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Monadic Second-Order Logic:

e Biichi's theorem, 1960: MSO on words = regular languages.

e Courcelle’s theorem, 1990: MSO properties can be decided in linear time
on graphs of bounded treewidth.

Datalog:

e “Prolog without function symbols.”
e “Local consistency algorithms.”
e Query answering in database theory.

e Fragment of second-order logic.

Wish: Combination of the good computational properties of expressibility in
Datalog and of expressibility in MSO.

Which computational problems are expressible in MSO
AND can be solved by a Datalog program?
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Introduction 2

Contributions:

e Description of MSO n Datalog in terms of Constraint Satisfaction

Problems.
e A necessary condition whether a given Datalog program is in MSO.
e Pebble game characterization of MSO n Datalog. Not in this talk!

e All results also hold more generally for GSO (Guarded Second-Order
Logic) instead of MSO. Also not in this talk!
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7: finite relational signature.

Second-order logic: extension of first-order logic by (existential and universal)
quantification over relations.

Monadic second-order logic (MSO): all quantified relations are unary.

Monadic second-order 7-sentence: all first-order variables are quantified,
7 symbols are not quantified.

Example

Monadic second-order { E }-sentence:

VR: ((3zeR) = (Ixe R VyeR: -E(y,x)))
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symbol false of arity 0.

Datalog rule: a term 1o : =11, ..., %n, where 9)g is an atomic p-formula and
{t1,...,%n} are atomic 7 U p-formulas.

Datalog program: set of Datalog rules.

Datalog Semantics
A Datalog program TI1 rejects an instance, if the predicate false can be derived
by iterative rule application. Otherwise I accepts the instance.

We denote the class of accepted instances by [[].
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Datalog program [M1°“““ with EDB Succ and IDBs L, S, T and false:

S(x,y) -Succ(x,y) (xy) = S(xy)
L(x2) - L(xy), L(v.2) (x2) = T(xy), T(v.2)
S(y.x") - L(x,y), S(x,x") false :- T(x,x)

L(<y') = S(xx), S(xy)

M°“““ accepts exactly the structures where for every cycle the number of
traversed forward edges equals the number of traversed backward edges.
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An observation about Datalog

Datalog program I1 with EDB E and IDB R:
R(x,y): =E(x,y)
R(x,y): =R(x,2),R(z,y)
false : —R(x, x)

Instance J: Instance J:

i S

N

Ot——0—> 0

G

I derives false on J. I derives false on J.

Observation

Let C be defined by a Datalog program. Let 2( and B be structures where B
is in C and 2 has a homomorphism to %B. Then 2 is in C.
We say that C is
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Definition
Let © be a 7-structure. The is the class of all finite 7-structures
that have a homomorphism to ©. We denote it by CSP(D).

Example:
e CSP(Q;<) is the class of all digraphs without a cycle.

e CSP(Z;Succ={(x,y) | x+1=y}) =[] is the class of all graphs
where for each two nodes all connecting paths have the same length.



Result 1

Let ® be an MSO sentence such that [®] is closed under inverse
homomorphisms. Then [®] is a finite union of MSO-definable

Definition
Let © be a 7-structure. The is the class of all finite 7-structures
that have a homomorphism to ©. We denote it by CSP(D).

Proposition
A class of 7-structures C is a CSP for some structure iff it is closed under

inverse homomorphisms and ,
i.e. if A, B eC, then Auw B eC.
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Application of Result 1

Let B and R be unary and let E be a binary relation symbol.
Datalog program [1
L(x,y): =B(x), B(y)
L(x,y) : =L(x',y"), E(X',x), E(Y', ¥)
false : —R(x), L(x,x"), E(x",y)

Claim
[M] is not MSO-definable.

There exists an infinite set X c [[] such that for all distinct
elements 2[,B € X the disjoint union A w B is not in [M].

— [M] is not a finite union of CSPs.

— By Result 1 and the observation about Datalog, the class [[1] is not
MSO-definable.
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Example: (Q; <) is w-categorical.
e There exists up to isomorphism only one countable dense linear order
without endpoints.

e “Dense linear order without endpoints” can be expressed in first-order logic.



Result 2
Let ® be an MSO sentence such that [®] is closed under disjoint unions and
inverse homomorphisms.Then [®] is the CSP of an w-categorical structure.

Definition
A countable structure ® is called if all countable models of the

first-order theory of © are isomorphic to D.

Remark
Result 2 can be used to achieve a characterization of MSO n Datalog in terms
of existential pebble games.
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Application of Result 2

Claim
For the Datalog program IM°““ the class [[1°““] is not definable in MSO.

e Consider 2 = (Z;Succ = {(x,y) | x+1=y}).
o CSP() = [r*v=].
e 2 and A w A satisfy exactly the same first-order sentences, e.g.,

Vx3y,z. Succ(y, x) A Succ(x,y).

2A and A w A are not isomorphic.
e Therefore 2( is not w-categorical.

e Even more: there exists no w-categorical structure 5 with
CSP(8) = CSP() (needs short proof).

By Result 2, CSP(2() = [[1°““] is not definable in MSO.
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Description of MSO n Datalog

Result 1

Let ® be an MSO sentence such that [®] is closed under inverse
homomorphisms. Then [®] is a finite union of MSO-definable CSPs.

Result 2

Let ® be an MSO sentence such that [®] is closed under disjoint unions and
inverse homomorphisms. Then [®] is the CSP of an w-categorical structure.

Result 3
Every problem in MSO n Datalog is the finite union of w-categorical CSPs.
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A generalization of the results

e Guarded second-order logic (GSO) is a generalization of MSO.
e GSO coincides with Courselle’'s MSOx.

e Result 1, Result 2 and Result 3 hold also for GSO.
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Open problems

e The logic Nemodeq introduced by Rudolph and Krotzsch is contained in
MSO n Datalog. Does the converse also hold?

e Can the intersection of GSO and Datalog be described by some logic?

e Is there an example of a CSP for a reduct of a finitely bounded
homogeneous structure that is not in GSO?



Thank you for your attention!
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Result 1
Let ® be an MSO sentence such that [®] is closed under inverse

homomorphisms. Then [®] is a finite union of MSO definable CSPs.
e Equivalence relation ~ on C = [®] with A ~ B if and only if
VDeC:AwDeC=BwDeC.

e ~ has finitely many classes.
e C is a CSP iff ~ has only one class.

e Induction argument over the number of classes of ~.
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Generalize the equivalence relation ~:
o Let C = [®] and let X be a set of new constant symbols, |X| = n.
e Let C* be the class of 7 U X-structures whose 7-reducts are from C.

e For two structures A, B € C* the structure A wx B is defined as the
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Generalize the equivalence relation ~:
o Let C = [®] and let X be a set of new constant symbols, |X| = n.
e Let C* be the class of 7 U X-structures whose 7-reducts are from C.

e For two structures A, B € C* the structure A wx B is defined as the
pairwise identification of the constants X in A w B.

e Consider equivalence relation ~$ on C* with A ~¢ B if and only if

VDeC¥:AuwxDeCX < BuyxDeC”.

Use of the following theorem:

Theorem ﬁBodirsky, Hils, Martin)

Let C be closed under inverse homomorphisms and disjoint unions. Then there
exists an w-categorical structure B such that CSP(B) = C if and only if ~§ has
finitely many equivalence classes for each n e N.



