TECHNISCHE S .
UNIVERSITAT %?’ Egn?gtfiglr%r:,al
DRESDEN d gic - P

Hannes Strass (based on slides by Michael Thielscher)
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Negation: Proof Theory (SLDNF Resolution)

Lecture 7, 20th Nov 2023 // Foundations of Logic Programming, WS 2023/24

https://iccl.inf.tu-dresden.de/web/Foundations_of_Logic_Programming_(WS2023)

Previously...

* Prolog employs SLD resolution with the leftmost selection rule
(~ LD resolution), traverses the search space using depth-first search
(with backtracking), and regards a program as a sequence of clauses.

* Prolog also offers list processing and arithmetics.

* The cut prunes certain branches of Prolog trees, and can lead to more
efficient programs, but also to programming errors.

not(X) :- X, !, fail.

not(_).

% atom fail always fails

% not is also predefined in Prolog: :- op(900, fy, \+).
% not(X) is written as \+ X

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) ') tati |
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 2 of 30 E:gi‘g:%&z:
DRESDEN Foundations of Logic Programming, WS 2023/24 [

Overview

Motivation: Why Negation?
Normal Logic Programs and Queries
SLDNF Resolution

Safety of Programs and Queries

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 3 of 30 E:ng-'g&zal
DRESDEN Foundations of Logic Programming, WS 2023/24 [9 P

Motivation: Why Negation?

TECHNISCHE \ tion: Proof The (SLDNF Resolution) (Lecture 7) (?zi?Compuk:ﬁonal

UNIVERSITAT Computational // Hannes St Slide 4 0f 30 npu
DRESDEN Foundation =9 Logic -~ Group

Motivation: Example (1)

attends(andreas, fkr).
attends(maja, fkr).
attends(dirk, fkr).
attends(natalia, fkr).
attends(andreas, flp).
attends(maja, flp).
attends(stefan, flp).
attends(arturo, flp).

Who attends FLP but not FKR?

?- attends(X, flp), \+ attends(X, fkr).

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7)
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 5o0f30
DRESDEN Foundations of Logic Programming, WS 2023/24

)

‘Computational
Logic ~ Group

Motivation: Example (2)

Alistis a set < there are no duplicates in it.

is_set([]).
is_set([H|T]) :- \+ member(H, T), is_set(T).

The sets (lists)A =[a1,...,am] and B = [by, ..., by] are disjoint
—

* m=0,or
* m>0,0q ¢ B,and [ay,...,an] and B are disjoint

disjoint([], _).

disjoint([X|Y], Z) :- \+ member(X, Z), disjoint(Y, Z).

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7)
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 6 of 30
DRESDEN Foundations of Logic Programming, WS 2023/24

)

‘Computational
Logic ~ Group

Normal Logic Programs and Queries

TECHNISCHE \ tion: Proof The (SLDNF Resolution) (Lecture 7) (?zi?Compuk:ﬁonal

UNIVERSITAT Computational // Ha St Slide 7 of 30 ic o
DRESDEN Foundation =9 Logic = Group

Normal Logic Programs and Queries

Definition

Ill

We will use the symbol “~" as (weak) negation sign.

A literal is an atom A or a (weakly) negated atom ~A.

A and ~A are ground literals < Ais a ground atom.

A normal query is a finite sequence of (weak) literals.

H <« Bis a normal clause < H is an atom and B is a normal query.

A normal (logic) program is a finite set of normal clauses.

Everything is as before, but now we are allowed to use (weak) negation in
clause bodies (and queries).

Negation “~" in ~A is “weak” because it does not state that A is false;
it only states that A cannot be shown to be true from certain premises.

* In contrast, -A states that A is false. More on this later in the course.

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) .
UNIVERSITAT Coﬁﬂputat\omﬂ Logic G/roup // Hannes Strass Slide 8 of 30 Eiqugr?glf'%‘:;al

DRESDEN Foundations of Logic Programming, WS 2023/24 [gic = P

SLDNF Resolution

TECHNISCHE \ tion: Proof The (SLDNF Resolution) (Lecture 7) '?z-|°Computc|ﬁonal

UNIVERSITAT Computational // Ha St Slide 9 of 30 \ .
DRESDEN Foundation & Y Logic -+ Group

How Do We Compute?

Definition

The negation as failure (nf) rule is defined as follows:

Suppose ~A is selected in the query Q = L, ~A, N.

1. If PU {A} succeeds, then the derivation of P U {Q} fails at this point.
2. If all derivations of P U {A} fail, then Q resolves to Q' = L, N.

Thus:
~A succeeds iff A finitely fails.
~A finitely fails iff A succeeds.

Note

SLDNF = Selection rule driven Linear resolution for Definite clauses
augmented by the Negation as Failure rule

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7)
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 10 of 30
DRESDEN Foundations of Logic Programming, WS 2023/24 [

@ "Compuk:ﬁonal
Logic ~ Group

SLDNF Resolvents

Definition
Let Q = L, K, N be a query and K its selected literal.
1. K=Ais an atom:
- H«< Mis avariant of a clause c that is variable-disjoint with Q

6 is an mgu of Aand H
- Q = (L M, N)8 is the SLDNF resolvent of Q (and ¢ w.r.t. A with 6)

We write this SLDNF derivation step as Q —f» Q.

2. K = ~Ais a negative ground literal:
- Q' = L, N SLDNF resolvent of Q (w.r.t. ~A with €)
- We write this SLDNF derivation step as Q —» Q'.

~» SLDNF Resolvent for selected negative non-ground literals is undefined.

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 11 of 30 (Y Computational
DRESDEN Foundations of Logic Programming, WS 2023/24 [9 P

Pseudo Derivations

Definition
A maximal sequence of SLDNF derivation steps

61 1
Qo—> Q1 Qn—>CQn+1 -+

is a pseudo derivation of PU {Qp} <
* Qo,...,Qn+1, ... are queries, each empty or with one literal selected in it;
s 04,...,0h+1,...are substitutions;

* C1,...,Cp+1, ... are clauses of program P
(in case a positive literal is selected in the preceding query);

+ for every SLDNF derivation step with input clause the condition
standardization apart holds.

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 12 of 30 L H Egrri\gl:.igl:;al
DRESDEN Foundations of Logic Programming, WS 2023/24 [9 P

Forests

Definition

Atriple 5 = (7, T,subs) is a forest «—
« T is aset of trees where

- nodes are queries;
- aliteral is selected in each non-empty query;
- leaves may be marked as “success”, “failure”, or “floundered”;

e T & TJisthe main tree;

* subs assigns to some nodes of trees in T with selected negative ground
literal ~A a subsidiary tree of T with root A.

Definition

Let T € 7 be a tree.

+ Tissuccessful < it contains a leaf marked as “success”.

+ Tis finitely failed <= itis finite and all leaves are marked as “failure”.

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 13 of 30 b H Egrri\gl:.igl:;al
DRESDEN Foundations of Logic Programming, WS 2023/24 [9 P

Pre-SLDNF Trees and their Extensions

Definition

The class of pre-SLDNF trees for a program P is the smallest class € of

forests such that

+ for every query Q: the initial pre-SLDNF tree ({Ty}, Tg, Subs) is in C,
where T, contains the single node Q and subs(Q) is undefined;

+ for every F € C: the extension of Fis in C.

Definition
The extension of 7 = (7, T, subs) is the forest that is obtained as follows:
1. Every occurrence of the empty query is marked as “success.”

2. For every non-empty query Q that is an unmarked leaf in some tree in 7,
perform the action extend(d, Q, L), where L is the selected literal of Q.

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7)
UNIVERSITAT Computational Logic Group // Hannes Strass
DRESDEN Foundations of Logic Programming, WS 2023/24

, .
@ Computational

Slide 14 of 30 & Logic = Group

Action extend(F, Q, L)

Recall that L is the selected literal of Q.
Definition

« Lis positive. Then extend(F, Q, L) is obtained as follows:
Q has no SLDNF resolvents = Q is marked as “failure”
else = for every program clause ¢ which is applicable to L, exactly one direct

descendant of Q is added. This descendant is an SLDNF resolvent of Q and ¢
w.r.t. L.

+ L = ~Ais negative. Then extend(F, Q, L) is obtained as follows:
A non-ground = Q is marked as “floundered”
A ground: case distinction on Q:
- subs(Q) undefined

= new tree T’ with single node A is added to T and subs(Q) is set to T’
- subs(Q) defined and successful = Q is marked as “failure”
- subs(Q) defined and finitely failed

= SLDNF resolvent of Q is added as the only direct descendant of Q
- subs(Q) defined and neither successful nor finitely failed = no action

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 15 of 30 ﬁ_.‘ﬂ Egr?gl:_kg:;al
DRESDEN Foundations of Logic Programming, WS 2023/24 [9 P

SLDNF Trees (Successful, Failed, Finite)
Definition

An SLDNF tree is the limit of a sequence Fy, F1, %> . .., where

* Jpis aninitial pre-SLDNF tree;

* Jiq is the extension of F;, for every i € N.

The SLDNF tree for P U {Q} is the SLDNF tree in which Q is the root of the
main tree.

Definition

* A(pre-)SLDNF tree is successful :<= its main tree is successful.

* A (pre-)SLDNF tree is finitely failed :< its main tree is finitely failed.

* An SLDNF tree is finite :<= no infinite paths exist in it, where a path is
a sequence of nodes Ny, N1, N, ... such that for everyi=0,1,2,...
- either Nj;q is a direct descendant of N, (in the same tree),
- or Njq is the root of subs(N;).

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) ') tati |
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 16 of 30 g Eg":‘cpu"cr“’;l‘f:)
DRESDEN Foundations of Logic Programming, WS 2023/24 [9

Example (1)

Consider the following logic program P: p <« p

The SLDNF tree for PU {~p} is infinite:

~P

c— T — I — IS

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 17 of 30 E:r?flf'g&nal
DRESDEN Foundations of Logic Programming, WS 2023/24 [gic =~ P

Example (2)

Consider the following logic program P:

Q9T
T

The SLDNF tree for PU {~p} is successful:
~P

0 P
\

Success
failure
49
O q
success N\
O q
TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7)
UNIVERSITAT

Gmf? Computational
Computational Logic Group // Hannes Strass Slide 18 of 30 -E[P
DRESDEN Foundations of Logic Programming, WS 2023/24 [Logic = Group

Quiz: SLDNF Trees

Consider the following logic program P over variable x and constants a, b: ...

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) i r) 9
@ UNIVERSITAT Computational Logic Group // Hannes Strass Slide 19 of 30 Egggﬂ_“g‘;ﬁ‘:
DRESDEN Foundations of Logic Programming, WS 2023/24 [

SLDNF derivation

Definition
An SLDNF derivation of PU {Q} is
* abranch in the main tree of an SLDNF tree J for PU {Q}

+ together with the set of all trees in ¥ whose roots can be reached from
the nodes in this branch.

An SLDNF derivation is successful ;< the branch ends with .
Definition
Let the main tree of an SLDNF tree for PU {Qp} contain a branch

6,

§=Q —> Q1+ Qu1 —> Qy =D

The computed answer substitution (cas) of Qg (w.r.t. &) is (61 - - - 61) | var(y)-

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) ') tati |
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 20 of 30 g Eg":‘cpu"sr“’;;“
DRESDEN Foundations of Logic Programming, WS 2023/24 [9 P

A Theorem on Limits

(i) Every SLDNF tree is the limit of a unique sequence of pre-SLDNF trees.
(ii) If the SLDNF tree J is the limit of the sequence Jy, F1, ¥>, .. ., then:

(a) F is successful and yields cas 8 iff some J; is successful and yields cas 6,
(b) J is finitely failed iff some J;j is finitely failed.

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) i r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 21 of 30 E:gi"gl:-kglri’:g
DRESDEN Foundations of Logic Programming, WS 2023/24 [

Safety of Programs and Queries

TECHNISCHE \ tion: Proof The (SLDNF Resolution) (Lecture 7) '?z-|°Computc|ﬁonal

UNIVERSITAT Computational // Hannes St Slide 22 of 30 N npu
DRESDEN Foundation =9 Logic Group

Why Only Select Ground Negative Literals? (1)

positive(y)
zero(0) «
positive(x) «— ~zero(x) {x/y}
~zero(y)
failure T --_

~ zero(y)

{y/0}

success
Hence, -3y(positive(y))? That is, Vy(-positive(y))?
TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) @ °Compuic|ﬁonal
UNIVERSITAT C tational L G /1 Ha St Slide 23 of 30 g
DRESDEN Foundations of Logic programming, WS 2033124 Logié * Group

Why Only Select Ground Negative Literals? (2)

positive(s(0))
zero(0) «
positive(x) « ~zero(x) {x/s(0)}
~zero(s(0))
< - zero(s(0))
failure
O
success
Hence, positive(s(0)). That is, Jy(positive(y)).
e

Why Only Select Ground Negative Literals? (3)

Jy(positive(y))
zero(0) «
positive(x) « ~zero(x) {xty}
Ty~
y(~zero(y)) %)
failure T

“Jy(zero(y))

{y/0}

success
Mistake in (x): Jy(zero(y)) # —3y(-zero(y))
TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) @ °Computc|ﬁonal
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 25 of 30 Pl
DRESDEN Foun%lét\olns of Lo%\c Progr'pamm\r'wé WS 2023/24 Logic ~ Group

Non-Ground Negative Literals in Prolog

zero(9).
positive(X) :- \+ zero(X).

| ?- positive(0).
no

| ?- positive(s(0)).
yes

| ?- positive(Y).
no

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) 9
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 26 of 30 E:r?flf'%l&nal
DRESDEN Foundations of Logic Programming, WS 2023/24 [gic =~ P

SLDNF Selection Rules & Blocked Queries
Definition

* An SLDNF selection rule is a function that, given a pre-SLDNF
tree § = (7, T, subs), selects a literal in every non-empty unmarked leaf in
every tree in 7.

* An SLDNF tree F is via a selection rule R <= & isthelimit of a
sequence of pre-SLDNF trees in which literals are selected according to R.

+ Aselectionrule R is safe <= R never selects a non-ground negative
literal.

Definition

* Aquery Qis blocked :<= Q is non-empty and contains exclusively
non-ground negative literals.

+ PU{Q} flounders <= some SLDNF tree for PU {Q} contains a blocked

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7)] .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 27 of 30 m Compuiational
DRESDEN Foundations of Logic Programming, WS 2023/24 [9 P

Safety Programs and Queries
Definition

* Aquery Qis safe :«<= every variable in Q occurs in a positive literal of Q.

+ Aclause H — Bis safe < the query ~H, B is safe.
(Thus: A unit clause H « is safe (< His a ground atom.)

* Aprogram P is safe <= allits clauses are safe.
Safe clauses and programs are sometimes also called allowed.
Theorem 3.13 [Apt and Bol, 1994]

Suppose that P and Q are safe. Then
(i) PU {Q} does not flounder;
(i) if @ is a cas of Q, then QB is ground.

Safety is a criterion and can be checked effectively.
TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r'Y .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 28 of 30 L Eggl‘cpu"g':)"‘f;

DRESDEN Foundations of Logic Programming, WS 2023/24 [

Safe Programs: Example

zero(0) «
positive(x) < ~zero(x)

This program is not safe.

zero(0) «

positive(x) < num(x), ~zero(x)
num(0) «

num(s(x)) « num(x)

This program is safe.

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7)
@ UNIVERSITAT Computational Logic Group // Hannes Strass Slide 29 of 30

DRESDEN Foundations of Logic Programming, WS 2023/24

)

‘Computational
Logic ~ Group

Conclusion

Summary

Normal logic programs allow for “negation” in queries (clause bodies).

The negation as failure rule treats negated atoms ~A in queries by
asking the query A in a subsidiary tree and negating the answer.

A proof theory for normal logic programs is given by SLDNF resolution.
Care must be taken not to let non-ground negative literals get selected.
A clause is safe iff each of its variables occurs in a positive body literal.

Suggested action points:

Construct the (leftmost selection rule) SLDNF tree for positive(y) with the
safe version of the program.

Find examples for programs and queries with blocked nodes in some
SLDNF tree.

TECHNISCHE Negation: Proof Theory (SLDNF Resolution) (Lecture 7) r) .
UNIVERSITAT Computational Logic Group // Hannes Strass Slide 30 of 30 L H Egrri\gl:.igl:;al
DRESDEN Foundations of Logic Programming, WS 2023/24 [9 P

	Motivation: Why Negation?
	Normal Logic Programs and Queries
	SLDNF Resolution
	Safety of Programs and Queries

