

Hannes Strass (based on slides by Michael Thielscher)
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Unification

Lecture 2, 20th Oct 2025 // Foundations of Logic Programming, WS 2025/26

Previously ...

Prolog Programs

- Prolog programs consist of facts and rules.
- We use Prolog by asking queries to programs.
- Answers to queries can be Boolean (yes/no) ...
- ...or given by variable assignments.
- Prolog programs are declarative (to a certain extent).

```
\begin{array}{llll} \mbox{direct}(\mbox{frankfurt}, \mbox{san\_francisco}). & \mbox{connection}(\mbox{X}, \mbox{Y}) :- \mbox{direct}(\mbox{X}, \mbox{Y}). \\ \mbox{direct}(\mbox{francisco}, \mbox{honolulu}). & \mbox{connection}(\mbox{X}, \mbox{Y}) :- \mbox{direct}(\mbox{X}, \mbox{Y}). \\ \mbox{direct}(\mbox{honolulu}, \mbox{maui}). & \mbox{connection}(\mbox{Z}, \mbox{Y}). \\ \mbox{linear}(\mbox{Francisco}, \mbox{Francisco}). & \mbox{connection}(\mbox{X}, \mbox{Y}) :- \mbox{direct}(\mbox{X}, \mbox{Y}). \\ \mbox{connection}(\mbox{Z}, \mbox{Y}). \\ \mbox{linear}(\mbox{Francisco}, \mbox{Francisco}). & \mbox{linear}(\mbox{Francisco}, \mbox{Francisco}). \\ \mbox{linear}(\mbox{Francisco}, \mbox{Francisco}, \mbox{Francisco}). & \mbox{connection}(\mbox{X}, \mbox{Y}) :- \mbox{direct}(\mbox{X}, \mbox{Y}). \\ \mbox{linear}(\mbox{Francisco}, \mbox{Francisco}, \mbox{Francisco}, \mbox{Francisco}). \\ \mbox{linear}(\mbox{Francisco}, \mbox{Francisco}, \
```


The Need to Perform Unification

```
p(f(X), q(f(c), X)).
| ?- p(U,q(V,f(W))).
U = f(f(W)),
V = f(c)
| ?- p(U,q(c,f(W))).
no
| ?- p(U,q(V,U)).
```


Overview

Ranked Alphabets and Terms

Substitutions

Unifiers and Most General Unifiers

Martelli-Montanari Algorithm

Ranked Alphabets and Terms

Ranked Alphabets and Term Universes

- A variable is a first-order predicate logic variable.
- A **ranked alphabet** is a finite set Σ of symbols; every symbol has an assigned natural number $n \ge 0$ (its **arity** or **rank**). $(\Sigma^{(n)}$ denotes the subset of Σ with symbols of arity n.)
- · Parentheses, commas
- For V a set of variables and F a ranked alphabet of function symbols:

The **term universe** $TU_{F,V}$ (over F and V) is the smallest set with

- 1. $V \subseteq TU_{F,V}$;
- 2. if $f \in F^{(0)}$, then $f \in TU_{F,V}$;
- 3. if $f \in F^{(n)}$ with $n \ge 1$ and $t_1, \ldots, t_n \in TU_{F,V}$, then $f(t_1, \ldots, t_n) \in TU_{F,V}$.

The elements of $TU_{F,V}$ are called **terms**.

Ground Terms and Herbrand Universes

• Var(t) := set of variables in t(defined by structural induction: $Var(x) = \{x\} \text{ if } x \in V, \text{ and}$ $Var(f(t_1, \dots, t_n)) = \bigcup_{1 \le i \le n} Var(t_i) \text{ otherwise})$ generalises to sets of terms: $Var(T) := \bigcup_{t \in T} Var(t)$

- t ground term : $\iff Var(t) = \emptyset$
- F ranked alphabet of function symbols: **Herbrand universe** HU_F (over F) : \iff $TU_{F,\emptyset}$
- s **sub-term** of t : \iff term s is sub-string of t (equivalently: sub-tree)

Substitutions

Substitutions

Definition

Let *V* be a set of variables, $X \subseteq V$ be finite, and *F* be a ranked alphabet. A **substitution** is a function $\theta: X \to TU_{F,V}$ with $x \neq \theta(x)$ for every $x \in X$.

We use the notation $\theta = \{x_1/t_1, \dots, x_n/t_n\}$ to express that

- 1. $X = \{x_1, \dots, x_n\}$, and
- 2. $\theta(x_i) = t_i$ for every $x_i \in X$.
- **empty** substitution $\varepsilon :\iff n = 0$
- θ **ground** substitution : \iff $t_1, ..., t_n$ ground terms
- θ **pure variable** substitution : $\iff t_1, \ldots, t_n$ variables
- θ renaming \iff $\{t_1,\ldots,t_n\}=\{x_1,\ldots,x_n\}$

Substitutions (2)

Consider a substitution $\theta = \{x_1/t_1, \dots, x_n/t_n\}$.

```
Dom(\theta) := \{x_1, \dots, x_n\}

Range(\theta) := \{t_1, \dots, t_n\}

Var(\theta) := Dom(\theta) \cup Var(Range(\theta))

\theta \mid_{Y} := \{y/t \mid y/t \in \theta \text{ and } y \in Y\}
```

for every $Y \subseteq \{x_1, \ldots, x_n\}$

Applying Substitutions

Definition

Let *t* be a term and θ be a substitution.

The **application of** θ **to** t is the term $t\theta$ obtained as follows:

1. If
$$t = x$$
 is a variable, then $t\theta = x\theta := \begin{cases} \theta(x) & \text{if } x \in Dom(\theta), \\ x & \text{otherwise.} \end{cases}$

- 2. If $t = c \in \Sigma^{(0)}$ is a constant symbol, then $t\theta = c\theta := c$.
- 3. If $t = f(t_1, \dots, t_n)$ for an $f \in \Sigma^{(n)}$, then $t\theta = f(t_1, \dots, t_n)\theta := f(t_1\theta, \dots, t_n\theta)$.
- *t* is an **instance** of *s* : \iff there is a substitution θ with $s\theta = t$
- t is a **variant** of s : \iff there is a renaming θ with $s\theta = t$

Lemma 2.5

Term t is a variant of term s iff t is an instance of s and s is an instance of t.

Proof Idea: A renaming θ is a permutation; θ and its inverse θ^{-1} relate s and t.

Composition

Definition

Let θ and η be substitutions. The **composition** $\theta\eta$ is defined by setting

$$(\theta \eta)(x) := (x\theta)\eta$$

for each variable x.

Intuition: First apply θ , then apply η .

Lemma

Let $\theta = \{x_1/t_1, \dots, x_n/t_n\}, \eta = \{y_1/s_1, \dots, y_m/s_m\}.$

Then $\theta \eta$ can be constructed from the sequence

$$x_1/t_1\eta,\ldots,x_n/t_n\eta, y_1/s_1,\ldots,y_m/s_m$$

- 1. by removing all bindings $x_i/t_i\eta$ where $x_i = t_i\eta$ and all bindings y_i/s_i where $y_i \in \{x_1, \dots, x_n\}$, and
- 2. then forming a substitution from the resulting sequence.

Comparing Substitutions

Definition

```
Let \theta and \tau be substitutions. \theta is at least as general as \tau :\Longleftrightarrow \tau = \theta \eta for some substitution \eta.
```

Examples

- $\theta = \{x/y\}$ is at least as general as $\tau = \{x/a, y/a\}$ (with $\eta = \{y/a\}$)
- $\theta = \{x/y\}$ is not at least as general as $\tau = \{x/a\}$ (If there were an η with $\tau = \theta \eta$, then: $x/a \in \{x/y\}\eta \implies y/a \in \eta \implies y \in Dom(\theta \eta) = Dom(\tau)$, contradiction.)
- θ is at least as general as θ for every θ , via $\theta = \theta \varepsilon$
- $\theta = \{x/y\}$ is at least as general as $\tau = \{y/x\}$ (with $\eta = \tau$), and τ is at least as general as θ (with $\eta = \theta$), but $\theta \neq \tau$. \rightarrow "at least as general as" is not a partial order on substitutions

Unifiers and Most General Unifiers

Unifiers

Definition

Let s and t be terms.

- Substitution θ is a **unifier** of s and t : \iff $s\theta = t\theta$.
- Terms s and t are **unifiable** : \iff a unifier of s and t exists.
- Substitution θ is a **most general unifier** (**mgu**) of s and t : \iff θ is a unifier of s and t that is at least as general as all unifiers of s and t.

Definition

Let $s_1, \ldots, s_n, t_1, \ldots, t_n$ be terms, let $s_i \doteq t_i$ denote the (ordered) pair (s_i, t_i) and let $E = \{s_1 \doteq t_1, \ldots, s_n \doteq t_n\}$.

- Substitution θ is a **unifier** of E : \iff $s_i\theta = t_i\theta$ for every $1 \le i \le n$.
- θ is a most general unifier (mgu) of E : ⇒
 θ is a unifier of E that is at least as general as all unifiers of E.

Unifying Sets of Pairs of Terms

Definition

- Sets E and E' of pairs of terms are equivalent
 :⇒ E and E' have the same set of unifiers.
- The set $\{x_1 \doteq t_1, \dots, x_n \doteq t_n\}$ of pairs is **solved** : $\iff x_i, x_j$ pairwise distinct variables $(1 \leq i \neq j \leq n)$ and no x_i occurs in t_i $(1 \leq i, j \leq n)$.

Lemma

If $E = \{x_1 \doteq t_1, \dots, x_n \doteq t_n\}$ is solved, then $\theta = \{x_1/t_1, \dots, x_n/t_n\}$ is an mgu of E.

Proof.

- 1. $x_i\theta = t_i = t_i\theta$
- 2. for every unifier η of E: $x_i \eta = t_i \eta = x_i \theta \eta$ for every $1 \le i \le n$ and $x \eta = x \theta \eta$ for every $x \notin \{x_1, \dots, x_n\}$; thus $\eta = \theta \eta$.

Quiz: Most General Unifiers

Quiz

Consider the following set of pairs:

$$E = \{ f(a, y) \doteq x, g(y) \doteq g(z) \}$$

...

Martelli-Montanari Algorithm

Martelli-Montanari Algorithm

Let *E* be a set of pairs of terms.

Martelli-Montanari Algorithm

As long as possible, nondeterministically choose a pair of a form below and perform the associated action:

(1)
$$f(s_1,...,s_n) = f(t_1,...,t_n)$$

(2)
$$f(s_1,...,s_n) = g(t_1,...,t_m)$$
 where $f \neq g$

(3)
$$x \doteq x$$

(4)
$$t \doteq x$$
 where t is not a variable

(5)
$$x = t$$
 where $x \notin Var(t)$ and x occurs in some other pair

(6)
$$x \doteq t$$
 where $x \in Var(t)$ and $x \neq t$

replace by
$$s_1 \doteq t_1, \dots, s_n \doteq t_n$$

halt with failure

delete the pair

replace by x = t

perform substitution $\{x/t\}$ on all other pairs

halt with failure

Terminate with success when no action can be performed.

- $(2) \stackrel{.}{=}$ "clash"

Martelli-Montanari (Theorem)

Theorem

If the original set E has a unifier, then the algorithm successfully terminates and produces a solved set E' that is equivalent to E; otherwise the algorithm terminates with failure.

Corollary: In case of success, E' determines an mgu of E.

Proof Steps

- 1. Prove that the algorithm terminates.
- 2. Prove that each action replaces the set of pairs by an equivalent one.
- 3. Prove that if the algorithm terminates successfully, then the final set of pairs is solved.
- 4. Prove that if the algorithm terminates with failure, then the set of pairs at the moment of failure does not have a unifier.

Relations

R **relation** on a set $A :\iff R \subseteq A \times A$

R **reflexive** : \iff (a, a) \in *R* for all $a \in \mathcal{A}$

R **irreflexive** : \iff (a, a) \notin *R* for all $a \in A$

R antisymmetric : \iff $(a,b) \in R$ and $(b,a) \in R$ implies a=b

R **transitive** : \iff $(a,b) \in R$ and $(b,c) \in R$ implies $(a,c) \in R$

Well-founded Order(ing)s

- (A, \sqsubseteq) partial order
 - $:\iff \sqsubseteq$ reflexive, antisymmetric, and transitive relation on $\mathcal A$
- (A, \Box) strict partial order
 - \iff \sqsubseteq irreflexive and transitive relation on \mathcal{A}
- strict partial order (A, \Box) well-founded
 - :⇔ there is no infinite descending chain

$$\ldots \sqsubset a_2 \sqsubset a_1 \sqsubset a_0$$

of elements $a_0, a_1, a_2, \ldots \in A$

Examples

- (N, ≤), (Z, ≤), (P({1, 2, 3}), ⊆) are partial orders;
- (N, <), (\mathbb{Z} , <), ($\mathbb{P}(\{1,2,3\})$), \subsetneq) are strict partial orders;
- (N, <), (P({1, 2, 3}), ⊊) are well-founded,
- whereas (Z, <) is not.

Lexicographic Ordering

The **lexicographic ordering** \prec_n ($n \ge 1$) is defined inductively on the set \mathbb{N}^n of n-tuples of natural numbers:

$$(a_1) \prec_1 (b_1) :\iff a_1 < b_1$$
 and $(a_1, \ldots, a_{n+1}) \prec_{n+1} (b_1, \ldots, b_{n+1}) :\iff (a_1, \ldots, a_n) \prec_n (b_1, \ldots, b_n)$ or $(a_1, \ldots, a_n) = (b_1, \ldots, b_n)$ and $a_{n+1} < b_{n+1}$

Example

For n = 3, we have $(3, 12, 7) \prec_3 (4, 2, 1)$ and $(8, 4, 2) \prec_3 (8, 4, 3)$.

Theorem

For every $n \in \mathbb{N}$, the pair (\mathbb{N}^n, \prec_n) is a well-founded strict partial order.

Proof Step 1 (1)

Proposition

The Martelli-Montanari Algorithm terminates.

Definition

```
Variable x is solved in E
```

: $\iff x \doteq t \in E$, and this is the only occurrence of x in E.

uns(E) := number of variables in *E* that are unsolved

Ifun(E) := number of occurrences of function symbols

in the first (left) components of pairs in E

card(E) := number of pairs in E

Example

Consider $E = \{ f(x) = f(y), y = a \}$. Then uns(E) = 2, lfun(E) = 1, card(E) = 2.

Proof Step 1 (2)

Proposition

The Martelli-Montanari Algorithm terminates.

Proof.

Each successful action reduces (uns(E), lfun(E), card(E)) wrt. \prec_3 .

For every $u, l, c \in \mathbb{N}$ the reduction is as follows:

- (1) $(u, l, c) \succ_3 (u k, \underline{l-1}, c+n-1)$ for some $k \in [0, n]$
- (3) $(u, l, c) >_3 (u k, l, \underline{c 1})$ for some $k \in \{0, 1\}$
- (4) $(u, l, c) \rightarrow_3 (u k_1, l k_2, c)$ for some $k_1 \in \{0, 1\}$ and $k_2 \ge 1$
- (5) $(u, l, c) >_3 (u-1, l+k, c)$ for some $k \ge 1$

Termination is now a consequence of (N^3, \prec_3) being well-founded.

Proof Step 2

Proposition

Each action replaces the set of pairs by an equivalent one.

Proof.

```
This is obviously true for actions (1), (3), and (4).
```

Regarding action (5), consider $E \cup \{x = t\}$ and $E\{x/t\} \cup \{x = t\}$. Then:

```
\theta is a unifier of E \cup \{x = t\}
iff \theta is a unifier of E and x\theta = t\theta
iff \theta is a unifier of E\{x/t\} and x\theta = t\theta
iff \theta is a unifier of E\{x/t\} \cup \{x = t\}
```


Proof Step 3

Proposition

If the algorithm successfully terminates, then the final set of pairs is solved.

Proof.

- If the algorithm successfully terminates, then the actions (1), (2), and (4) do not apply, so each pair in E is of the form x = t with x being a variable.
- Moreover, actions (3), (5), and (6) do not apply, so the variables in the first components of all pairs in E are pairwise disjoint and do not occur in the second component of a pair in E.

Proof Step 4

Proposition

If the algorithm terminates with failure, then the set of pairs at the moment of failure does not have a unifier.

Proof.

• If the failure results from action (2), then some

$$f(s_1,\ldots,s_n) \doteq g(t_1,\ldots,t_m)$$

occurs in E (where $f \neq g$), and for no substitution θ we have $f(s_1, \ldots, s_n)\theta = g(t_1, \ldots, t_m)\theta$.

• If the failure results by action (6), then some x = t (where x is a proper subterm of t) occurs in E, and for no substitution θ we have $x\theta = t\theta$.

Unifiers may be Exponential

$$E_{1} = \{f(x_{1}) \doteq f(g(x_{0}, x_{0}))\}$$

$$\theta_{1} = \{x_{1}/g(x_{0}, x_{0})\}$$

$$E_{2} = \{f(x_{1}, x_{2}) \doteq f(g(x_{0}, x_{0}), g(x_{1}, x_{1}))\}$$

$$\theta_{2} = \theta_{1} \cup \{x_{2}/g(g(x_{0}, x_{0}), g(x_{0}, x_{0}))\}$$

$$E_{3} = \{f(x_{1}, x_{2}, x_{3}) \doteq f(g(x_{0}, x_{0}), g(x_{1}, x_{1}), g(x_{2}, x_{2}))\}$$

$$\theta_{3} = \theta_{2} \cup \{x_{3}/g(g(g(x_{0}, x_{0}), g(x_{0}, x_{0})), g(g(x_{0}, x_{0}), g(x_{0}, x_{0})))\}$$

MM Algorithm without Occur Check

- In most PROLOG systems the occur check does not apply, for the sake of efficiency.
- As for the Martelli-Montanari algorithm this amounts to omitting the occur check in action (5) and to drop action (6).
- Then the algorithm terminates with success, e.g., for $\{x = f(x)\}$, despite x and f(x) not being unifiable.
- Moreover, the algorithm may not terminate at all:

```
 \{x \doteq f(x), \ y \doteq g(x)\} 
 \stackrel{(5)}{\leadsto} \quad \{x \doteq f(x), \ y \doteq g(f(x))\} 
 \stackrel{(5)}{\leadsto} \quad \{x \doteq f(x), \ y \doteq g(f(f(x)))\}
```


Conclusion

Summary

- A **substitution** replaces variables by terms, and is applied to terms.
- A **unifier** is a substitution that equates two terms when applied to them.
- The Martelli-Montanari Algorithm decides if a set of pairs of terms has a unifier and even outputs a (most general) unifier if one exists.
- The algorithm is correct (i.e., sound and complete) and terminates.

Suggested action points:

- Try out the Martelli-Montanari Algorithm on a few examples by hand.
- Verify your results using a Prolog system (try to turn the occur check on).
- Come up with examples how the different values for parameters k, k_1 , and k_2 in proof step 1 could be realised.

