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Introduction to Datalog
Datalog introduces recursion into database queries

• Use deterministic rules to derive new information from given facts

• Inspired by logic programming (Prolog)

• However, no function symbols and no negation

• Studied in AI (knowledge representation) and in databases (query language)

Example 12.1: Transitive closure C of a binary relation r

C(x, y)← r(x, y)

C(x, z)← C(x, y) ∧ r(y, z)

Intuition:

• some facts of the form r(x, y) are given as input, and the rules derive new
conclusions C(x, y)

• variables range over all possible values (implicit universal quantifier)
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Syntax of Datalog

Recall: A term is a constant or a variable. An atom is a formula of the form R(t1, . . . , tn)
with R a predicate symbol (or relation) of arity n, and t1, . . . , tn terms.

Definition 12.2: A Datalog rule is an expression of the form:

H ← B1 ∧ . . . ∧ Bm

where H and B1, . . . , Bm are atoms. H is called the head or conclusion; B1 ∧ . . . ∧

Bm is called the body or premise. A rule with empty body (m = 0) is called a fact.
A ground rule is one without variables (i.e., all terms are constants).

A set of Datalog rules is a Datalog program.
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Datalog: Example

father(alice, bob)

mother(alice, carla)

mother(evan, carla)

father(carla, david)

Parent(x, y)← father(x, y)

Parent(x, y)← mother(x, y)

Ancestor(x, y)← Parent(x, y)

Ancestor(x, z)← Parent(x, y) ∧ Ancestor(y, z)

SameGeneration(x, x)

SameGeneration(x, y)← Parent(x, v) ∧ Parent(y, w) ∧ SameGeneration(v, w)
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Datalog Semantics by Deduction

What does a Datalog program express?
Usually we are interested in entailed ground atoms

What can be entailed? Informally:

• Restrict to set of constants that occur in program (finite)
{ universeU

• Variables can represent arbitrary constants from this set
{ ground substitutions map variables to constants

• A rule can be applied if its body is satisfied for some ground substitution

Example 12.3: The rule Parent(x, y) ← mother(x, y) can be applied to
mother(alice, carla) under substitution {x 7→ alice, y 7→ carla}.

• If a rule is applicable under some ground substitution, then the according instance
of the rule head is entailed.
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Datalog Semantics by Deduction (2)

An inductive definition of what can be derived:

Definition 12.4: Consider a Datalog program P. The set of ground atoms that
can be derived from P is the smallest set of atoms A for which there is a rule
H ← B1 ∧ . . . ∧ Bn and a ground substitution θ such that

• A = Hθ, and

• for each i ∈ {1, . . . , n}, Biθ can be derived from P.

Notes:

• n = 0 for ground facts, so they can always be derived (induction base)

• if variables in the head do not occur in the body, they can be any constant from the
universe
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Datalog Deductions as Proof Trees

We can think of deductions as tree structures:

Ancestor(alice, david)

Parent(alice, carla) Ancestor(carla, david)

Parent(carla, david)

father(carla, david)

mother(alice, carla)

(8)
{x 7→ alice, y 7→ carla, z 7→ david}

(6)
{x 7→ alice, y 7→ carla}

(7)
{x 7→ carla, y 7→ david}

(5)
{x 7→ carla, y 7→ david}

(2)

(4)

(1) father(alice, bob)

(2) mother(alice, carla)

(3) mother(evan, carla)

(4) father(carla, david)

(5) Parent(x, y)← father(x, y)

(6) Parent(x, y)← mother(x, y)

(7) Ancestor(x, y)← Parent(x, y)

(8) Ancestor(x, z)← Parent(x, y) ∧ Ancestor(y, z)
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Datalog Semantics by Least Fixed Point

Instead of using substitutions, we can also ground programs:

Definition 12.5: The grounding ground(P) of a Datalog program P is the set of all
ground rules that can be obtained from rules in P by uniformly replacing variables
with constants from the universe.

Derivations are described by the immediate consequence operator TP that maps sets of
ground facts I to sets of ground facts TP(I):
• TP(I) = {H | H ← B1 ∧ . . . ∧ Bn ∈ ground(P) and B1, . . . , Bn ∈ I}

• Least fixed point of TP: smallest set L such that TP(L) = L

• Bottom-up computation: T0
P = ∅ and T i+1

P = TP(T i
P)

• The least fixed point of TP is T∞P =
⋃

i≥0 T i
P (exercise)

Observation: Ground atom A is derived from P if and only if A ∈ T∞P

Markus Krötzsch, 23rd May 2023 Database Theory slide 9 of 33



Datalog Semantics by Least Model

We can also read Datalog rules as universally quantified implications

Example 12.6: The rule

Ancestor(x, z)← Parent(x, y) ∧ Ancestor(y, z)

corresponds to the implication

∀x, y, z.Parent(x, y) ∧ Ancestor(y, z)→ Ancestor(x, z).

A set of FO implications may have many models
{ consider least model over the domain defined by the universe

Theorem 12.7: A fact is entailed by the least model of a Datalog program if and
only if it can be derived from the Datalog program.
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Datalog Semantics: Overview

There are three equivalent ways of defining Datalog semantics:

• Proof-theoretic: What can be proven deductively?

• Operational: What can be computed bottom up?

• Model-theoretic: What is true in the least model?

In each case, we restrict to the universe of given constants.
{ similar to active domain semantics in databases
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Datalog as a Query Language

How can we use Datalog to query databases?
{ View database as set of ground facts
{ Specify which predicate yields the query result

Definition 12.8: A Datalog query is a pair ⟨R, P⟩, where P is a Datalog program
and R is the answer predicate.
The result of the query is the set of R-facts entailed by P.

Datalog queries distinguish “given” relations from “derived” ones:

• predicates that occur in a head of P are
intensional database (IDB) predicates

• predicates that only occur in bodies are
extensional database (EDB) predicates

Requirement: database relations used as EDB predicates only
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Datalog as a Generalisation of CQs

A conjunctive query ∃y1, . . . , ym.A1 ∧ . . . ∧ Aℓ with answer variables x1, . . . , xn can be
expressed as a Datalog query ⟨Ans, P⟩ where P has the single rule:

Ans(x1, . . . , xn)← A1 ∧ . . . ∧ Aℓ

Unions of CQs can also be expressed (how?)

Intuition: Datalog generalises UCQs by adding recursion.
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Datalog and UCQs

We can make the relationship of Datalog and UCQs more precise:

Definition 12.9: For a Datalog program P:

• An IDB predicate R depends on an IDB predicate S if P contains a rule with
R in the head and S in the body.

• P is non-recursive if there is no cyclic dependency.

Theorem 12.10: UCQs have the same expressivity as non-recursive Datalog.

That is: a query mapping can be expressed by some UCQ if and only if it can be
expressed by a non-recursive Datalog program.

However, Datalog can be exponentially more succinct (shorter), as illustrated in an
exercise.
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Proof
Theorem 12.10: UCQs have the same expressivity as non-recursive Datalog.

Proof: “Non-recursive Datalog can express UCQs”: Just discussed.

“UCQs can express non-recursive Datalog”

: Obtained by resolution:
• Given rules ρ1 : R(s1, . . . , sn)← C1 ∧ . . . ∧ Cℓ and
ρ2 : H ← B1 ∧ . . . ∧ R(t1, . . . , tn) ∧ . . . ∧ Bm

(w.l.o.g. having no variables in common with ρ1)
• such that R(t1, . . . , tn) and R(s1, . . . , sn) unify with most general unifier σ,
• the resolvent of ρ1 and ρ2 with respect to σ is

Hσ← B1σ ∧ . . . ∧ C1σ ∧ . . . ∧ Cℓσ ∧ . . . ∧ Bmσ.

Unfolding of R means to simultaneously resolve all occurrences of R in bodies of any
rule, in all possible ways. After adding all these resolvents, we can delete all rules that
contain R in body or head (assuming that R is not the answer predicate).

Now given a non-recursive Datalog program, unfold each non-answer predicate (in any
order). { program with only the answer predicate in heads (requires non-recursiveness).
This is easy to express as UCQ (using equality to handle constants in heads). □
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Datalog and Domain Independence

Domain independence was considered useful for FO queries
{ results should not change if domain changes

Several solutions:

• Active domain semantics: restrict to elements mentioned in database or query

• Domain-independent queries: restrict to query where domain does not matter

• Safe-range queries: decidable special case of domain independence

Our definition of Datalog uses the active domain (=Herbrand universe) to ensure domain
independence
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Safe Datalog Queries

Similar to safe-range FO queries, there are also simple syntactic conditions that ensure
domain independence for Datalog:

Definition 12.11: A Datalog rule is safe if all variables in its head also occur in its
body. A Datalog program/query is safe if all of its rules are.

Simple observations:

• safe Datalog queries are domain independent

• every Datalog query can be expressed as a safe Datalog query . . .

• . . . and un-safe queries are not much more succinct either (exercise)

Some texts require Datalog queries to be safe in general
but in most contexts there is no real need for this
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Complexity
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Complexity of Datalog

How hard is answering Datalog queries?

Recall:

• Combined complexity: based on query and database

• Data complexity: based on database; query fixed

• Query complexity: based on query; database fixed

Plan:

• First show upper bounds (outline efficient algorithm)

• Then establish matching lower bounds (reduce hard problems)
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A Simpler Problem: Ground Programs

Let’s start with Datalog without variables
{ sets of ground rules a.k.a. propositional Horn logic program

Naive computation of T∞P :

How long does this take?

• At most |P| facts can be derived

• Algorithm terminates with i ≤ |P| + 1

• In each iteration, we check each
rule once (linear), and compare its
body to T i

P (quadratic)

{ polynomial runtime

01 T0
P := ∅

02 i := 0

03 repeat :

04 T i+1
P := ∅

05 for H ← B1 ∧ . . . ∧ Bℓ ∈ P :

06 if {B1, . . . , Bℓ} ⊆ T i
P :

07 T i+1
P := T i+1

P ∪ {H}

08 i := i + 1

09 until T i−1
P = T i

P

10 return T i
P
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Complexity of Propositional Horn Logic

Much better algorithms exist:

Theorem 12.12 (Dowling & Gallier, 1984): For a propositional Horn logic pro-
gram P, the set T∞P can be computed in linear time.

Nevertheless, the problem is not trivial:

Theorem 12.13: For a propositional Horn logic program P and a proposition (or
ground atom) A, deciding if A ∈ T∞P is a P-complete problem.

Remark:
all P problems can be reduced to propositional Horn logic entailment
yet not all problems in P (or even in NL) can be solved in linear time!
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Datalog Complexity: Upper Bounds

A straightforward approach:

(1) Compute the grounding ground(P) of P w.r.t. the database I

(2) Compute T∞ground(P)

Complexity estimation:

• The number of constants N for grounding is linear in P and I

• A rule with m distinct variables has Nm ground instances
• Step (1) creates at most |P| · NM ground rules, where M is the maximal number of

variables in any rule in P
– ground(P) is polynomial in the size of I
– ground(P) is exponential in P

• Step (2) can be executed in linear time in the size of ground(P)

Summing up: the algorithm runs in P data complexity and in ExpTime query and
combined complexity
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Datalog Complexity

These upper bounds are tight:

Theorem 12.14: Datalog query answering is:

• ExpTime-complete for combined complexity

• ExpTime-complete for query complexity

• P-complete for data complexity

It remains to show the lower bounds.
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P-Hardness of Data Complexity

We need to reduce a P-hard problem to Datalog query answering
{ propositional Horn logic programming

We restrict to a simple form of propositional Horn logic:

• facts have the usual form H ←

• all other rules have the form H ← B1 ∧ B2

Deciding fact entailment is still P-hard (exercise)

We can store such programs in a database:

• For each fact H ←, the database has a tuple fact(H)
• For each rule H ← B1 ∧ B2,

the database has a tuple rule(H, B1, B2)
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P-Hardness of Data Complexity (2)

The following Datalog program acts as an interpreter for propositional Horn logic
programs:

True(x)← fact(x)

True(x)← rule(x, y, z) ∧ True(y) ∧ True(z)

Easy observations:

• True(A) is derived if and only if A is a consequence of the original propositional
program

• The encoding of propositional programs as databases can be computed in
logarithmic space

• The Datalog program is the same for all propositional programs

{ Datalog query answering is P-hard for data complexity
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ExpTime-Hardness of Query Complexity

A direct proof:
Encode the computation of a deterministic Turing machine for up to exponentially many
steps

Recall that ExpTime =
⋃

k≥1 Time(2nk
)

• in our case, n = N is the number of database constants

• k is some constant

{ we need to simulate up to 2Nk
steps (and tape cells)

Main ingredients of the encoding:

• stateq(X): the TM is in state q after X steps

• head(X, Y): the TM head is at tape position Y after X steps

• symbolσ(X, Y): the tape cell at position Y holds symbol σ after X steps

{ How to encode 2Nk
time points X and tape positions Y?
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Preparing for a Long Computation

We need to encode 2Nk
time points and tape positions

{ use binary numbers with Nk digits

So X and Y in atoms like head(X, Y) are really lists of variables X = x1, . . . , xNk and
Y = y1, . . . , yNk , and the arity of head is 2 · Nk.

TODO: define predicates that capture the order of Nk-digit binary numbers

For each number i ∈ {1, . . . , Nk}, we use predicates:

• succi(X, Y): X + 1 = Y, where X and Y are i-digit numbers

• firsti(X): X is the i-digit encoding of 0
• lasti(X): X is the i-digit encoding of 2i − 1

Finally, we can define the actual order for i = Nk

• ≤i (X, Y): X ≤ Y, where X and Y are i-digit numbers
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Defining a Long Chain

We can define succi(X, Y), firsti(X), and lasti(X) as follows:

succ1(0, 1) first1(0) last1(1)

succi+1(0, X, 0, Y)← succi(X, Y)

succi+1(1, X, 1, Y)← succi(X, Y)

succi+1(0, X, 1, Y)← lasti(X) ∧ firsti(Y)



for X = x1, . . . , xi

and Y = y1, . . . , yi

lists of i variablesfirsti+1(0, X)← firsti(X)

lasti+1(1, X)← lasti(X)

Now for M = Nk , we define ≤M(X, Y) as the reflexive, transitive closure of succM(X, Y):

≤M(X, X)←

≤M(X, Z)← ≤M(X, Y) ∧ succM(Y, Z)
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Initialising the Computation

We can now encode the initial configuration of the Turing Machine for an input word
σ1 · · ·σn ∈ (Σ \ {␣})∗.

We write Bi for the binary encoding of a number i with M = Nk digits.

stateq0 (B0) where q0 is the TM’s initial state

head(B0, B0)

symbolσi
(B0, Bi) for all i ∈ {1, . . . , n}

symbol␣(B0, Y)← ≤M(Bn+1, Y) where Y = y1, . . . , yM
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TM Transition and Acceptance Rules
For each transition ⟨q,σ, q′,σ′, d⟩ ∈ ∆, we add rules:

symbolσ′ (X
′
, Y)← succM(X, X′) ∧ head(X, Y) ∧ symbolσ(X, Y) ∧ stateq(X)

stateq′ (X′)← succM(X, X′) ∧ head(X, Y) ∧ symbolσ(X, Y) ∧ stateq(X)

Similar rules are used for inferring the new head position (depending on d)

Further rules ensure the preservation of unaltered tape cells:

symbolσ(X′, Y)← succM(X, X′) ∧ symbolσ(X, Y) ∧

head(X, Z) ∧ succM(Z, Z′) ∧ ≤M(Z′, Y)

symbolσ(X′, Y)← succM(X, X′) ∧ symbolσ(X, Y) ∧

head(X, Z) ∧ succM(Z′, Z) ∧ ≤M(Y, Z′)

The TM accepts if it ever reaches the accepting state qacc:

accept()← stateqacc (X)
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Hardness Results

Lemma 12.15: A deterministic TM accepts an input in Time(2nk
) if and only if the

Datalog program defined above entails the fact accept().

We obtain ExpTime-hardness of Datalog query answering:

• The decision problem of any language in ExpTime can be solved by a deterministic
TM in Time(2nk

) for some constant k

• For any input word w, we can reduce acceptance of w byM in Time(2nk
) to

entailment of accept() by a Datalog program P(w,M, k)
• P(w,M, k) is polynomial in the size ofM and w (in fact: in logarithmic space),

whereas k can be considered constant in this context
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ExpTime-Hardness: Notes

Some further remarks on our construction:

• The constructed program does not use EDB predicates
{ database can be empty

• Therefore, hardness extends to query complexity

• Using a fixed (very small) database, we could have avoided the use of constants

• We used IDB predicates of unbounded arity
{ they are essential for the claimed hardness
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Summary and Outlook

Datalog can overcome some of the limitations of first-order queries

Non-recursive Datalog can express UCQs

Datalog is more complex than FO query answering:

• ExpTime-complete for query and combined complexity

• P-complete for data complexity

Open questions:

• Expressivity of Datalog

• Query containment for Datalog

• Implementation techniques for Datalog
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