachtelt) in Formeln auftreten.
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Das Ersetzungstheorem

Auch das folgende intuitiv einleuchtende Ergebnis kann von der Aussagenlogik auf die
Pradikatenlogik Ubertragen werden:

Satz (Ersetzungstheorem): Sei F eine Formel mit einer Teilformel G. Wenn G = G’
und wenn F’” aus F gebildet werden kann, indem man ein beliebiges Vorkommen von
G in F durch G’ ersetzt, dann gilt auch F = F’.

Der detaillierte Beweis muss allerdings alle méglichen Formen von Formeln betrachten
(Induktion Uber Formelstruktur). Im Vergleich zur Aussagenlogik misste man also noch
zeigen, dass die Ersetzung von &quivalenten Formeln in 9x.G und VYx.G zulassig ist.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 14 Folie 26 von 31


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Riickblick: Aussagenlogische Aquivalenzen (1)

FAG=GAF
FVG=GVF

Kommutativitat

(FAGYAH =F A (G AH)
(FVG)VH=FV (GV H)

Assoziativitat

FA(GVH) = (FAG)V(FAH)

Distributivitat
FV(GAH)=(FVG)AN(FVH)

FAF=F
Idempotenz

FVF=F

FA(FVG) =F
Absorption

FV(FAG) =F
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Riickblick: Aussagenlogische Aquivalenzen (2)

-—F=F doppelte Negation

~(F A G) = (=F V =G)

De Morgansche Gesetze
=(FV G) = (=F A =G)

FAT=F .
Gesetze mit T
FvT=T
FAL=1 .
Gesetze mit L
FVvli=F
T =1
-1 =T

Dabei stellen wir wie zuvor T durch eine beliebige Tautologie (z.B. p vV —=p) und L durch

einen beliebigen Widerspruch (z.B. p A —p) dar.
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Aussagenlogik in Pradikatenlogik darstellen

Aussagenlogische Atome p kann man durch pradikatenlogische Atome p() auffassen,
wobei p ein nullstelliges Pradikatensymbol ist.

Sei p € P ein nullstelliges Pradikat.

Welche Interpretationen p? sind méglich?
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Aussagenlogik in Pradikatenlogik darstellen

Aussagenlogische Atome p kann man durch pradikatenlogische Atome p() auffassen,
wobei p ein nullstelliges Pradikatensymbol ist.

Sei p € P ein nullstelliges Pradikat.

Welche Interpretationen p? sind méglich?
e Laut Definition gilt p? c (A7)°.
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Aussagenlogik in Pradikatenlogik darstellen

Aussagenlogische Atome p kann man durch pradikatenlogische Atome p() auffassen,
wobei p ein nullstelliges Pradikatensymbol ist.

Sei p € P ein nullstelliges Pradikat.
Welche Interpretationen p? sind méglich?
e Laut Definition gilt p? c (A7)°.

® (AY)? enthélt alle ,nullstelligen Tupel®.
~» Es gibt aber nur ein einziges nullstelliges Tupel ().
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Aussagenlogik in Pradikatenlogik darstellen

Aussagenlogische Atome p kann man durch pradikatenlogische Atome p() auffassen,
wobei p ein nullstelliges Pradikatensymbol ist.

Sei p € P ein nullstelliges Pradikat.

Welche Interpretationen p? sind méglich?
e Laut Definition gilt p? c (A7)°.
o (A1) enthélt alle ,nullstelligen Tupel“.
~» Es gibt aber nur ein einziges nullstelliges Tupel ().
e Also ist p? C {()}:

- p’ = {()) bedeutet I k= p() (,Aussage wahr);
— p’ = {} bedeutet I [~ p() (,Aussage falsch").

Deshalb kann man nullstellige Pradikate wie aussagenlogische Atome verwenden.

In diesem Sinne ist die Aussagenlogik ein Teil der Pradikatenlogik.
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Auflésung: Logelei

Im Inselreich der Menschen von Typ W und Typ L fragte Smullyan' die Bewohner nach
ihren Rauchgewohnheiten:

¢ Auf Insel A antwortete jeder der Bewohner:
~Jeder, der hier von Typ W ist, raucht.”

® Auf Insel B antwortete jeder der Bewohner:
»Einige von uns hier sind von Typ L und rauchen.”

e Auf Insel C hatten alle den gleichen Typ und jeder sagte:
.Falls ich rauche, dann raucht jeder hier.”

e Auf Insel D hatten alle den gleichen Typ und jeder sagte:
»Einige hier rauchen, aber ich nicht.”

'R. Smullyan: A Beginner’s Guide to Mathematical Logic, Dover 2014
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ihren Rauchgewohnheiten:

¢ Auf Insel A antwortete jeder der Bewohner:
wJeder, der hier von Typ W ist, raucht.”
Die Aussage stimmt und alle sind vom Typ W.

® Auf Insel B antwortete jeder der Bewohner:
»Einige von uns hier sind von Typ L und rauchen.”

e Auf Insel C hatten alle den gleichen Typ und jeder sagte:
.Falls ich rauche, dann raucht jeder hier.”

e Auf Insel D hatten alle den gleichen Typ und jeder sagte:
»Einige hier rauchen, aber ich nicht.”

'R. Smullyan: A Beginner’s Guide to Mathematical Logic, Dover 2014
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ihren Rauchgewohnheiten:

¢ Auf Insel A antwortete jeder der Bewohner:
wJeder, der hier von Typ W ist, raucht.”
Die Aussage stimmt und alle sind vom Typ W.

® Auf Insel B antwortete jeder der Bewohner:
»Einige von uns hier sind von Typ L und rauchen.”
Alle sind vom Typ L und keiner raucht.

e Auf Insel C hatten alle den gleichen Typ und jeder sagte:
.Falls ich rauche, dann raucht jeder hier.”

e Auf Insel D hatten alle den gleichen Typ und jeder sagte:
»Einige hier rauchen, aber ich nicht.”

'R. Smullyan: A Beginner’s Guide to Mathematical Logic, Dover 2014
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Auflésung: Logelei

Im Inselreich der Menschen von Typ W und Typ L fragte Smullyan' die Bewohner nach
ihren Rauchgewohnheiten:

¢ Auf Insel A antwortete jeder der Bewohner:
wJeder, der hier von Typ W ist, raucht.”
Die Aussage stimmt und alle sind vom Typ W.

® Auf Insel B antwortete jeder der Bewohner:
»Einige von uns hier sind von Typ L und rauchen.”
Alle sind vom Typ L und keiner raucht.

e Auf Insel C hatten alle den gleichen Typ und jeder sagte:
.Falls ich rauche, dann raucht jeder hier.”
Alle sagen die Wahrheit; es rauchen alle oder keiner.

e Auf Insel D hatten alle den gleichen Typ und jeder sagte:
»Einige hier rauchen, aber ich nicht.”

'R. Smullyan: A Beginner’s Guide to Mathematical Logic, Dover 2014
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Auflésung: Logelei

Im Inselreich der Menschen von Typ W und Typ L fragte Smullyan' die Bewohner nach
ihren Rauchgewohnheiten:

¢ Auf Insel A antwortete jeder der Bewohner:
wJeder, der hier von Typ W ist, raucht.”
Die Aussage stimmt und alle sind vom Typ W.

* Auf Insel B antwortete jeder der Bewohner:
»Einige von uns hier sind von Typ L und rauchen.”
Alle sind vom Typ L und keiner raucht.

e Auf Insel C hatten alle den gleichen Typ und jeder sagte:
.Falls ich rauche, dann raucht jeder hier.”
Alle sagen die Wahrheit; es rauchen alle oder keiner.

e Auf Insel D hatten alle den gleichen Typ und jeder sagte:
»Einige hier rauchen, aber ich nicht.”
Alle ligen; es rauchen alle oder keiner.

'R. Smullyan: A Beginner’s Guide to Mathematical Logic, Dover 2014
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Zusammenfassung und Ausblick

Modelltheorie definiert logische Semantik aus der Beziehung von Formeln
(Behauptungen) und Interpretationen (mdglichen Welten).

Logisches SchlieBen ist die Berechnung (Uberpriifung) einzelner Beziehungen der
Form I | F (Model checking) bzw. F = G (Schlussfolgerung).

Pradikatenlogik verallgemeinert Aussagenlogik und viele der dort glltigen Gesetze.

Was erwartet uns als nichstes?
® |ogisches SchlieBen: (Un)Entscheidbarkeit und Komplexitat
® Resolution fur Pradikatenlogik
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