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Paris im August 1900
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Der 2. Internationale Mathematikerkongress

-Wer von uns wirde nicht gern den Schleier
lGften, unter dem die Zukunft verborgen liegt,
um einen Blick zu werfen auf die bevorstehen-
den Fortschritte unsrer Wissenschaft und in
die Geheimnisse ihrer Entwickelung wahrend
der kinftigen Jahrhunderte!”

— David Hilbert, Paris, August 1900
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Der 2. Internationale Mathematikerkongress

-Wer von uns wirde nicht gern den Schleier
lGften, unter dem die Zukunft verborgen liegt,
um einen Blick zu werfen auf die bevorstehen-
den Fortschritte unsrer Wissenschaft und in
die Geheimnisse ihrer Entwickelung wahrend
der kinftigen Jahrhunderte!”

— David Hilbert, Paris, August 1900

Hilbert prasentiert eine Liste offener Fragen fur die Mathematik des 20. Jahrhunderts:
® 1. Problem: Kontinuumshypothese (und Auswahlaxiom)
® 2. Problem: Widerspruchsfreiheit der Arithmetik
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Hiloerts Programm

Aber Hilberts wahres Ziel ist ein neues Verstandnis der Mathematik:

»90 unzuganglich diese Probleme uns erscheinen und so ratlos wir zur Zeit ihnen ge-
genlber stehen — wir haben dennoch die sichere Ueberzeugung, daB3 ihre Lésung
durch eine endliche Anzahl rein logischer Schlisse gelingen muf3.
[--.]
Diese Ueberzeugung von der Lésbarkeit eines jeden mathematischen Problems ist
uns ein kraftiger Ansporn wahrend der Arbeit; wir héren in uns den steten Zuruf: Da
ist das Problem, suche die Lésung. Du kannst sie durch reines Denken finden; denn
in der Mathematik giebt es kein Ignorabimus™!*

— David Hilbert, Paris, August 1900

) lat. ,wir werden es niemals wissen*
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Der Rest ist Geschichte ...

® 1910-1913: Whitehead und Russel formalisieren in ihrer Principia Mathematica
logische Grundlagen der Mathematik
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Wahrheiten der Préadikatenlogik endlich beweisen kann®
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Der Rest ist Geschichte ...

1910-1913: Whitehead und Russel formalisieren in ihrer Principia Mathematica
logische Grundlagen der Mathematik

* 1918-1922: Hilbert spezifiziert sein Programm zur widerspruchsfreien
Formalisierung der Mathematik

® 1928: Hilbert beschreibt das Entscheidungsproblem der Pradikatenlogik

® 1929: Gddel beweist seinen Vollstéandigkeitssatz: ,es gibt ein Kalkil, das alle
Wahrheiten der Préadikatenlogik endlich beweisen kann®

e 1936: Turing definiert ein universelles Rechenmodell: die Turingmaschine

® 1951: Tarski publiziert ein Verfahren, mit dem alle wahren logischen Aussagen Utber
reelle Zahlen, + und * automatisch durch Computer entschieden werden kénnen
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Der Rest ist Geschichte ...

® 1976: Computerbeweis des Vier-Farben-Problems (Appel & Haken)
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Der Rest ist Geschichte ...

® 1976: Computerbeweis des Vier-Farben-Problems (Appel & Haken)
® 1992: IBM'’s Supercomputer WHILE-S beweist die Fermatsche Vermutung
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Der Rest ist Geschichte ...

® 1976: Computerbeweis des Vier-Farben-Problems (Appel & Haken)
® 1992: IBM'’s Supercomputer WHILE-S beweist die Fermatsche Vermutung
® ab 1995: erste Programmierumgebungen mit automatischer Verifikation
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Der Rest ist Geschichte ...

® 1976: Computerbeweis des Vier-Farben-Problems (Appel & Haken)

® 1992: IBM'’s Supercomputer WHILE-S beweist die Fermatsche Vermutung
® ab 1995: erste Programmierumgebungen mit automatischer Verifikation

® 2001: IBM beweist die Goldbachsche Vermutung

® 2005: Google beweist die Riemannsche Vermutung

® 2007: ,American Mathematical Society” benennt sich um in ,Association of
Mathematical Programmers*

® 2010: Zusammenbruch des Banksystems infolge der Veréffentlichung des
Computerbeweises zur Entschliisselung von Public-Key-Kryptographie

® 2013: Einstellung des Studiengangs Mathematik an der TU Dresden (Ubertragung
der Mathematiklehrer-Ausbildung an die Fakultat Informatik)
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So ist es nicht gewesen.”

) alle Ereignisse ab 1992 sind nie passiert
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(A) Historischer Zufall — es kam einfach anders
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(B) Die Hardware ist noch nicht so weit
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So ist es nicht gewesen.”

Warum nicht?

(A) Historischer Zufall — es kam einfach anders
(B) Die Hardware ist noch nicht so weit
(C) Die Software ist noch nicht so weit
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So ist es nicht gewesen.”

Warum nicht?

(A)
(B)
(C) Die Software ist noch nicht so weit
(D)

Historischer Zufall — es kam einfach anders
Die Hardware ist noch nicht so weit

Die beschriebene Entwicklung ist in unserem
Universum unmdglich

) alle Ereignisse ab 1992 sind nie passiert
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So ist es nicht gewesen.”

Warum nicht?

(D) Die beschriebene Entwicklung ist in unserem
Universum unmdglich

*) alle Ereignisse ab 1992 sind nie passiert
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Informatik als Naturwissenschaft

Informatik erforscht, was Computer sind
und welche Probleme man mit ihnen I6sen kann.
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Informatik als Naturwissenschaft

Informatik erforscht, was Computer sind
und welche Probleme man mit ihnen I6sen kann.

Computer = ein System das rechnet (CMOS-Schaltkreise, die Turingmaschine,
DNA-Molekiile, ein qguantenmechanisches System, das Universum, Minecraft, ...)

Ziel: universelle Erkenntnisse — nicht nur Uber die Computertechnologie, die wir gerade
nutzen, sondern Uber die Welt, in der wir leben wie physik

Methode: Spezifikation von einfachen Regeln, aus denen komplexe Systeme entstehen

anders als Physik, die mit dem System anfangt und dessen ,Regeln” sucht
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Kernfragen der theoretischen Informatik

® Was heif3t ,berechnen*?

® Welche Probleme kann man auf reellen Computern Iésen?
* Was wéare wenn wir machtigere Computer hatten?

® Was macht Rechenprobleme ,schwer” oder ,einfach*?

® Sind alternative Rechenmodelle denkbar?

* Welche (mathematischen/physikalischen/biologischen) Systeme kénnen sonst
noch rechnen?

Diese finden sich wieder in zahlreichen Teilgebieten (Berechenbarkeit, Automaten,
Komplexitat, Quantencomputing, logisches SchlieBen, kiinstliche Intelligenz, .. .)
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Ruckblick: Turingmaschinen

{ : :
18y

Alan Turing (5 Jahre alt)
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Turingmaschinen — informell

Schematische Darstellung:

Eingabe-/Speicherband

[aJalalblblc)Dlclclb]D]

Lese-/Schreibkopf
(beweglich)

Endliche

Steuerung
Zustandsvariable
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Turingmaschinen — informell

Schematische Darstellung:

Eingabe-/Speicherband

lalajalplb]clplclc)blD] -

Lese-/Schreibkopf
(beweglich)

Endliche

Steuerung
Zustandsvariable

® Eingabe: aktueller Zustand, gelesenes Zeichen

Ubergangsfunktion:

e Ausgabe: neuer Zustand, geschriebenes Zeichen, Anderung
Lese-/Schreibadresse (= Bewegung Lese-/Schreibkopf)
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Definition DTM

Eine deterministische Turingmaschine (DTM) ist ein Tupel M = (Q,%,T, 6, qo, F) mit
den folgenden Bestandteilen:

® (: endliche Menge von Zustanden

e 3: Eingabealphabet

® T': Arbeitsalphabet mit I' 2 X U {.}

e §: Ubergangsfunktion, eine partielle Funktion
OxI' > OxTI x{L,R,N}

® go: Startzustand gy € O

® F: Menge von akzeptierenden Endzustanden F C Q

Dabei bedeutet 6(g, a) = (p, b, D):
,Liest die TM in Zustand ¢ unter dem Lese-/Schreibkopf ein a,
dann wechselt sie zu Zustand p, Uberschreibt das a mit b
und verschiebt den Lese-/Schreibkopf gemai D € {L, R, N}
(nach links, nach rechts, gar nicht).”
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Beispiel

Wir kénnen TMs in Diagrammen darstellen:

Ein Pfeil s; — s,, D von ¢, nach g, bedeutet
0(q1,51) = (q2, 52, D) (DTM) bzw. (g2, 52, D) € 6(q1, s1) (NTM)

Beispiel:

Was tut diese Turingmaschine?
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TM: Beispiel Abarbeitung

TMs gehen schrittweise von einer Konfiguration in die nachste tber:

1 0,R

Eingabe: 1101
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TM: Beispiel Abarbeitung

TMs gehen schrittweise von einer Konfiguration in die nachste tber:

1 0,R

Eingabe: 1101

g01101
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TM: Beispiel Abarbeitung

TMs gehen schrittweise von einer Konfiguration in die nachste tber:

1 0,R

Eingabe: 1101

01101  0gy101
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TM: Beispiel Abarbeitung

TMs gehen schrittweise von einer Konfiguration in die nachste tber:

1 0,R

Eingabe: 1101

Go1101 + 0g101 F 00g,01
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TM: Beispiel Abarbeitung

TMs gehen schrittweise von einer Konfiguration in die nachste tber:

1 0,R

Eingabe: 1101

¢01101  0gy101 + 004001 - 001g; 1
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TM: Beispiel Abarbeitung

TMs gehen schrittweise von einer Konfiguration in die nachste tber:

1 0,R

- 1R

Eingabe: 1101
01101 + 0¢p101 + 00¢(01 + 001¢; 1

Ausgabe: 0011
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Nichtdeterministische Turingmaschinen
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Nichtdeterministische TMs

Die nichtdeterministische Turingmaschine (NTM)
. modelliert die Ubergangsfunktion als totale Funktion:
OxT — 9 OXIX(L,R,N})
wobei 2&TXILEN} die Potenzmenge von Q X T x {L,R, N} ist

. kann weiterhin mit einem einzigen Anfangszustand arbeiten

Laufe werden wie bei DTMs definiert, aber jetzt kann es pro Eingabe viele Laufe geben

Die Eingabe wird akzeptiert, wenn mindestens ein Lauf endlich ist und in einer
akzeptierenden Konfiguration endet
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Definition NTM

Eine nichtdeterministische Turingmaschine (NTM) ist ein Tupel M = (Q,X.T, 6, qo, F)
mit den folgenden Bestandteilen:

® (: endliche Menge von Zustanden
e 3: Eingabealphabet
e T': Arbeitsalphabet mit I' 2 X U {.}
e §: Ubergangsfunktion, eine totale Funktion
OxT — 9OXIX(L,R,N)

wobei 2&IXILRN} die Potenzmenge von Q x I' x {L, R, N} ist
® go: Startzustand gy € O
® F: Menge von akzeptierenden Endzustanden F € Q

Dabei bedeutet (p, b, D) € 5(q, a):
,Liest die TM in Zustand ¢ unter dem Lese-/Schreibkopf ein a,
dann kann sie zu Zustand p wechseln, a mit b Gberschreiben
und den Lese-/Schreibkopf geméaB D € {L, R, N} verschieben.”
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Wiederholung Grundbegriffe

Konfiguration: der ,Gesamtzustand“ einer TM, bestehend aus Zustand, Bandinhalt und
Position des Lese-/Schreibkopfs;

geschrieben als Wort (Bandinhalt), in dem der Zustand vor der Position des Kopfes
eingefligt ist

Ubergangsrelation: Beziehung zwischen zwei Konfigurationen wenn die TM von der
ersten in die zweite Ubergehen kann (deterministisch oder nichtdeterministisch);
geschrieben als +

Lauf: mégliche Abfolge von Konfigurationen einer TM, beginnend mit der
Startkonfiguration; kann endlich oder unendlich sein

Halten: Ende der Abarbeitung, wenn die TM in einer Konfiguration keinen Ubergang
mehr zur Verfligung hat
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Was ist das Ergebnis einer TM-Berechnung?

Es gibt zwei wesentliche Arten DTMs zu benutzen:

(1) Transducer: Ausgabe der TM ist der Inhalt des Bandes, wenn sie hélt, oder
undefiniert, wenn sie nicht hélt (partielle Funktion); Endzustande spielen keine
Rolle und kénnen weggelassen werden

(2) Entscheider: Ausgabe der TM hat nur zwei Werte: die TM ,akzeptiert”, wenn sie in
einem Endzustand halt und sie ,verwirft“ wenn sie in einem Nicht-Endzustand oder
gar nicht halt; Bandinhalt beim Halten spielt keine Rolle und kann ignoriert werden

Wir werden NTMs nur als Entscheider verwenden: in diesem Fall reicht es, wenn
mindestens ein mdglicher Lauf akzeptiert.
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Nichtdeterminismus # mehr Ausdrucksstarke

\ Satz: Jede NTM ist aquivalent zu einer DTM.
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Nichtdeterminismus # mehr Ausdrucksstarke

\ Satz: Jede NTM ist aquivalent zu einer DTM.

Beweis: Allgemeine Idee:
* Wir simulieren systematisch einen Lauf nach dem anderen

® Die simulierende TM akzeptiert die Eingabe, wenn ein akzeptierender Lauf
gefunden wird

e Andernfalls halt sie nicht an
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Nichtdeterminismus # mehr Ausdrucksstarke

Fatz: Jede NTM ist dquivalent zu einer DTM.

Beweis: Allgemeine Idee:
* Wir simulieren systematisch einen Lauf nach dem anderen

® Die simulierende TM akzeptiert die Eingabe, wenn ein akzeptierender Lauf
gefunden wird

® Andernfalls halt sie nicht an
Wie kann man systematisch alle mdglichen Laufe testen?

e Tiefensuche: berechne zunachst einen Lauf; falls dieser fehlschlagt, dann gehe
zum letzten Entscheidungspunkt zurlick und teste eine andere Mdglichkeit
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Wie kann man systematisch alle mdglichen Laufe testen?

e Tiefensuche: berechne zunachst einen Lauf; falls dieser fehlschlagt, dann gehe
zum letzten Entscheidungspunkt zurlick und teste eine andere Mdglichkeit
~» Problem: nicht akzeptierende Laufe kénnen unendlich sein
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Nichtdeterminismus # mehr Ausdrucksstarke

Fatz: Jede NTM ist dquivalent zu einer DTM.

Beweis: Allgemeine Idee:
* Wir simulieren systematisch einen Lauf nach dem anderen

® Die simulierende TM akzeptiert die Eingabe, wenn ein akzeptierender Lauf
gefunden wird

® Andernfalls halt sie nicht an
Wie kann man systematisch alle mdglichen Laufe testen?

e Tiefensuche: berechne zunachst einen Lauf; falls dieser fehlschlagt, dann gehe
zum letzten Entscheidungspunkt zurlick und teste eine andere Mdglichkeit
~» Problem: nicht akzeptierende Laufe kénnen unendlich sein

® Breitensuche: berechne alle Laufe bis zu einer gewissen Tiefe, fir immer gréBere

Tiefen
~» Simulation eines Laufs wird bei Maximaltiefe abgebrochen
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Nichtdeterminismus # mehr Ausdrucksstarke

\ Satz: Jede NTM ist aquivalent zu einer DTM.

Markus Krétzsch, 5. Januar 2026 Formale Systeme Folie 22 von 37



Nichtdeterminismus # mehr Ausdrucksstarke

Fatz: Jede NTM ist dquivalent zu einer DTM.

Beweis: Die Simulation verwendet eine 3-Band-TM (&quivalent zu einer normalen DTM
wie bereits gezeigt):

Band 1: Eingabewort (wird nie verandert)

Band 2: Arbeitsband der simulierten NTM fr aktuellen Lauf

Band 3: Beschreibung der Ubergangsentscheidungen des aktuell simulierten Laufs
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Fatz: Jede NTM ist dquivalent zu einer DTM.

Beweis: Die Simulation verwendet eine 3-Band-TM (&quivalent zu einer normalen DTM
wie bereits gezeigt):

Band 1: Eingabewort (wird nie verandert)

Band 2: Arbeitsband der simulierten NTM fr aktuellen Lauf

Band 3: Beschreibung der Ubergangsentscheidungen des aktuell simulierten Laufs

Fir jeden Ubergang gibt es nur endlich viele Optionen, sagen wir ¢.
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Nichtdeterminismus # mehr Ausdrucksstarke

Fatz: Jede NTM ist dquivalent zu einer DTM.

Beweis: Die Simulation verwendet eine 3-Band-TM (&quivalent zu einer normalen DTM
wie bereits gezeigt):

Band 1: Eingabewort (wird nie verandert)

Band 2: Arbeitsband der simulierten NTM fr aktuellen Lauf

Band 3: Beschreibung der Ubergangsentscheidungen des aktuell simulierten Laufs

Fir jeden Ubergang gibt es nur endlich viele Optionen, sagen wir ¢.

Dann kann eine Folge von Entscheidungen als Sequenz von Zahlen in {0,..., ¢ — 1}

beschrieben werden
~> Band 3 enthélt solch ein Wort Uber {0, ..., ¢ — 1}
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Nichtdeterminismus # mehr Ausdrucksstarke

Fatz: Jede NTM ist &quivalent zu einer DTM.

Beweis: Die Simulation verwendet eine 3-Band-TM (&quivalent zu einer normalen DTM
wie bereits gezeigt):
Band 1: Eingabewort (wird nie verandert)
Band 2: Arbeitsband der simulierten NTM fr aktuellen Lauf
Band 3: Beschreibung der Ubergangsentscheidungen des aktuell simulierten Laufs
Fir jeden Ubergang gibt es nur endlich viele Optionen, sagen wir ¢.
Dann kann eine Folge von Entscheidungen als Sequenz von Zahlen in {0,..., ¢ — 1}

beschrieben werden
~> Band 3 enthélt solch ein Wort Uber {0, ..., ¢ — 1}

Der Inhalt von Band 3 kann als Zahl zur Basis ¢ gelesen werden: Um systematisch alle
Optionen zu durchsuchen, kann diese Zahl in Schritten von 1 erhdht werden.!

! Hierbei muss eine leicht modifizierte Form von ,Inkrementierung“ verwendet werden, welche die
folgende Sequenz erzeugt: 0, 1,...,(£—1),00,01,...,0(¢ = 1),10,11,...,(€ - 1)(¢ - 1),000,001,...
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Nichtdeterminismus # mehr Ausdrucksstarke

\ Satz: Jede NTM ist aquivalent zu einer DTM.

Beweis: Arbeitsweise der Simulation:
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Nichtdeterminismus # mehr Ausdrucksstarke

\ Satz: Jede NTM ist aquivalent zu einer DTM.

Beweis: Arbeitsweise der Simulation:
(1) Initialisiere Band 3 mit dem Inhalt 0
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Nichtdeterminismus # mehr Ausdrucksstarke

\ Satz: Jede NTM ist aquivalent zu einer DTM.

Beweis: Arbeitsweise der Simulation:
(1) Initialisiere Band 3 mit dem Inhalt 0
(2) Kopiere die Eingabe von Band 1 nach Band 2
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Nichtdeterminismus # mehr Ausdrucksstarke

Fatz: Jede NTM ist dquivalent zu einer DTM.

Beweis: Arbeitsweise der Simulation:
(1) Initialisiere Band 3 mit dem Inhalt 0
(2) Kopiere die Eingabe von Band 1 nach Band 2

(3) Simuliere einen Lauf der NTM auf Band 2. In jedem Schritt wird von Band 3 eine
Zahl gelesen und der Ubergang ausgefiihrt, der dieser Zahl entspricht.

— Falls ein Ubergang mit der gelesenen Zahl nicht méglich ist, gehe zu (4)
— Falls alle Zahlen auf Band 3 gelesen sind, gehe zu (4)
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Nichtdeterminismus # mehr Ausdrucksstarke

Fatz: Jede NTM ist &quivalent zu einer DTM.

Beweis: Arbeitsweise der Simulation:
(1) Initialisiere Band 3 mit dem Inhalt 0
(2) Kopiere die Eingabe von Band 1 nach Band 2
(3) Simuliere einen Lauf der NTM auf Band 2. In jedem Schritt wird von Band 3 eine
Zahl gelesen und der Ubergang ausgefiihrt, der dieser Zahl entspricht.
— Falls ein Ubergang mit der gelesenen Zahl nicht méglich ist, gehe zu (4)
— Falls alle Zahlen auf Band 3 gelesen sind, gehe zu (4)
(4) Prufe ob die simulierte NTM in einem Endzustand angehalten hat und akzeptiere
in diesem Fall, andernfalls:
(5) Inkrementiere die Zahl auf Band 3, I6sche Band 2 und gehe zu Schritt (2) O
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Komplexitat und Terminierung

Fatz: Jede NTM ist dquivalent zu einer DTM.

Komplexitat: Wenn die NTM einen akzeptierenden Lauf der Lange » hat, dann findet
ihn die DTM nach O({") Schritten.

~» Exponentielle Komplexitét
(Es ist bis heute unbekannt, ob es eine effizientere Simulation geben kénnte —
scheinbar nicht, aber der Beweis steht aus)
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Komplexitat und Terminierung

Fatz: Jede NTM ist dquivalent zu einer DTM.

Komplexitat: Wenn die NTM einen akzeptierenden Lauf der Lange » hat, dann findet
ihn die DTM nach O({") Schritten.

~» Exponentielle Komplexitét
(Es ist bis heute unbekannt, ob es eine effizientere Simulation geben kénnte —
scheinbar nicht, aber der Beweis steht aus)

Terminierung: Wenn die NTM ein Entscheider ist (auch bei Nichtakzeptanz garantiert
hélt), dann ist die simulierende DTM . ..
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Komplexitat und Terminierung

Fatz: Jede NTM ist dquivalent zu einer DTM.

Komplexitat: Wenn die NTM einen akzeptierenden Lauf der Lange » hat, dann findet
ihn die DTM nach O({") Schritten.

~» Exponentielle Komplexitét
(Es ist bis heute unbekannt, ob es eine effizientere Simulation geben kénnte —
scheinbar nicht, aber der Beweis steht aus)

Terminierung: Wenn die NTM ein Entscheider ist (auch bei Nichtakzeptanz garantiert
hélt), dann ist die simulierende DTM . ..
nicht unbedingt ein Entscheider (da die Simulation auch bei endlicher Nichtakzeptanz weiter fortgesetzt wird).

Der Beweis kann allerdings so abgewandelt werden, dass diese Eigenschaft gilt, also:

Satz: Jede Sprache die von einer NTM entschieden wird, kann auch von einer DTM
entschieden werden.

Markus Krétzsch, 5. Januar 2026 Formale Systeme Folie 24 von 37



TM, DFA und PDA

Mehrband-NTMs und ihre Aquivalenz zu 1-Band-NTMs sind analog zum
deterministischen Fall.
Damit ist leicht zu sehen:

® Ein DFA kann als DTM aufgefasst werden, welche die Eingabe auf dem Band nur
in einer Richtung liest und niemals beschreibt.

* Ein PDA kann als 2-Band-NTM aufgefasst werden, die das zweite Band als
Kellerspeicher verwendet.

Markus Krétzsch, 5. Januar 2026 Formale Systeme Folie 25 von 37



Church-Turing-These

Church-Turing-These: Eine Funktion ist genau dann im intuitiven Sinne berechenbar,
wenn es eine Turingmaschine gibt, die fir jede mdgliche Eingabe den Wert der Funkii-
on auf das Band schreibt und anschlieBend halt.

In der Tat sind eine groBe Menge von Ansatzen genau gleich stark:

® Turingmaschinen in vielen Varianten (deterministisch/nichtdeterministisch,
Einband/Mehrband, einseitig/zweiseitig unendlich, mit/ohne wahlfreiem Zugriff, . ..)

e J-Kalkdl nach Church

® (Godel und Herbrands allgemeine rekursive Funktionen
* alle bekannten Programmiersprachen’

® Typ-0-Sprachen

® Pradikatenlogik (erster Stufe)

"Sofern wir eventuelle technische Beschrénkungen der maximalen verwendbaren

SpeichergréBe ignorieren.
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Turing-Mé&chtigkeit

Ein Formalismus ist Turing-méachtig, wenn er das Ein-/Ausgabe-Verhalten jeder Turing-
Maschine simulieren kann.

Vorteil: Turing-Machtigkeit garantiert ein Maximum an Ausdrucksstérke
~» gewinscht besonders bei Programmiersprachen

Nachteil: Turing-Machtigkeit bedeutet, dass viele Fragen in Bezug auf die berechnete

Funktion unentscheidbar sind (z.B. Aquivalenz zweier Darstellungen)
~> zumeist unerwlnscht, wenn nicht programmiert wird
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Versehentlich Turing-machtig (1)

Immer wieder stellen sich bestimmte Technologien und formale Systeme unerwartet als
Turing-méchtig heraus.
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Versehentlich Turing-machtig (1)

Immer wieder stellen sich bestimmte Technologien und formale Systeme unerwartet als
Turing-machtig heraus.

C++ Templates

Ein Mechanismus zur generischen Programmierung in C++, bei dem zur Compilezeit
(beliebig viele) Code-Templates instantiiert werden. Damit lassen sich TMs simulieren.
Daher ist das Halteproblem fiir C++-Compiler unentscheidbar. Sogar die Frage, ob
eine gegebene Textdatei ein glltiges C++-Programm ist, ist unentscheidbar. Praktisch
wurde demonstriert, wie der Compiler Primzahlen berechnen und als Compilerfehler
ausgeben kann.
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Versehentlich Turing-machtig (2)

Immer wieder stellen sich bestimmte Technologien und formale Systeme unerwartet als
Turing-méchtig heraus.

TypeScript Typsystem:

Rekursive definierte Typen in TypeScript ermdglichen es, beliebige Berechnungen al-
lein im Typsystem zu implementieren. Erstmals verdéffentlicht von Henning Dieterichs,
2017 [Link]. In 2025 wurde eine erste vollstandige Implementierung von DOOM in
TypeScript Typen vorgestellt [Link], wobei Typdefinitionen im Umfang von insgesamt
177TB ndtig waren.
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https://github.com/Microsoft/TypeScript/issues/14833
https://www.youtube.com/watch?v=0mCsluv5FXA

Versehentlich Turing-méachtig (3)

Immer wieder stellen sich bestimmte Technologien und formale Systeme unerwartet als
Turing-machtig heraus.

Java Generics:

Mechanismus zur generischen Programmierung in Java. Sollte die Turing-
Vollstandigkeit von C++-Templates vermeiden. Offenbar ist das nicht gelungen. Erst-
mals publiziert Mai 2016.
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Versehentlich Turing-méachtig (4)

Immer wieder stellen sich bestimmte Technologien und formale Systeme unerwartet als
Turing-méchtig heraus.

Sendmail:

SMTP-Server, welcher die automatische Umschreibung von Emails mit Regeln unter-
stitzt. Die Zeichenketten kdnnen in diesem Zusammenhang fast direkt als Speicher-
band verwendet werden (&hnliche Effekte gibt es bei anderen String-Umschreibungs-
Systemen, wie Apache Rewrite Rules, wenn diese nicht in ihrer Rekursionstiefe be-
schrankt werden).
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Versehentlich Turing-méachtig (5)

Immer wieder stellen sich bestimmte Technologien und formale Systeme unerwartet als
Turing-méchtig heraus.

X86 Memory Management Unit:

Hardwarekomponente einer verbreiteten Computerarchitektur. Die Verarbeitung von
Seitenfehlern (page faults) kann genutzt werden, um eine Turing-vollstandige Berech-
nung in Gang zu setzten, ohne die CPU zu verwenden. Demonstriert wurde eine Im-
plementierung von Conway’s Game of Life.
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Versehentlich Turing-méachtig (6)

Immer wieder stellen sich bestimmte Technologien und formale Systeme unerwartet als
Turing-machtig heraus.

SQL:

Verbreitete Anfragesprache fur relationale Datenbanken. Mit Hilfe von rekursiven Hilf-
stabellen (Common Table Expressions/WITH RECURSIVE) kann eine einzelne Abfrage
Turingmaschinen simulieren.
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Versehentlich Turing-machtig (7)

Immer wieder stellen sich bestimmte Technologien und formale Systeme unerwartet als
Turing-méchtig heraus.

Magic: The Gathering:

Populares Tauschkartenspiel. Es ist méglich, einen Spielverlauf zu konstruieren, bei
dem Spieler fast keine Entscheidungen treffen miissen und die komplexen Spielregeln
automatisch zur Entwicklung einer TM-Simulation flihren. Dabei wird ein Stapelspei-
cher als Reihe von Zombies mit linear ansteigenden Lebenspunkten représentiert.
[Paper] [Video]
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https://arxiv.org/abs/1904.09828
https://www.youtube.com/watch?v=pdmODVYPDLA

Versehentlich Turing-méachtig (8)

Immer wieder stellen sich bestimmte Technologien und formale Systeme unerwartet als
Turing-machtig heraus.

Microsoft Powerpoint: Programm zum Erstellen von Prasentationen. Simulationen

von Turing-Maschinen auf beliebigem aber begrenztem Speicher kénnen allein durch
Animationen, Links und AutoShapes (ohne VB Makros etc.) realisiert werden. Prak-
tisch wurde lediglich demonstriert, wie man Palindrome gerader Lédnge erkennen kann.
Verdéffentlicht April 2017.

[Video] [Paper]

(Weitere Beispiele siehe
http://bezalel.tuxen.de/articles/accidentally_turing_complete.html.)
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https://youtu.be/uNjxe8ShM-8
https://www.andrew.cmu.edu/user/twildenh/PowerPointTM/Paper.pdf
http://beza1e1.tuxen.de/articles/accidentally_turing_complete.html

Zusammenfassung und Ausblick

Die Theorie der Informatik untersucht Systeme im Hinblick auf ihre Fahigkeit zur
Informationsverarbeitung (Berechnung)

Grundbegriffe: Turingmaschine (det./nichtdet.), Konfiguration, Lauf, Akzeptanz

Nichtdeterministische Turingmaschinen (NTMs) haben die gleiche Ausdrucksstérke wie
deterministische

Church-Turing-These: ,Alle Computer sind gleich®

Was erwartet uns als nachstes?
® Probleme
® Paradoxien

® Phenomenal grof3e Zahlen
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