
Computational
Logic ∴ Group

Hannes Strass (based on slides by Michael Thielscher)
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Negation: Proof Theory (SLDNF Resolution)
Lecture 7, 20th Nov 2023 // Foundations of Logic Programming, WS 2023/24

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2023)

Previously . . .

• Prolog employs SLD resolution with the leftmost selection rule(⇝ LD resolution), traverses the search space using depth-first search(with backtracking), and regards a program as a sequence of clauses.
• Prolog also offers list processing and arithmetics.
• The cut prunes certain branches of Prolog trees, and can lead to moreefficient programs, but also to programming errors.
not(X) :- X, !, fail.
not(_).
% atom fail always fails
% not is also predefined in Prolog: :- op(900, fy, \+).
% not(X) is written as \+ X

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 2 of 30 Computational
Logic ∴ Group

Overview

Motivation: Why Negation?
Normal Logic Programs and Queries
SLDNF Resolution
Safety of Programs and Queries

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 3 of 30 Computational
Logic ∴ Group

Motivation: Why Negation?

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 4 of 30 Computational
Logic ∴ Group

Motivation: Example (1)

attends(andreas, fkr).
attends(maja, fkr).
attends(dirk, fkr).
attends(natalia, fkr).
attends(andreas, flp).
attends(maja, flp).
attends(stefan, flp).
attends(arturo, flp).

Who attends FLP but not FKR?
?- attends(X, flp), \+ attends(X, fkr).

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 5 of 30 Computational
Logic ∴ Group

Motivation: Example (2)

A list is a set :⇐⇒ there are no duplicates in it.
is_set([]).
is_set([H|T]) :- \+ member(H, T), is_set(T).

The sets (lists) A = [a1, . . . ,am] and B = [b1, . . . ,bn] are disjoint:⇐⇒
• m = 0, or
• m > 0, a1 /∈ B, and [a2, . . . ,am] and B are disjoint
disjoint([], _).
disjoint([X|Y], Z) :- \+ member(X, Z), disjoint(Y, Z).

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 6 of 30 Computational
Logic ∴ Group

Normal Logic Programs and Queries

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 7 of 30 Computational
Logic ∴ Group

Normal Logic Programs and Queries
Definition
• We will use the symbol “∼” as (weak) negation sign.
• A literal is an atom A or a (weakly) negated atom ∼A.
• A and ∼A are ground literals :⇐⇒ A is a ground atom.
• A normal query is a finite sequence of (weak) literals.
• H← B⃗ is a normal clause :⇐⇒ H is an atom and B⃗ is a normal query.
• A normal (logic) program is a finite set of normal clauses.
• Everything is as before, but now we are allowed to use (weak) negation inclause bodies (and queries).
• Negation “∼” in ∼A is “weak” because it does not state that A is false;it only states that A cannot be shown to be true from certain premises.
• In contrast, ¬A states that A is false. More on this later in the course.

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 8 of 30 Computational
Logic ∴ Group

SLDNF Resolution

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 9 of 30 Computational
Logic ∴ Group

How Do We Compute?
Definition
The negation as failure (nf) rule is defined as follows:
Suppose ∼A is selected in the query Q = L⃗,∼A, N⃗.
1. If P∪ {A} succeeds, then the derivation of P∪ {Q} fails at this point.
2. If all derivations of P∪ {A} fail, then Q resolves to Q′ = L⃗, N⃗.
Thus:
∼A succeeds iff A finitely fails.
∼A finitely fails iff A succeeds.

Note
SLDNF = Selection rule driven Linear resolution for Definite clausesaugmented by the Negation as Failure rule

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 10 of 30 Computational
Logic ∴ Group

SLDNF Resolvents
Definition
Let Q = L⃗,K , N⃗ be a query and K its selected literal.
1. K = A is an atom:

– H← M⃗ is a variant of a clause c that is variable-disjoint with Q– θ is an mgu of A and H– Q′ = (L⃗, M⃗, N⃗)θ is the SLDNF resolvent of Q (and c w.r.t. A with θ)
– We write this SLDNF derivation step as Q θ

c Q′.
2. K = ∼A is a negative ground literal:

– Q′ = L⃗, N⃗ SLDNF resolvent of Q (w.r.t. ∼A with ε)
– We write this SLDNF derivation step as Q ε Q′.

⇝ SLDNF Resolvent for selected negative non-ground literals is undefined.

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 11 of 30 Computational
Logic ∴ Group

Pseudo Derivations
Definition
A maximal sequence of SLDNF derivation steps

Q0 θ1
c1 Q1 · · · Qn

θn+1
cn+1 Qn+1 · · ·

is a pseudo derivation of P∪ {Q0} :⇐⇒
• Q0, . . . ,Qn+1, . . . are queries, each empty or with one literal selected in it;
• θ1, . . . , θn+1, . . . are substitutions;
• c1, . . . , cn+1, . . . are clauses of program P(in case a positive literal is selected in the preceding query);
• for every SLDNF derivation step with input clause the condition

standardization apart holds.

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 12 of 30 Computational
Logic ∴ Group

Forests
Definition
A triple F = (T, T , subs) is a forest :⇐⇒
• T is a set of trees where

– nodes are queries;– a literal is selected in each non-empty query;– leaves may be marked as “success”, “failure”, or “floundered”;
• T ∈ T is themain tree;
• subs assigns to some nodes of trees in T with selected negative groundliteral ∼A a subsidiary tree of T with root A.
Definition
Let T ∈ T be a tree.
• T is successful :⇐⇒ it contains a leaf marked as “success”.
• T is finitely failed :⇐⇒ it is finite and all leaves are marked as “failure”.

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 13 of 30 Computational
Logic ∴ Group

Pre-SLDNF Trees and their Extensions
Definition
The class of pre-SLDNF trees for a program P is the smallest class C offorests such that
• for every query Q: the initial pre-SLDNF tree ({TQ}, TQ, subs) is in C,where TQ contains the single node Q and subs(Q) is undefined;
• for every F ∈ C: the extension of F is in C.
Definition
The extension of F = (T, T , subs) is the forest that is obtained as follows:
1. Every occurrence of the empty query is marked as “success.”
2. For every non-empty query Q that is an unmarked leaf in some tree in T,perform the action extend(F,Q, L), where L is the selected literal of Q.

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 14 of 30 Computational
Logic ∴ Group

Action extend(F,Q, L)
Recall that L is the selected literal of Q.
Definition
• L is positive. Then extend(F,Q, L) is obtained as follows:

– Q has no SLDNF resolvents⇒ Q is marked as “failure”– else⇒ for every program clause c which is applicable to L, exactly one directdescendant of Q is added. This descendant is an SLDNF resolvent of Q and cw.r.t. L.
• L = ∼A is negative. Then extend(F,Q, L) is obtained as follows:

– A non-ground⇒ Q is marked as “floundered”– A ground: case distinction on Q:
– subs(Q) undefined
⇒ new tree T ′ with single node A is added to T and subs(Q) is set to T ′– subs(Q) defined and successful⇒ Q is marked as “failure”– subs(Q) defined and finitely failed
⇒ SLDNF resolvent of Q is added as the only direct descendant of Q– subs(Q) defined and neither successful nor finitely failed⇒ no action

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 15 of 30 Computational
Logic ∴ Group

SLDNF Trees (Successful, Failed, Finite)
Definition
An SLDNF tree is the limit of a sequence F0,F1,F2 . . ., where
• F0 is an initial pre-SLDNF tree;• Fi+1 is the extension of Fi, for every i ∈ IN.
The SLDNF tree for P∪ {Q} is the SLDNF tree in which Q is the root of themain tree.
Definition
• A (pre-)SLDNF tree is successful :⇐⇒ its main tree is successful.
• A (pre-)SLDNF tree is finitely failed :⇐⇒ its main tree is finitely failed.
• An SLDNF tree is finite :⇐⇒ no infinite paths exist in it, where a path isa sequence of nodes N0,N1,N2, . . . such that for every i = 0, 1, 2, . . .:

– either Ni+1 is a direct descendant of Ni (in the same tree),– or Ni+1 is the root of subs(Ni).
Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 16 of 30 Computational

Logic ∴ Group

Example (1)
Consider the following logic program P: p ← p

The SLDNF tree for P∪ {∼p} is infinite:
∼p

p

p

p

...

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 17 of 30 Computational
Logic ∴ Group

Example (2)

Consider the following logic program P:
p ← ∼q
q ←
q ← qThe SLDNF tree for P∪ {∼p} is successful:

∼p

p

∼q

q

□ q
success

□ q

failure

. . .

□success

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 18 of 30 Computational
Logic ∴ Group

Quiz: SLDNF Trees

Quiz
Consider the following logic program P over variable x and constants a,b: . . .

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 19 of 30 Computational
Logic ∴ Group

SLDNF derivation
Definition
An SLDNF derivation of P∪ {Q} is
• a branch in the main tree of an SLDNF tree F for P∪ {Q}
• together with the set of all trees in F whose roots can be reached fromthe nodes in this branch.
An SLDNF derivation is successful :⇐⇒ the branch ends with □.
Definition
Let the main tree of an SLDNF tree for P∪ {Q0} contain a branch

ξ = Q0 θ1 Q1 · · · Qn–1 θn Qn = □

The computed answer substitution (cas) of Q0 (w.r.t. ξ) is (θ1 · · · θn)|Var(Q0).

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 20 of 30 Computational
Logic ∴ Group

A Theorem on Limits

Theorem 3.10 [Apt and Bol, 1994]
(i) Every SLDNF tree is the limit of a unique sequence of pre-SLDNF trees.
(ii) If the SLDNF tree F is the limit of the sequence F0,F1,F2, . . ., then:

(a) F is successful and yields cas θ iff some Fi is successful and yields cas θ,(b) F is finitely failed iff some Fi is finitely failed.

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 21 of 30 Computational
Logic ∴ Group

Safety of Programs and Queries

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 22 of 30 Computational
Logic ∴ Group

Why Only Select GroundNegative Literals? (1)

zero(0) ←
positive(x) ← ∼zero(x)

positive(y)

∼zero(y)
{x/y}

zero(y)

□

{ y/0}

success

failure

Hence, ¬∃y(positive(y))? That is, ∀y(¬positive(y))?
Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 23 of 30 Computational

Logic ∴ Group

Why Only Select GroundNegative Literals? (2)

zero(0) ←
positive(x) ← ∼zero(x)

positive(s(0))

∼zero(s(0))
{x/s(0)}

zero(s(0))
failure

□

ε

success
Hence, positive(s(0)). That is, ∃y(positive(y)).

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 24 of 30 Computational
Logic ∴ Group

Why Only Select GroundNegative Literals? (3)

zero(0) ←
positive(x) ← ∼zero(x)

∃y(positive(y))

∃y(∼zero(y))
{x/y}

∃y(zero(y))
(⋆)

□

{ y/0}

success

failure

Mistake in (⋆): ∃y(zero(y)) ̸≡ ¬∃y(¬zero(y))
Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 25 of 30 Computational

Logic ∴ Group

Non-Ground Negative Literals in Prolog

zero(0).
positive(X) :- \+ zero(X).

| ?- positive(0).
no

| ?- positive(s(0)).
yes

| ?- positive(Y).
no

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 26 of 30 Computational
Logic ∴ Group

SLDNF Selection Rules & Blocked Queries
Definition
• An SLDNF selection rule is a function that, given a pre-SLDNFtree F = (T, T , subs), selects a literal in every non-empty unmarked leaf inevery tree in T.
• An SLDNF tree F is via a selection rule R :⇐⇒ F is the limit of asequence of pre-SLDNF trees in which literals are selected according to R.
• A selection rule R is safe :⇐⇒ R never selects a non-ground negativeliteral.
Definition
• A query Q is blocked :⇐⇒ Q is non-empty and contains exclusivelynon-ground negative literals.
• P∪ {Q} flounders :⇐⇒ some SLDNF tree for P∪ {Q} contains a blockednode.

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 27 of 30 Computational
Logic ∴ Group

Safety Programs and Queries
Definition
• A query Q is safe :⇐⇒ every variable in Q occurs in a positive literal of Q.
• A clause H ← B⃗ is safe :⇐⇒ the query ∼H, B⃗ is safe.(Thus: A unit clause H ← is safe :⇐⇒ H is a ground atom.)
• A program P is safe :⇐⇒ all its clauses are safe.
Safe clauses and programs are sometimes also called allowed.
Theorem 3.13 [Apt and Bol, 1994]
Suppose that P and Q are safe. Then
(i) P∪ {Q} does not flounder;
(ii) if θ is a cas of Q, then Qθ is ground.
Note: Safety is a syntactic criterion and can be checked effectively.

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 28 of 30 Computational
Logic ∴ Group

Safe Programs: Example

zero(0) ←
positive(x) ← ∼zero(x)

This program is not safe.

zero(0) ←
positive(x) ← num(x), ∼zero(x)
num(0) ←
num(s(x)) ← num(x)

This program is safe.

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 29 of 30 Computational
Logic ∴ Group

Conclusion
Summary
• Normal logic programs allow for “negation” in queries (clause bodies).
• The negation as failure rule treats negated atoms ∼A in queries byasking the query A in a subsidiary tree and negating the answer.
• A proof theory for normal logic programs is given by SLDNF resolution.
• Care must be taken not to let non-ground negative literals get selected.
• A clause is safe iff each of its variables occurs in a positive body literal.
Suggested action points:
• Construct the (leftmost selection rule) SLDNF tree for positive(y) with thesafe version of the program.
• Find examples for programs and queries with blocked nodes in someSLDNF tree.

Negation: Proof Theory (SLDNF Resolution) (Lecture 7)Computational Logic Group // Hannes StrassFoundations of Logic Programming, WS 2023/24 Slide 30 of 30 Computational
Logic ∴ Group

	Motivation: Why Negation?
	Normal Logic Programs and Queries
	SLDNF Resolution
	Safety of Programs and Queries

