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Rückblick: Logelei

Wir kehren zurück auf das Inselreich mit Menschen von Typ W (kennen und sagen die
Wahrheit) und Typ L (kennen die Wahrheit und sagen deren Negation).

Smullyan1 fragte die Bewohner nach ihren Rauchgewohnheiten.

• Auf Insel A antwortete jeder der Bewohner:
„Jeder, der hier von Typ W ist, raucht.“

• Auf Insel B antwortete jeder der Bewohner:
„Einige von uns hier sind von Typ L und rauchen.“

• Auf Insel C hatten alle den gleichen Typ und jeder sagte:
„Falls ich rauche, dann raucht jeder hier.“

• Auf Insel D hatten alle den gleichen Typ und jeder sagte:
„Einige hier rauchen, aber ich nicht.“

Was können wir jeweils über die Bewohner und ihre Gewohnheiten schließen?

1R. Smullyan: A Beginner’s Guide to Mathematical Logic, Dover 2014
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Prädikatenlogik: Syntax

Wir betrachten unendliche, disjunkte Mengen von Variablen V, Konstanten C und
Prädikatensymbolen P.

Ein prädikatenlogisches Atom ist ein Ausdruck p(t1, . . . , tn) für ein n-stelliges Prädika-
tensymbol p ∈ P und Terme t1, . . . , tn ∈ V ∪ C.
Die Menge der prädikatenlogische Formeln ist induktiv definiert:

• Jedes Atom p(t1, . . . , tn) ist eine prädikatenlogische Formel
• Wenn x ∈ V eine Variable und F und G prädikatenlogische Formeln sind, dann

sind auch die folgenden prädikatenlogische Formeln:
– ¬F Negation „nicht F“
– (F ∧ G) Konjunktion „F und G“
– (F ∨ G) Disjunktion „F oder G“
– (F → G) Implikation „F impliziert G“
– (F ↔ G) Äquivalenz „F ist äquivalent zu G“
– ∃x.F Existenzquantor „für ein x gilt F“
– ∀x.F Allquantor „für alle x gilt F“
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Semantik der Prädikatenlogik
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Interpretationen und Zuweisungen

Die Wertzuweisungen der Aussagenlogik werden also durch Interpretationen und
Zuweisungen für Variablen ersetzt.

Eine Interpretation I ist ein Paar ⟨∆I, ·I⟩ bestehend aus einer nichtleeren Grundmen-
ge ∆I (der Domäne) und einer Interpretationsfunktion ·I, welche:

• jede Konstante a ∈ C auf ein Element aI ∈ ∆I und

• jedes n-stellige Prädikatensymbol p ∈ P auf eine Relation pI ⊆
(
∆I
)n

abbildet.

Eine Zuweisung Z für eine Interpretation I ist eine Funktion Z : V→ ∆I, die Varia-
blen auf Elemente der Domäne abbildet. Für x ∈ V und δ ∈ ∆I schreiben wir Z[x 7→ δ]
für die Zuweisung, die x auf δ und alle anderen Variablen y , x auf Z(y) abbildet.
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Atome interpretieren

Wir bestimmen dementsprechend die Wahrheit von Atomen unter einer Interpretation
und Zuweisung:

Sei I eine Interpretation und Z eine Zuweisung für I.

• Für eine Konstante c definieren wir cI,Z = cI.

• Für eine Variable x definieren wir xI,Z = Z(x).

Für ein Atom p(t1, . . . , tn) setzen wir sodann:

• p(t1, . . . , tn)I,Z = 1 wenn ⟨tI,Z1 , . . . , tI,Zn ⟩ ∈ pI und

• p(t1, . . . , tn)I,Z = 0 wenn ⟨tI,Z1 , . . . , tI,Zn ⟩ < pI.

Achtung: Wir verwenden Interpretationen und Zuweisungen auf zwei Ebenen, die
man nicht verwechseln sollte:

(1) um Terme t auf Elemente tI,Z ∈ ∆I abzubilden;

(2) um Atome A auf Wahrheitswerte AI,Z ∈ {0, 1} abzubilden.
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Formeln interpretieren

Eine Interpretation I und eine Zuweisung Z für I erfüllen eine Formel F, in Symbolen
I,Z |= F, wenn eine der folgenden rekursiven Bedingungen gilt:

Formel F I,Z |= F wenn: I,Z ̸|= F wenn:

F Atom FI,Z = 1 FI,Z = 0

¬G I,Z ̸|= G I,Z |= G

(G1 ∧ G2) I,Z |= G1 und I,Z |= G2 I,Z ̸|= G1 oder I,Z ̸|= G2

(G1 ∨ G2) I,Z |= G1 oder I,Z |= G2 I,Z ̸|= G1 und I,Z ̸|= G2

(G1→G2) I,Z ̸|= G1 oder I,Z |= G2 I,Z |= G1 und I,Z ̸|= G2

(G1↔G2) I,Z |= G1 und I,Z |= G2 I,Z |= G1 und I,Z ̸|= G2
oder oder

I,Z ̸|= G1 und I,Z ̸|= G2 I,Z ̸|= G1 und I,Z |= G2

∀x.G I,Z[x 7→ δ] |= G I,Z[x 7→ δ] ̸|= G
für alle δ ∈ ∆I für mindestens ein δ ∈ ∆I

∃x.G I,Z[x 7→ δ] |= G I,Z[x 7→ δ] ̸|= G
für mindestens ein δ ∈ ∆I für alle δ ∈ ∆I

Gilt I |= F für einen Satz F, sagen wir: I ist ein Modell für F.
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Beispiel

„Null ist eine natürliche Zahl und jede natürliche Zahl hat einen Nachfolger, der ebenfalls
eine natürliche Zahl ist.“

F = NatNum(null) ∧ ∀x.
(
NatNum(x)→ ∃y.

(
succ(x, y) ∧ NatNum(y)

))
Wir betrachten eine Interpretation I mit

• ∆I = R die Menge der reellen Zahlen

• nullI = 0
• NatNumI = N ⊆ R die Menge der natürlichen Zahlen

• succI = {⟨d, e⟩ | d, e ∈ R, d < e}

Dann gilt I |= F (unter jeder beliebigen Zuweisung) – I ist ein Modell von F.

Notation: Bei der Interpretation von Sätzen (Formeln ohne freie Variablen) spielen
Zuweisungen keine Rolle. Wir schreiben sie in diesem Fall nicht.

Sebastian Rudolph, TU Dresden Theoretische Informatik und Logik, VL 14 Folie 8 von 31

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Logik auf Sätzen

Wie im vorigen Beispiel interessieren uns oft nur Sätze:

• In den meisten Anwendungen arbeitet man nur mit Sätzen.

• Dann genügt es, Interpretationen zu betrachten.

• Zuweisungen sind in diesem Fall ein technisches Hilfsmittel zur Definition der
Bedeutung von Sätzen.

Eine Menge von Sätzen wird oft Theorie genannt.

Beispiel: Der Begriff stammt aus der Mathematik. Die Theorie der partiellen Ordnun-
gen kann man z.B. wie folgt definieren:

∀x.(x ⪯ x) Reflexivität

∀x, y, z.
(
(x ⪯ y ∧ y ⪯ z)→ x ⪯ z

)
Transitivität

∀x, y.
(
(x ⪯ y ∧ y ⪯ x)→ x ≈ y

)
Antisymmetrie

Dies definiert die Eigenschaften eines binären Prädikates ⪯ (hier infix geschrieben).
Dabei verwenden wir zudem ein Gleichheitsprädikat ≈ (dazu später mehr).
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Semantische Grundbegriffe
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Modelltheorie
Wie definiert man logische Semantik „modelltheoretisch“?
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Modelltheorie
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Modelltheorie: Intuition
Die Modelltheorie einer Logik legt (ziemlich abstrakt) fest, worüber die Logik etwas
aussagt:
• Formeln: Behauptungen, die wahr oder falsch sein können.
• Interpretationen: Mögliche Welten, in denen manche Behauptungen gelten und

andere nicht.
• Modelle: Interpretationen, die eine bestimmte Formel oder Theorie erfüllen.

|=Interpretationen Formeln

I1

I2

I3

I4

F1

F2

F3

F4
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Tautologien und Widersprüche
Man unterscheidet Typen von Formeln nach ihren Modellen:
• allgemeingültig (tautologisch): Eine Formel, die in allen Interpretationen wahr ist

(alle Interpretationen als Modelle hat).
• widersprüchlich (unerfüllbar): Eine Formel, die in keiner Interpretation wahr ist

(kein Modell hat).
• erfüllbar: Eine Formel, die in einer Interpretation wahr ist (ein Modell hat).
• widerlegbar: Eine Formel, die in einer Interpretation falsch ist (deren Negation ein

Modell hat).

I1

I2

I3

I4

F1

F1: erfüllbar, widerlegbar

F2

F2: erfüllbar, allgemeingültig

F3

F3: erfüllbar, widerlegbar

F4

F4: unerfüllbar, widerlegbar
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Logisches Schließen

Aus der Modelltheorie ergibt sich, was logisches Schließen genau bedeutet und welche
Schlüsse man ziehen darf:

• Wenn I |= F, dann nennt man I ein Modell für die Formel F und man sagt I
erfüllt F.

• I ist ein Modell für eine Formelmenge T , in Symbolen I |= T , wenn I |= F für
jede Formel F ∈ T .

• Eine Formel F ist eine logische Konsequenz aus einer Formel(menge) G, in
Symbolen G |= F, wenn jedes Modell von G auch ein Modell von F ist, d.h.
I |= G impliziert I |= F.
Sonderfall: Ist F eine Tautologie, dann schreiben wir |= F.

• Zwei Formel(menge)n F und G sind semantisch äquivalent, in Symbolen F ≡ G,
wenn sie die gleichen Modelle haben, d.h. wenn für alle Interpretationen I gilt:
I |= F gdw. I |= G.
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Beispiel: Logisches Schließen

I1

I2

I3

I4

F1

F2

F3

F4

Was folgt aus F3?

• Die Modelle von F3 sind I2 und I3.

• I2 und I3 sind wiederum gemeinsame Modelle von zwei Formeln: F3 und F2.

Anders gesagt: „Immer wenn F3 wahr ist, dann ist auch F2 wahr.“

Es gilt also: F3 |= F2.
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• I2 und I3 sind wiederum gemeinsame Modelle von zwei Formeln: F3 und F2.

Anders gesagt: „Immer wenn F3 wahr ist, dann ist auch F2 wahr.“

Es gilt also: F3 |= F2.
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Quiz: Logisches Schließen

Es gilt F |= G gdw. jedes Modell für F auch ein Modell für G ist.

I1

I2

I3

I4

F1

F2

F3

F4

Quiz: Welche der folgenden Schlussfolgerungen gelten? . . .
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Eigenschaften der semantischen Äquivalenz

Die aus der Aussagenlogik bekannten Eigenschaften von ≡ gelten auch allgemein:

Satz: ≡ ist eine Äquivalenzrelation, d.h. reflexiv, symmetrisch und transitiv.

Satz:

• Alle Tautologien sind semantisch äquivalent.

• Alle unerfüllbaren Formeln sind semantisch äquivalent.

Satz: Semantische Äquivalenz entspricht wechselseitiger logischer Konsequenz:

F ≡ G genau dann wenn F |= G und G |= F

Die Behauptungen folgen jeweils direkt aus den Definitionen.
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Inseln mit Lügnern und Wahrheitssagern
Rückblick Logelei: „Wir sind hier alle vom gleichen Typ.“
• „Jeder Einwohner ist entweder Wahrheitssager oder Lügner.“

F1 = ∀x.
(
(W(x) ∧ ¬L(x)) ∨ (L(x) ∧ ¬W(x))

)
• „Auf dieser Insel haben alle den gleichen Typ.“

F2 = ∀x.W(x) ∨ ∀x.L(x)

Wir betrachten einige „repräsentative“ Modelle von F1, eine Formalisierung der
gegebenen Information und weitere Formeln:

L L

W L

W W

Gegebene
Theorie

F1

∃x.W(x)→ F2

∃x.L(x)→ ¬F2

∀x.L(x)

∀x.W(x)

Aus der Theorie folgt ∀x.W(x): „Alle Inselbewohner sind von Typ W.“
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Das Problem des logischen Schließens

Zwei praktisch wichtige Fragen:

(1) Model Checking:
Für eine gegebene Interpretation I und eine Formel F, gilt I |= F?

(2) Logische Folgerung (Entailment):
Für gegebene Formel(menge)n F und G, gilt F |= G?

In der Aussagenlogik ist beides relativ einfach lösbar:

(1) Berechne den Wahrheitswert unter einer Belegung (in linearer Zeit).

(2) Überprüfe Unerfüllbarkeit von F ∧ ¬G (coNP-vollständig).

In der Prädikatenlogik ist das nicht so einfach:
Siehe kommende Vorlesungen.
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Monotonie und Tautologie
Aus der Definition von |= folgt Monotonie:
• Mehr Sätze⇔ weniger Modelle:
• Je mehr Sätze in einer logischen Theorie gegeben sind,

desto weniger Modelle hat die gesamte Theorie,
desto mehr Schlussfolgerungen kann man aus ihr ziehen.

Das heißt: „Mehr Annahmen führen zu mehr Schlussfolgerungen.“

Formal heißt Monotonie:

Aus T1 ⊆ T2 folgt stets {F | T1 |= F } ⊆ {F | T2 |= F } .

Die Extremfälle dieses Prinzips sind:
• Tautologien: sind in jeder Interpretation wahr und daher logische Konsequenz jeder

Theorie.
• Unerfüllbare Formeln: sind in keinem Modell wahr und haben daher alle anderen

Sätze als Konsequenz.
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Modelltheorie ist allgemein gültig

Was wir bisher über Modelltheorie gesagt haben, gilt für jede Logik, deren Semantik auf
einer Modell-Beziehung |= von Interpretationen zu einzelnen Formeln basiert:

• Aussagenlogik

• Prädikatenlogik (nur Sätze und Interpretationen)

• Prädikatenlogik (beliebige Formeln und Interpretationen+Zuweisungen)

• Logik zweiter Stufe

• Modal-, Temporal- und Beschreibungslogiken

• Mehrwertige Logiken

• Nichtklassische Logiken

• . . .

Andere Eigenschaften der Prädikatenlogik sind nicht ganz so allgemein.
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Prädikatenlogik und Aussagenlogik
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Verhältnis zur Aussagenlogik

Die Semantik der Operatoren ¬, ∧, ∨,→ und↔ ist in Prädikatenlogik und
Aussagenlogik gleich definiert:

• Wir ersetzen Wertzuweisungen w durch Interpretationen I mit Zuweisungen Z.

• Ansonsten ist die Definition der Semantik genau gleich.

{ Alle aussagenlogischen Gesetze gelten analog.

Beispiel: Die De Morganschen Regeln gelten auch in der Prädikatenlogik, z.B. I,Z |=
¬(F ∧ G) genau dann wenn I,Z |= (¬F ∨ ¬G), das heißt ¬(F ∧ G) ≡ (¬F ∨ ¬G).

Allgemein gelten alle bekannten aussagenlogischen Äquivalenzen.
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„|= =→“ und „≡ =↔“

Auch die folgenden Sätze gelten analog zur Aussagenlogik:
(Siehe Formale Systeme, Vorlesung 22)

Satz (Deduktionstheorem): Für jede Formelmenge F und Formeln G und H gilt
F |= G→ H genau dann wenn F ∪ {G} |= H.

Korollar: F ∧ G |= H genau dann wenn F |= G→ H.

Korollar: F ≡ G genau dann wenn |= F ↔ G.

Dennoch sind |= und ≡ nicht dasselbe wie→ und↔:

• Die Relationen |= und ≡ können sich auch auf (möglicherweise unendliche)
Mengen von Formeln beziehen.

• Die Symbole→ und↔ sind syntaktische Operatoren und können (eventuell
geschachtelt) in Formeln auftreten.
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Das Ersetzungstheorem

Auch das folgende intuitiv einleuchtende Ergebnis kann von der Aussagenlogik auf die
Prädikatenlogik übertragen werden:

Satz (Ersetzungstheorem): Sei F eine Formel mit einer Teilformel G. Wenn G ≡ G′

und wenn F′ aus F gebildet werden kann, indem man ein beliebiges Vorkommen von
G in F durch G′ ersetzt, dann gilt auch F ≡ F′.

Der detaillierte Beweis muss allerdings alle möglichen Formen von Formeln betrachten
(Induktion über Formelstruktur). Im Vergleich zur Aussagenlogik müsste man also noch
zeigen, dass die Ersetzung von äquivalenten Formeln in ∃x.G und ∀x.G zulässig ist.
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Rückblick: Aussagenlogische Äquivalenzen (1)

F ∧ G ≡ G ∧ F

F ∨ G ≡ G ∨ F
Kommutativität

(F ∧ G) ∧ H ≡ F ∧ (G ∧ H)

(F ∨ G) ∨ H ≡ F ∨ (G ∨ H)
Assoziativität

F ∧ (G ∨ H) ≡ (F ∧ G) ∨ (F ∧ H)

F ∨ (G ∧ H) ≡ (F ∨ G) ∧ (F ∨ H)
Distributivität

F ∧ F ≡ F

F ∨ F ≡ F
Idempotenz

F ∧ (F ∨ G) ≡ F

F ∨ (F ∧ G) ≡ F
Absorption
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Rückblick: Aussagenlogische Äquivalenzen (2)

¬¬F ≡ F doppelte Negation

¬(F ∧ G) ≡ (¬F ∨ ¬G)

¬(F ∨ G) ≡ (¬F ∧ ¬G)
De Morgansche Gesetze

F ∧ ⊤ ≡ F

F ∨ ⊤ ≡ ⊤
Gesetze mit ⊤

F ∧ ⊥ ≡ ⊥

F ∨ ⊥ ≡ F
Gesetze mit ⊥

¬⊤ ≡ ⊥

¬⊥ ≡ ⊤

Dabei stellen wir wie zuvor ⊤ durch eine beliebige Tautologie (z.B. p ∨ ¬p) und ⊥ durch
einen beliebigen Widerspruch (z.B. p ∧ ¬p) dar.
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Aussagenlogik in Prädikatenlogik darstellen

Aussagenlogische Atome p kann man durch prädikatenlogische Atome p() auffassen,
wobei p ein nullstelliges Prädikatensymbol ist.

Sei p ∈ P ein nullstelliges Prädikat.

Welche Interpretationen pI sind möglich?

• Laut Definition gilt pI ⊆ (∆I)0.

• (∆I)0 enthält alle „nullstelligen Tupel“.
{ Es gibt aber nur ein einziges nullstelliges Tupel ⟨⟩.

• Also ist pI ⊆ {⟨⟩}:
– pI = {⟨⟩} bedeutet I |= p() („Aussage wahr“);
– pI = {} bedeutet I ̸|= p() („Aussage falsch“).

Deshalb kann man nullstellige Prädikate wie aussagenlogische Atome verwenden.

In diesem Sinne ist die Aussagenlogik ein Teil der Prädikatenlogik.
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Aussagenlogische Atome p kann man durch prädikatenlogische Atome p() auffassen,
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Auflösung: Logelei

Im Inselreich der Menschen von Typ W und Typ L fragte Smullyan1 die Bewohner nach
ihren Rauchgewohnheiten:

• Auf Insel A antwortete jeder der Bewohner:
„Jeder, der hier von Typ W ist, raucht.“

Die Aussage stimmt und alle sind vom Typ W.

• Auf Insel B antwortete jeder der Bewohner:
„Einige von uns hier sind von Typ L und rauchen.“

Alle sind vom Typ L und keiner raucht.

• Auf Insel C hatten alle den gleichen Typ und jeder sagte:
„Falls ich rauche, dann raucht jeder hier.“

Alle sagen die Wahrheit; es rauchen alle oder keiner.

• Auf Insel D hatten alle den gleichen Typ und jeder sagte:
„Einige hier rauchen, aber ich nicht.“

Alle lügen; es rauchen alle oder keiner.

1R. Smullyan: A Beginner’s Guide to Mathematical Logic, Dover 2014
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Zusammenfassung und Ausblick

Modelltheorie definiert logische Semantik aus der Beziehung von Formeln
(Behauptungen) und Interpretationen (möglichen Welten).

Logisches Schließen ist die Berechnung (Überprüfung) einzelner Beziehungen der
Form I |= F (Model checking) bzw. F |= G (Schlussfolgerung).

Prädikatenlogik verallgemeinert Aussagenlogik und viele der dort gültigen Gesetze.

Was erwartet uns als nächstes?

• Logisches Schließen: (Un)Entscheidbarkeit und Komplexität

• Resolution für Prädikatenlogik
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