Chapter 6

Negation: Procedural Interpretation
Outline

- Motivate negation with two examples
- Extended programs and queries
- The computation mechanism: SLDNF-derivations
- Allowed programs and queries
- Negation in Prolog

[Apt and Bol, 1994]
Why Negation? Example (I)

```
attend(flp, andreas) ←
attend(flp, maja) ←
attend(flp, dirk) ←
attend(flp, natalia) ←
attend(fcp, andreas) ←
attend(fcp, maja) ←
attend(fcp, stefan) ←
attend(fcp, arturo) ←
```

Who attends FCP but not FLP?

```
attend(fcp, x), ¬attend(flp, x)
```
Why Negation? Example (II)

sets (lists) $A = [a_1, ..., a_m]$ and $B = [b_1, ..., b_n]$ disjoint

\iff

- $m = 0$, or
- $m > 0$, $a_1 \notin B$, and $[a_2, ..., a_m]$ and B are disjoint

```
\text{disjoint}([\ ], x) \leftarrow
\text{disjoint}([x|y], z) \leftarrow \neg \text{member}(x, z), \text{disjoint}(y, z)
```
Extended Logic Programs and Queries

- “¬” negation sign
- $A, \neg A$ literals \iff A atom
- $A, \neg A$ ground literals \iff A ground atom
- (extended) query \iff finite sequence of literals
- $H \leftarrow B$ (extended) clause \iff H atom, B extended query
- (extended) program \iff finite set of extended clauses
How do we Compute?

Negation as Failure (NF): \iff

1. Suppose $\neg A$ is selected in the query $Q = L, \neg A, N$.
2. If $P \cup \{A\}$ succeeds, then the derivation of $P \cup \{Q\}$ fails at this point.
3. If all derivations of $P \cup \{A\}$ fail, then Q resolves to $Q' = L, N$.

$\neg A$ succeeds iff A finitely fails.

$\neg A$ finitely fails iff A succeeds.

$\text{SLDNF} = \text{Selection rule driven Linear resolution for Definite clauses augmented by Negation as Failure rule}$
SLDNF-Resolvents

1. $Q = L, A, N$ query; A selected, positive literal
 - $H \leftarrow M$ variant of a clause c which is variable-disjoint with Q, θ MGU of A and H
 - $Q' = (L, M, N)\theta$ SLDNF-resolvent of Q (and c w.r.t. A with θ)
 - We write this SLDNF-derivation step as $Q \xrightarrow{\theta} Q'$

2. $Q = L, \neg A, N$ query; $\neg A$ selected, negative ground literal
 - $Q' = L, N$ SLDNF-resolvent of Q (w.r.t. $\neg A$ with ϵ)
 - We write this SLDNF-derivation step as $Q \xrightarrow{\epsilon} Q'$
Pseudo Derivations

A maximal sequence of SLDNF-derivation steps

\[Q_0 \Rightarrow^{\theta_1} Q_1 \ldots \Rightarrow^{\theta_{n+1}} Q_n \Rightarrow^{c_1} Q_{n+1} \ldots \]

- is a pseudo derivation of \(P \cup \{Q_0\} \):
- \(Q_0, \ldots, Q_{n+1}, \ldots \) are queries, each empty or with one literal selected in it;
- \(\theta_1, \ldots, \theta_{n+1}, \ldots \) are substitutions;
- \(c_1, \ldots, c_{n+1}, \ldots \) are clauses of program \(P \) (in case a positive literal is selected in the preceding query);
- for every SLDNF-derivation step with input clause “standardization apart” holds.
Forests

$\mathcal{F} = (\mathcal{T}, T, \text{subs})$ forest \iff

- \mathcal{T} set of trees where
 - nodes are queries;
 - a literal is selected in each non-empty query;
 - leaves may be marked as “success”, “failure”, or “floundered”.

- $T \in \mathcal{T}$ main tree

- subs assigns to some nodes of trees in \mathcal{T} with selected negative ground literal $\neg A$ a subsidiary tree of \mathcal{T} with root A.

tree $T \in \mathcal{T}$ successful \iff it contains a leaf marked as “success”
tree $T \in \mathcal{T}$ finitely failed \iff it is finite and all leaves are marked as “failure”
The class of pre-SLDNF-trees for a program P is the smallest class \mathcal{C} of forests such that

- for every query Q:
 the initial pre-SLDNF-tree $(\{T_Q\}, T_Q, \text{subs})$ is in \mathcal{C}, where T_Q contains the single node Q and $\text{subs}(Q)$ is undefined

- for every $\mathcal{F} \in \mathcal{C}$:
 the extension of \mathcal{F} is in \mathcal{C}
Extension of Pre-SLDNF-Tree (I)

extension of $\mathcal{F} = (T, T, \text{subs})$:

1. Every occurrence of the empty query is marked as “success”.
2. For every non-empty query Q, which is an unmarked leaf in some tree in T, perform the following action:
 Let L be the selected literal of Q.
 - L positive.
 - Q has no SLDNF-resolvents
 \Rightarrow Q is marked as “failure”
 - else
 \Rightarrow for every program clause c which is applicable to L, exactly one direct descendant of Q is added. This descendant is an SLDNF-resolvent of Q and c w.r.t. L.
Extension of Pre-SLDNF-Tree (II)

- $L = \neg A$ negative.
 - A non-ground \Rightarrow Q is marked as “floundered”
 - A ground
 * $\text{subs}(Q)$ undefined
 \Rightarrow new tree T' with single node A is added to T and $\text{subs}(Q)$ is set to T'
 * $\text{subs}(Q)$ defined and successful
 \Rightarrow Q is marked as “failure”
 * $\text{subs}(Q)$ defined and finitely failed
 \Rightarrow SLDNF-resolvent of Q is added as the only direct descendant of Q
 * $\text{subs}(Q)$ defined and neither successful nor finitely failed
 \Rightarrow no action
SLDNF-Trees

SLDNF-tree

\[\iff \text{limit of a sequence } F_0, F_1, F_2, \ldots, \text{ where} \]

- \(F_0 \) initial pre-SLDNF-tree
- \(F_{i+1} \) extension of \(F_i \), for every \(i \in \mathbb{N} \)

SLDNF-tree for \(P \cup \{Q\} \)

\[\iff \]

SLDNF-tree in which \(Q \) is the root of the main tree
Successful, Failed, and Finite SLDNF-Trees

(pre-)SLDNF-tree **successful**
\[\iff \text{its main tree is successful}\]

(pre-)SLDNF-tree **finitely failed**
\[\iff \text{its main tree is finitely failed}\]

SLDNF-tree **finite**
\[\iff \text{no infinite paths exist in it,}\]
where a path is a sequence of nodes \(N_0, N_1, N_2, \ldots\) such that for every \(i = 0, 1, 2, \ldots\):
- either \(N_{i+1}\) is a direct descendant of \(N_i\)
- or \(N_{i+1}\) is the root of \(subs(N_i)\).
Example (1)

\[p \leftarrow p \]

SLDNF-tree for \(P \cup \{ \neg p \} \) is infinite:

```
\neg p
  \neg p
    \neg p
      p
        p
          p
            \vdots
```
Example (II)

SLDNF-tree for $P \cup \{\neg p\}$ is successful:

$\neg p$
\hline
success

p
\hline
q
\hline
failure

q
\hline
\hline
q
\hline
success

q
\hline
\hline
q
\hline
success

\vdots
\vdots
SLDNF-Derivation

SLDNF-derivation of $P \cup \{Q\}$:⇔

branch in the main tree of an SLDNF-tree F for $P \cup \{Q\}$ together with the set of all trees in F whose roots can be reached from the nodes in this branch

SLDNF-derivation successful :⇔

it ends with \Box

Let the main tree of an SLDNF-tree for $P \cup \{Q_0\}$ contain a branch

$$\xi = Q_0 \stackrel{\theta_1}{\longrightarrow} Q_1 \ldots Q_{n-1} \stackrel{\theta_n}{\longrightarrow} Q_n = \Box :$$

computed answer substitution (CAS) of Q_0 (w.r.t. ξ) :⇔ $(\theta_1 \cdots \theta_n) \mid_{\text{Var}(Q_0)}$
A Theorem on Limits

Theorem 3.10 ([Apt and Bol, 1994])

(i) Every SLDNF-tree is the limit of a unique sequence of pre-SLDNF-trees.

(ii) If the SLDNF-tree \mathcal{F} is the limit of the sequence $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, \ldots$, then:

a) \mathcal{F} is successful and yields $\text{CAS } \theta$ if some \mathcal{F}_i is successful and yields $\text{CAS } \theta$,

b) \mathcal{F} finitely failed if some \mathcal{F}_i is finitely failed.
Why Only Select Negative Literals if they are Ground? (I)

\[c_1: \quad \text{zero}(0) \leftarrow \]
\[c_2: \quad \text{positive}(x) \leftarrow \neg \text{zero}(x) \]

\[
\text{positive}(y) \\
\{x/y\} \\
\neg \text{zero}(y) \\
\text{failure} \\
\neg \text{zero}(y) \\
\text{success}
\]

Hence, \(\neg \exists y \text{ positive}(y)\), i.e. \(\forall y \neg \text{positive}(y)\)
Why Only Select Negative Literals if they are Ground? (II)

\[
\begin{align*}
c_1: & \quad \text{zero}(0) \leftarrow \\
c_2: & \quad \text{positive}(x) \leftarrow \neg \text{zero}(x)
\end{align*}
\]

\[
\begin{array}{c}
\text{positive}(s(0)) \\
\quad \{x/s(0)\} \\
\neg \text{zero}(s(0)) \\
\quad \epsilon \\
\end{array}
\]

\[
\text{zero}(s(0)) \\
\text{failure}
\]

\[
\text{success}
\]

Hence, \textit{positive}(s(0))!, i.e. \(\exists y \text{ positive}(y) \)!
Why Only Select Negative Literals if they are Ground? (III)

\[
\begin{align*}
 c_1 & : \quad \text{zero}(0) \leftarrow \\
 c_2 & : \quad \text{positive}(x) \leftarrow \neg \text{zero}(x)
\end{align*}
\]

Fundamental mistake in (\(*\)): \(\exists y \text{ zero}(y)\) is not the opposite of \(\exists y \neg \text{zero}(y)\)
Selection of Non-Ground Negative Literals in Prolog

```prolog
zero(0).
positive(X) :- \\+ zero(X).

?- positive(0).
no

?- positive(s(0)).
yes

?- positive(Y).
no
```
(extended) selection rule :\iff

function which, given a pre-SLDNF-tree $\mathcal{F} = (T, T, subs)$, selects a literal in every non-empty unmarked leaf in every tree in T.

SLDNF-tree \mathcal{F} is according to selection rule \mathcal{R} :\iff
\mathcal{F} is the limit of a sequence of pre-SLDNF-trees in which literals are selected according to \mathcal{R}.

selection rule \mathcal{R} is safe :\iff
\mathcal{R} never selects a non-ground negative literal
query Q blocked

\iff

Q non-empty and contains exclusively non-ground negative literals

$P \cup \{Q\}$ flounders

\iff

some SLDNF-tree for $P \cup \{Q\}$ contains a blocked node
Allowed Programs and Queries

query Q allowed
⇔
every $x \in Var(Q)$ occurs in a positive literal of Q

clause $H \leftarrow B$ allowed $:\Leftrightarrow \neg H, B$ allowed

(thus: unit clause $H \leftarrow$ allowed $:\Leftrightarrow H$ ground atom)

program P allowed $:\Leftrightarrow$ all its clauses are allowed
Allowed Programs and Queries do not Flounder

Theorem 3.13 ([Apt and Bol, 1994])

Suppose that \(P \) and \(Q \) are allowed. Then,

(i) \(P \cup \{Q\} \) does not flounder;

(ii) if \(\theta \) is a CAS of \(Q \), then \(Q\theta \) is ground.
An Example

```
zero(0) ←
positive(x) ← ¬zero(x)
```

This program is not allowed.

```
zero(0) ←
positive(x) ← num(x), ¬zero(x)
num(0) ←
um(s(x)) ← num(x)
```

This program is allowed.
Specifics of PROLOG

- Leftmost selection rule
 - LDNF-resolution, LDNF-resolvent, LDNF-tree, ...
- Non-ground negative literals are selected!
- A program is a sequence of clauses
- Unification without occur check
- Depth-first search, backtracking
Let P extended program and Q_0 extended query.

Extended Prolog Tree for $P \cup \{Q_0\}$ is forest of finitely branching, ordering trees of queries, possibly marked with “success” or “failure”, produced as follows:

- Start with forest ($\{T_{Q_0}\}, T_{Q_0}, \text{subs}$), where T_{Q_0} contains the single node Q_0 and $\text{subs}(Q_0)$ is undefined
- Repeatedly apply to current forest $\mathcal{F} = (T, T, \text{subs})$ and leftmost unmarked leaf Q in T_1, where $T_1 \in T$ is leftmost, bottommost (=most nested subsidiary) tree with an unmarked leaf, the operation $\text{expand}(\mathcal{F}, Q)$
Operation Expand

operation $\text{expand}(\mathcal{F}, Q)$ is defined by:

- if $Q = \square$, then
 1. mark Q with “success”
 2. if $T_1 \neq T$, then remove from T_1 all edges to the right of the branch that ends with Q

- if Q has no LDNF-resolvents, then mark Q with “failure”

- else let L be the leftmost literal in Q:
 - L is positive:
 add for each clause that is applicable to L an LDNF-resovent as descendant of Q
 (such that the order of the clauses is respected)
 - $L = \neg A$ is negative (not necessarily ground):
 - if $\text{subs}(Q)$ is undefined, then add a new tree $T' = A$ and set $\text{subs}(Q)$ to T'
 - if $\text{subs}(Q)$ is defined and successful, then mark Q with “failure”
 - if $\text{subs}(Q)$ is defined and finitely failed,
 then add in T_1 the LDNF-resolvent of Q as the only descendant of Q
Floundering is Ignored (I)

even(0).
even(X) :- \+ odd(X).
odd(s(X)) :- even(X).

?- even(X).
X = 0 ;
no

?- even(s(s(0))).
yes
Floundering is Ignored (II)

num(0).
num(s(X)) :- num(X).
even(X) :- num(X), \+ odd(X).
odd(s(X)) :- even(X).

| ?- even(X).

X = 0 ;
X = s(s(0)) ;
X = s(s(s(0))) ;
::
Objectives

- Motivate negation with two examples
- Extended programs and queries
- The computation mechanism: SLDNF-derivations
- Allowed programs and queries
- Negation in Prolog