(@) @]

iy A*
B Q X QuantLA .
“ o) o) -
Grant Agreement no. 681988, CSP-Infinity DFG Research Training Group 1763 Grant Agreement no. 771779, DeciGUT

Datalog-Expressibility for Monadic and Guarded
Second-Order Logic

Manuel Bodirskyl, Simon Kn3uer!, and Sebastian Rudolph2

1TU Dresden, Institut fiir Algebra
2TU Dresden, Computational Logic Group, Germany

48th International Colloquium on Automata, Languages and Programming
July 12-16, 2021

Introduction 1

Monadic Second-Order Logic:

Introduction 1

Monadic Second-Order Logic:

e Biichi's theorem, 1960: MSO on words = regular languages.

Introduction 1

Monadic Second-Order Logic:

e Biichi's theorem, 1960: MSO on words = regular languages.

e Courcelle’s theorem, 1990: MSO properties can be decided in linear time
on graphs of bounded treewidth.

Introduction 1

Monadic Second-Order Logic:

e Biichi's theorem, 1960: MSO on words = regular languages.

e Courcelle’s theorem, 1990: MSO properties can be decided in linear time
on graphs of bounded treewidth.

Datalog:

Introduction 1

Monadic Second-Order Logic:

e Biichi's theorem, 1960: MSO on words = regular languages.

e Courcelle’s theorem, 1990: MSO properties can be decided in linear time
on graphs of bounded treewidth.

Datalog:

e "Prolog without function symbols.”

Introduction 1

Monadic Second-Order Logic:

e Biichi's theorem, 1960: MSO on words = regular languages.

e Courcelle’s theorem, 1990: MSO properties can be decided in linear time
on graphs of bounded treewidth.

Datalog:

e "Prolog without function symbols.”

e “Local consistency algorithms.”

Introduction 1

Monadic Second-Order Logic:

e Biichi's theorem, 1960: MSO on words = regular languages.

e Courcelle’s theorem, 1990: MSO properties can be decided in linear time
on graphs of bounded treewidth.

Datalog:

e “Prolog without function symbols.”
e “Local consistency algorithms.”

e Query answering in database theory.

Introduction 1

Monadic Second-Order Logic:

e Biichi's theorem, 1960: MSO on words = regular languages.

e Courcelle’s theorem, 1990: MSO properties can be decided in linear time
on graphs of bounded treewidth.

Datalog:

e “Prolog without function symbols.”
e “Local consistency algorithms.”
e Query answering in database theory.

e Fragment of second-order logic.

Introduction 1

Monadic Second-Order Logic:

e Biichi's theorem, 1960: MSO on words = regular languages.

e Courcelle’s theorem, 1990: MSO properties can be decided in linear time
on graphs of bounded treewidth.

Datalog:

e “Prolog without function symbols.”
e “Local consistency algorithms.”
e Query answering in database theory.

e Fragment of second-order logic.

Wish: Combination of the good computational properties of expressibility in
Datalog and of expressibility in MSO.

Which computational problems are expressible in MSO
AND can be solved by a Datalog program?

Introduction 2

Contributions:

Introduction 2

Contributions:

e Description of MSO n Datalog in terms of Constraint Satisfaction
Problems.

Introduction 2

Contributions:

e Description of MSO n Datalog in terms of Constraint Satisfaction
Problems.

e A necessary condition whether a given Datalog program is in MSO.

Introduction 2

Contributions:

e Description of MSO n Datalog in terms of Constraint Satisfaction
Problems.

e A necessary condition whether a given Datalog program is in MSO.

e Pebble game characterization of MSO n Datalog. Not in this talk!

Introduction 2

Contributions:

e Description of MSO n Datalog in terms of Constraint Satisfaction

Problems.
e A necessary condition whether a given Datalog program is in MSO.
e Pebble game characterization of MSO n Datalog. Not in this talk!

e All results also hold more generally for GSO (Guarded Second-Order
Logic) instead of MSO. Also not in this talk!

Monadic Second-Order Logic

7: finite relational signature.

Monadic Second-Order Logic

7: finite relational signature.

Second-order logic: extension of first-order logic by (existential and universal)
quantification over relations.

Monadic Second-Order Logic

7: finite relational signature.

Second-order logic: extension of first-order logic by (existential and universal)
quantification over relations.

Monadic second-order logic (MSO): all quantified relations are unary.

Monadic Second-Order Logic

7: finite relational signature.

Second-order logic: extension of first-order logic by (existential and universal)
quantification over relations.

Monadic second-order logic (MSO): all quantified relations are unary.

Monadic second-order 7-sentence: all first-order variables are quantified,
7 symbols are not quantified.

Monadic Second-Order Logic

7: finite relational signature.

Second-order logic: extension of first-order logic by (existential and universal)
quantification over relations.

Monadic second-order logic (MSO): all quantified relations are unary.

Monadic second-order 7-sentence: all first-order variables are quantified,
7 symbols are not quantified.

Example

Monadic second-order { E }-sentence:

VR: ((3zeR) = (Ixe R VyeR: -E(y,x)))

MSO-definable classes

®: MSO 7-sentence.

MSO-definable classes

®: MSO 7-sentence.

[®]: all finite 7-structures 2 such that 2 = .

MSO-definable classes

®: MSO 7-sentence.

all finite 7-structures 2 such that 2 = .

Example
Consider the MSO {E }-sentence ¢

VR: ((3zeR) = (3xeR VyeR: -E(y,x)))

MSO-definable classes

®: MSO 7-sentence.

all finite 7-structures 2 such that 2 = .

Example
Consider the MSO {E }-sentence ¢

VR: ((3zeR) = (3xeR VyeR: -E(y,x)))

A structure that satisfies —®:

o —r 0

— |
N

MSO-definable classes

®: MSO 7-sentence.

all finite 7-structures 2 such that 2 = .

Example
Consider the MSO {E }-sentence ¢

VR: ((3zeR) = (3xeR VyeR: -E(y,x)))

A structure that satisfies —®:

*o—r 0

— |
N

MSO-definable classes

®: MSO 7-sentence.

all finite 7-structures 2 such that 2 = .

Example
Consider the MSO {E }-sentence ¢

VR: ((3zeR) = (3xeR VyeR: -E(y,x)))

A structure that satisfies —®:

*o—r 0

— |
N

EDBs 7 and IDBs p: disjoint sets of relation symbols, such that p contains a
symbol false of arity 0.

EDBs 7 and IDBs p: disjoint sets of relation symbols, such that p contains a
symbol false of arity 0.

Datalog rule: a term 1o : =11, ..., %n, where 9)g is an atomic p-formula and
{t1,...,%n} are atomic 7 U p-formulas.

EDBs 7 and IDBs p: disjoint sets of relation symbols, such that p contains a
symbol false of arity 0.

Datalog rule: a term 1o : =11, ..., %n, where 9)g is an atomic p-formula and
{t1,...,%n} are atomic 7 U p-formulas.

Datalog program: set of Datalog rules.

EDBs 7 and IDBs p: disjoint sets of relation symbols, such that p contains a
symbol false of arity 0.

Datalog rule: a term 1o : =11, ..., %n, where 9)g is an atomic p-formula and
{t1,...,%n} are atomic 7 U p-formulas.

Datalog program: set of Datalog rules.

Datalog Semantics
A Datalog program TI1 rejects an instance, if the predicate false can be derived
by iterative rule application. Otherwise I accepts the instance.

EDBs 7 and IDBs p: disjoint sets of relation symbols, such that p contains a
symbol false of arity 0.

Datalog rule: a term 1o : =11, ..., %n, where 9)g is an atomic p-formula and
{t1,...,%n} are atomic 7 U p-formulas.

Datalog program: set of Datalog rules.

Datalog Semantics
A Datalog program TI1 rejects an instance, if the predicate false can be derived
by iterative rule application. Otherwise I accepts the instance.

We denote the class of accepted instances by [[].

Datalog example

Datalog program [M1°“““ with EDB Succ and IDBs L, S, T and false:

S(x,y) - Succ(x,y) (xy) - S(xy)
L(x2) - L(xy), L(v.2) (x2) = T(xy), T(v.2)
S(y.x") - L(x,y), S(x,x") false :- T(x,x)

L(<y') = S(xx), S(xy)

Datalog example

Datalog program [M1°“““ with EDB Succ and IDBs L, S, T and false:

S(x,y) - Succ(x,y) (xy) - S(xy)
L(x2) - L(xy), L(v.2) (x2) = T(xy), T(v.2)
S(y.x") - L(x,y), S(x,x") false :- T(x,x)

L(<y') = S(xx), S(xy)

|

~/

Instance J:

oe—>0o—pro0o—>eo

Datalog example

Datalog program [M1°“““ with EDB Succ and IDBs L, S, T and false:

S(x,y) -Succ(x,y) (xy) = S(xy)
L(x2) - L(xy), L(v.2) (x2) = T(xy), T(v.2)
S(y.x") - L(x,y), S(x,x") false :- T(x,x)

L(<y') = S(xx), S(xy)

/'\

Instance J:

|

oe—>0o—pro0o—>eo

~/

Datalog example

Datalog program [M1°“““ with EDB Succ and IDBs L, S, T and false:

S(x,y) -Succ(x,y) (xy) = S(xy)
L(x2) - L(xy), L(v.2) (x2) = T(xy), T(v.2)
S(y.x") - L(x,y), S(x,x") false :- T(x,x)

L(<y') = S(xx), S(xy)

/'\

Instance J:

oe—>0—ro0o—>eo
oe— >0

Datalog example

Datalog program [M1°“““ with EDB Succ and IDBs L, S, T and false:

S(x,y) -Succ(x,y) (xy) = S(xy)
L(x2) - L(xy), L(v.2) (x2) = T(xy), T(v.2)
S(yx") - L(x,y), S(x,x") false :- T(x,x)

L(<y') = S(xx), S(xy)

\
e

Instance J:

oe— >0 —pro0o—>eo

/

N

Datalog example

Datalog program [M1°“““ with EDB Succ and IDBs L, S, T and false:

S(x,y) -Succ(x,y) (xy) = S(xy)
L(x2) - L(xy), L(v.2) (x2) = T(xy), T(v.2)
S(y.x") - L(x,y), S(x,x") false :- T(x,x)

L(<y') = S(xx), S(xy)

\
e

Instance J:

oe—>0—pro0o—>eo

/

SN

Datalog example

Datalog program [M1°“““ with EDB Succ and IDBs L, S, T and false:

S(x,y) -Succ(x,y) (xy) = S(xy)
L(x2) - L(xy), L(v.2) (x2) = T(xy), T(v.2)
S(yx") - L(x,y), S(x,x") false :- T(x,x)

L(<y') = S(xx), S(xy)

Y
e

Instance J:

oe— > 0—Pro0o—>o

/

SN

Datalog example

Datalog program [M1°“““ with EDB Succ and IDBs L, S, T and false:

S(x,y) -Succ(x,y) (xy) = S(xy)
L(x2) - L(xy), L(v.2) (x2) = T(xy), T(v.2)
S(y.x") - L(x,y), S(x,x") false :- T(x,x)

L(<y') = S(xx), S(xy)

Y
e

Instance J:

oe— > 0—Pr o —>0

/

SN

Datalog example

Datalog program [M1°“““ with EDB Succ and IDBs L, S, T and false:

S(x,y) -Succ(x,y) (xy) = S(xy)
L(x2) - L(xy), L(v.2) (x2) = T(xy), T(v.2)
S(yx") - L(x,y), S(x,x") false :- T(x,x)

L(<y') = S(xx), S(xy)

3
7

Instance J:

oe— > 0—Pr o —>0

/

SN

Datalog example

Datalog program [M1°“““ with EDB Succ and IDBs L, S, T and false:

S(x,y) -Succ(x,y) (xyy) = S(xy)
L(x2) - L(xy), L(v.2) (x2) = T(xy), T(v.2)
S(y.x") - L(x,y), S(x,x") false :- T(x,x)

L(<y') = S(xx), S(xy)

Instance J:

Datalog example

Datalog program [M1°“““ with EDB Succ and IDBs L, S, T and false:

S(x,y) -Succ(x,y) (xy) = S(xy)
L(x2) - L(xy), L(v.2) (x2) = T(xy), T(v2)
S(y.x") - L(x,y), S(x,x") false :- T(x,x)

L(<y') = S(xx), S(xy)

Instance J:

Datalog example

Datalog program [M1°“““ with EDB Succ and IDBs L, S, T and false:

S(x,y) -Succ(x,y) (xy) = S(xy)
L(x2) - L(xy), L(v.2) (x2) = T(xy), T(v.2)
S(y.x") - L(x,y), S(x,x") false :- T(x,x)

L(<y') = S(xx), S(xy)

Instance J: — [1°"“ derives false on J

Datalog example

Datalog program [M1°“““ with EDB Succ and IDBs L, S, T and false:

S(x,y) -Succ(x,y) (xy) = S(xy)
L(x2) - L(xy), L(v.2) (x2) = T(xy), T(v.2)
S(y.x") - L(x,y), S(x,x") false :- T(x,x)

L(<y') = S(xx), S(xy)

M°“““ accepts exactly the structures where for every cycle the number of
traversed forward edges equals the number of traversed backward edges.

An observation about Datalog

Datalog program I1 with EDB E and IDB R:
R(x,y): =E(x,y)
R(x,y): =R(x,2),R(z,y)
false : —R(x, x)

An observation about Datalog

Datalog program I1 with EDB E and IDB R:
R(x,y): =E(x,y)
R(x,y): =R(x,2),R(z,y)
false : —R(x, x)

Instance J:

An observation about Datalog

Datalog program I1 with EDB E and IDB R:
R(x,y): =E(x,y)
R(x,y): =R(x,2),R(z,y)
false : —R(x, x)

Instance J:

An observation about Datalog

Datalog program I1 with EDB E and IDB R:
R(x,y): =E(x,y)
R(x,y): =R(x,2),R(z,y)
false : —R(x, x)

Instance J:

An observation about Datalog

Datalog program I1 with EDB E and IDB R:
R(x,y): =E(x,y)
R(x,y): =R(x,2),R(z,y)
false : —R(x, x)

Instance J:

*o4+—eo

]

o—> e

An observation about Datalog

Datalog program I1 with EDB E and IDB R:
R(x,y): =E(x,y)
R(x,y): =R(x,2),R(z,y)
false : —R(x, x)

Instance J:

*o4+—eo

]

o—> e

G

I derives false on J.

An observation about Datalog

Datalog program I1 with EDB E and IDB R:

Instance J:

I derives false on J.

R(X7y) 8 _E(X7y)
R(X7.y) 5 —R(X,Z),R(Z,y)
false : —R(x, x)

Instance J:

Ot—-0—> 0

homomorphism l I

o—> 00— 0

An observation about Datalog

Datalog program I1 with EDB E and IDB R:

Instance J:

I derives false on J.

R(X7y) 8 _E(X7y)
R(X7.y) 5 —R(X,Z),R(Z,y)
false : —R(x, x)

Instance J:

Ot—- 0 — >0

homomorphism l I

Oot—O0 —> 0

An observation about Datalog

Datalog program I1 with EDB E and IDB R:

Instance J:

I derives false on J.

R(X7y) 8 _E(X7y)
R(X7.y) 5 —R(X,Z),R(Z,y)
false : —R(x, x)

Instance J:

Ot—- 00— >0

homomorphism l I

Oot—O0 — >0

An observation about Datalog

Datalog program I1 with EDB E and IDB R:

Instance J:

I derives false on J.

R(X7y) : _E(X7y)
R(x,y): -R(x,2),R(z,y)
false : —R(x, x)

Instance J:

Ot— 0 —> 0

N

Oot—O0 — >0

An observation about Datalog

Datalog program I1 with EDB E and IDB R:

Instance J:

I derives false on J.

R(X7y) 8 _E(X7y)
R(X7.y) 5 —R(X,Z),R(Z,y)
false : —R(x, x)

Instance J:

Ot— 0 —> 0

homomorphism () I

Ot——0—> 0

G

I derives false on J.

An observation about Datalog

Datalog program I1 with EDB E and IDB R:
R(x,y): =E(x,y)
R(x,y): =R(x,2),R(z,y)
false : —R(x, x)

Instance J: Instance J:

i S

N

Ot——0—> 0

G

I derives false on J. I derives false on J.

Observation

Let C be defined by a Datalog program. Let 2(and B be structures where B
is in C and 2 has a homomorphism to %B. Then 2 is in C.
We say that C is

Result 1

Let ® be an MSO sentence such that [®] is closed under inverse
homomorphisms.

Result 1

Let ® be an MSO sentence such that [®] is closed under inverse
homomorphisms. Then [®] is a finite union of MSO-definable

Result 1

Let ® be an MSO sentence such that [®] is closed under inverse
homomorphisms. Then [®] is a finite union of MSO-definable

Definition
Let © be a 7-structure. The is the class of all finite 7-structures
that have a homomorphism to ©. We denote it by CSP(D).

Result 1
Let ® be an MSO sentence such that [®] is closed under inverse
homomorphisms. Then [®] is a finite union of MSO-definable

Definition
Let © be a 7-structure. The is the class of all finite 7-structures
that have a homomorphism to ©. We denote it by CSP(D).

Example:

e CSP(Q;<) is the class of all digraphs without a cycle.

Result 1
Let ® be an MSO sentence such that [®] is closed under inverse
homomorphisms. Then [®] is a finite union of MSO-definable

Definition
Let © be a 7-structure. The is the class of all finite 7-structures
that have a homomorphism to ©. We denote it by CSP(D).

Example:
e CSP(Q;<) is the class of all digraphs without a cycle.

e CSP(Z;Succ={(x,y) | x+1=y}) =[] is the class of all graphs
where for each two nodes all connecting paths have the same length.

Result 1

Let ® be an MSO sentence such that [®] is closed under inverse
homomorphisms. Then [®] is a finite union of MSO-definable

Definition
Let © be a 7-structure. The is the class of all finite 7-structures
that have a homomorphism to ©. We denote it by CSP(D).

Proposition
A class of 7-structures C is a CSP for some structure iff it is closed under

inverse homomorphisms and ,
i.e. if A, B eC, then Auw B eC.

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.
Datalog program [1
L(x,y): =B(x), B(y)
L(x,y) : =L(x',y"), E(X',x), E(Y', ¥)
false : —R(x), L(x,x"), E(x",y)

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.
Datalog program [1
L(x,y): =B(x), B(y)
L(x,y) : =L(x',y"), E(X',x), E(Y', ¥)
false : —R(x), L(x,x"), E(x",y)

Claim
[M] is not MSO-definable.

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.
Datalog program [1
L(x,y): =B(x), B(y)
L(x,y) : =L(x',y"), E(X',x), E(Y', ¥)
false : —R(x), L(x,x"), E(x",y)

Claim
[M] is not MSO-definable.

*o—>r> 0o —> 0
oe—P 0o —> 0 —> 0

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.
Datalog program [1
L(x,y): =B(x), B(y)
L(x,y) : =L(x',y"), E(X',x), E(Y', ¥)
false : —R(x), L(x,x"), E(x",y)

Claim
[M] is not MSO-definable.

*o—>r> 0o —> 0

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.
Datalog program [1
L(x,y): =B(x), B(y)
L(x,y) : =L(x',y"), E(X',x), E(Y', ¥)
false : —R(x), L(x,x"), E(x",y)

Claim
[M] is not MSO-definable.

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.
Datalog program [1
L(x,y): =B(x), B(y)
L(x,y) : =L(x',y"), E(X',x), E(Y', ¥)
false : —R(x), L(x,x"), E(x",y)

Claim
[M] is not MSO-definable.

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.
Datalog program [1
L(x,y): =B(x), B(y)
L(x,y) : =L(x',y"), E(X',x), E(Y', ¥)
false : —R(x), L(x,x"), E(x",y)

Claim
[M] is not MSO-definable.

|
P e
!

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.
Datalog program [1
L(x,y): =B(x), B(y)
L(x,y) : =L(x',y"), E(X',x), E(Y', ¥)
false : —R(x), L(x,x"), E(x",y)

Claim
[M] is not MSO-definable.

f <m]

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.
Datalog program [1
L(x,y): =B(x), B(y)
L(x,y) : =L(x',y"), E(X',x), E(Y', ¥)
false : —R(x), L(x,x"), E(x",y)

Claim
[M] is not MSO-definable.

[m]

o—> 0o —> 0

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.
Datalog program [1
L(x,y): =B(x), B(y)
L(x,y) : =L(x',y"), E(X',x), E(Y', ¥)
false : —R(x), L(x,x"), E(x",y)

Claim
[M] is not MSO-definable.

[

e—>o0o—>0—>o

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.
Datalog program [1
L(x,y): =B(x), B(y)
L(x,y) : =L(x',y"), E(X',x), E(Y', ¥)
false : —R(x), L(x,x"), E(x",y)

Claim
[M] is not MSO-definable.

—> 0o —> 0

e[n]

*o—> 0o —>

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.
Datalog program [1
L(x,y): =B(x), B(y)
L(x,y) : =L(x',y"), E(X',x), E(Y', ¥)
false : —R(x), L(x,x"), E(x",y)

Claim
[M] is not MSO-definable.

There exists an infinite set X c [[] such that for all distinct
elements 2[,B € X the disjoint union A w B is not in [M].

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.
Datalog program [1
L(x,y): =B(x), B(y)
L(x,y) : =L(x',y"), E(X',x), E(Y', ¥)
false : —R(x), L(x,x"), E(x",y)

Claim
[M] is not MSO-definable.

There exists an infinite set X c [[] such that for all distinct
elements 2[,B € X the disjoint union A w B is not in [M].

— [M] is not a finite union of CSPs.

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.
Datalog program [1
L(x,y): =B(x), B(y)
L(x,y) : =L(x',y"), E(X',x), E(Y', ¥)
false : —R(x), L(x,x"), E(x",y)

Claim
[M] is not MSO-definable.

There exists an infinite set X c [[] such that for all distinct
elements 2[,B € X the disjoint union A w B is not in [M].

— [M] is not a finite union of CSPs.

— By Result 1 and the observation about Datalog, the class [[1] is not
MSO-definable.

Result 2

Let ® be an MSO sentence such that [®] is closed under disjoint unions and
inverse homomorphisms.

Result 2

Let ® be an MSO sentence such that [®] is closed under disjoint unions and
inverse homomorphisms.Then [®] is the CSP of an w-categorical structure.

Result 2
Let ® be an MSO sentence such that [®] is closed under disjoint unions and
inverse homomorphisms.Then [®] is the CSP of an w-categorical structure.

Definition
A countable structure ® is called if all countable models of the

first-order theory of © are isomorphic to D.

Result 2
Let ® be an MSO sentence such that [®] is closed under disjoint unions and
inverse homomorphisms.Then [®] is the CSP of an w-categorical structure.

Definition
A countable structure ® is called if all countable models of the

first-order theory of © are isomorphic to D.

Example: (Q; <) is w-categorical.
e There exists up to isomorphism only one countable dense linear order

without endpoints.

Result 2
Let ® be an MSO sentence such that [®] is closed under disjoint unions and
inverse homomorphisms.Then [®] is the CSP of an w-categorical structure.

Definition
A countable structure ® is called if all countable models of the

first-order theory of © are isomorphic to D.

Example: (Q; <) is w-categorical.
e There exists up to isomorphism only one countable dense linear order
without endpoints.

e “Dense linear order without endpoints” can be expressed in first-order logic.

Result 2
Let ® be an MSO sentence such that [®] is closed under disjoint unions and
inverse homomorphisms.Then [®] is the CSP of an w-categorical structure.

Definition
A countable structure ® is called if all countable models of the

first-order theory of © are isomorphic to D.

Remark
Result 2 can be used to achieve a characterization of MSO n Datalog in terms
of existential pebble games.

Application of Result 2

Claim
For the Datalog program IM°““ the class [[1°““] is not definable in MSO.

Application of Result 2

Claim
For the Datalog program IM°““ the class [[1°““] is not definable in MSO.

e Consider 2 = (Z;Succ = {(x,y) | x+1=y}).

Application of Result 2

Claim
For the Datalog program IM°““ the class [[1°““] is not definable in MSO.

e Consider 20 = (Z;Succ = {(x,y) | x+1=y}).
o CSP(2L) = [Mms<].

Application of Result 2

Claim
For the Datalog program IM°““ the class [[1°““] is not definable in MSO.

e Consider 20 = (Z;Succ = {(x,y) | x+1=y}).
o CSP(2L) = [Mms<].

e 2 and A w A satisfy exactly the same first-order sentences, e.g.,

Vx3y, z. Succ(y, x) A Succ(x,y).

Application of Result 2

Claim
For the Datalog program IM°““ the class [[1°““] is not definable in MSO.

Consider 20 = (Z; Succ = {(x,y) | x + 1 =y}).
CSP(2() = =],

2A and A w2 satisfy exactly the same first-order sentences, e.g.,

Vx3y, z. Succ(y, x) A Succ(x,y).

2A and A w A are not isomorphic.

Application of Result 2

Claim
For the Datalog program IM°““ the class [[1°““] is not definable in MSO.

Consider 20 = (Z; Succ = {(x,y) | x + 1 =y}).
CSP(2() = =],

2A and A w2 satisfy exactly the same first-order sentences, e.g.,

Vx3y, z. Succ(y, x) A Succ(x,y).

2A and A w A are not isomorphic.

e Therefore 2(is not w-categorical.

Application of Result 2

Claim
For the Datalog program IM°““ the class [[1°““] is not definable in MSO.

Consider 2 = (Z;Succ = {(x,y) | x+1=y}).
CSP () = [r*=].

2A and A w2 satisfy exactly the same first-order sentences, e.g.,

Vx3y,z. Succ(y, x) A Succ(x,y).

2A and A w A are not isomorphic.
e Therefore 2(is not w-categorical.

e Even more: there exists no w-categorical structure 5 with
CSP(8) = CSP() (needs short proof).

Application of Result 2

Claim
For the Datalog program IM°““ the class [[1°““] is not definable in MSO.

e Consider 2 = (Z;Succ = {(x,y) | x+1=y}).
o CSP() = [r*v=].
e 2 and A w A satisfy exactly the same first-order sentences, e.g.,

Vx3y,z. Succ(y, x) A Succ(x,y).

2A and A w A are not isomorphic.
e Therefore 2(is not w-categorical.

e Even more: there exists no w-categorical structure 5 with
CSP(8) = CSP() (needs short proof).

By Result 2, CSP(2() = [[1°““] is not definable in MSO.

Description of MSO n Datalog

Result 1

Let ® be an MSO sentence such that [®] is closed under inverse
homomorphisms. Then [®] is a finite union of MSO-definable CSPs.

Description of MSO n Datalog

Result 1

Let ® be an MSO sentence such that [®] is closed under inverse
homomorphisms. Then [®] is a finite union of MSO-definable CSPs.

Result 2

Let ® be an MSO sentence such that [®] is closed under disjoint unions and
inverse homomorphisms. Then [®] is the CSP of an w-categorical structure.

Description of MSO n Datalog

Result 1

Let ® be an MSO sentence such that [®] is closed under inverse
homomorphisms. Then [®] is a finite union of MSO-definable CSPs.

Result 2

Let ® be an MSO sentence such that [®] is closed under disjoint unions and
inverse homomorphisms. Then [®] is the CSP of an w-categorical structure.

Result 3
Every problem in MSO n Datalog is the finite union of w-categorical CSPs.

A generalization of the results

e Guarded second-order logic (GSO) is a generalization of MSO.

A generalization of the results

e Guarded second-order logic (GSO) is a generalization of MSO.

e GSO coincides with Courselle’s MSO».

A generalization of the results

e Guarded second-order logic (GSO) is a generalization of MSO.
e GSO coincides with Courselle’'s MSOx.

e Result 1, Result 2 and Result 3 hold also for GSO.

Open problems

e The logic Nemodeq introduced by Rudolph and Krotzsch is contained in
MSO n Datalog. Does the converse also hold?

Open problems

e The logic Nemodeq introduced by Rudolph and Krotzsch is contained in
MSO n Datalog. Does the converse also hold?

e Can the intersection of GSO and Datalog be described by some logic?

Open problems

e The logic Nemodeq introduced by Rudolph and Krotzsch is contained in
MSO n Datalog. Does the converse also hold?

e Can the intersection of GSO and Datalog be described by some logic?

e Is there an example of a CSP for a reduct of a finitely bounded
homogeneous structure that is not in GSO?

Thank you for your attention!

Result 1 (proof idea)

Result 1
Let ® be an MSO sentence such that [®] is closed under inverse

homomorphisms. Then [®] is a finite union of MSO definable CSPs.

Result 1 (proof idea)

Result 1
Let ® be an MSO sentence such that [®] is closed under inverse

homomorphisms. Then [®] is a finite union of MSO definable CSPs.
e Equivalence relation ~ on C = [®] with A ~ B if and only if

VDeC:AwDeC=BwDeC.

Result 1 (proof idea)

Result 1
Let ® be an MSO sentence such that [®] is closed under inverse

homomorphisms. Then [®] is a finite union of MSO definable CSPs.
e Equivalence relation ~ on C = [®] with A ~ B if and only if

VDeC:AwDeC=BwDeC.

e ~ has finitely many classes.

Result 1 (proof idea)

Result 1
Let ® be an MSO sentence such that [®] is closed under inverse

homomorphisms. Then [®] is a finite union of MSO definable CSPs.
e Equivalence relation ~ on C = [®] with A ~ B if and only if

VDeC:AwDeC=BwDeC.

e ~ has finitely many classes.
e Let g be the quantifier rank of ®.

Result 1 (proof idea)

Result 1
Let ® be an MSO sentence such that [®] is closed under inverse

homomorphisms. Then [®] is a finite union of MSO definable CSPs.
e Equivalence relation ~ on C = [®] with A ~ B if and only if

VDeC:AwDeC=BwDeC.

e ~ has finitely many classes.

e Let g be the quantifier rank of ®.
e A=y B if A and B satisfy the same MSO sentences of quantifier rank g.

Result 1 (proof idea)

Result 1
Let ® be an MSO sentence such that [®] is closed under inverse

homomorphisms. Then [®] is a finite union of MSO definable CSPs.
e Equivalence relation ~ on C = [®] with A ~ B if and only if

VDeC:AwDeC=BwDeC.

e ~ has finitely many classes.
e Let g be the quantifier rank of ®.
e A=y B if A and B satisfy the same MSO sentences of quantifier rank g.
e =, has finitely many classes.

Result 1 (proof idea)

Result 1
Let ® be an MSO sentence such that [®] is closed under inverse

homomorphisms. Then [®] is a finite union of MSO definable CSPs.
e Equivalence relation ~ on C = [®] with A ~ B if and only if

VDeC:AwDeC=BwDeC.

e ~ has finitely many classes.

Let g be the quantifier rank of ®.

A =4 B if A and B satisfy the same MSO sentences of quantifier rank gq.
=4 has finitely many classes.

If A=4 B, then A~ B.

Result 1 (proof idea)

Result 1
Let ® be an MSO sentence such that [®] is closed under inverse

homomorphisms. Then [®] is a finite union of MSO definable CSPs.
e Equivalence relation ~ on C = [®] with A ~ B if and only if

VDeC:AwDeC=BwDeC.

e ~ has finitely many classes.

Let g be the quantifier rank of ®.

A =4 B if A and B satisfy the same MSO sentences of quantifier rank gq.
=4 has finitely many classes.

If A=4 B, then A~ B.

Therefore ~ has finitely many classes.

Result 1 (proof idea)

Result 1
Let ® be an MSO sentence such that [®] is closed under inverse

homomorphisms. Then [®] is a finite union of MSO definable CSPs.
e Equivalence relation ~ on C = [®] with A ~ B if and only if
VDeC:AwDeC=BwDeC.

e ~ has finitely many classes.

e C is a CSP iff ~ has only one class.

Result 1 (proof idea)

Result 1
Let ® be an MSO sentence such that [®] is closed under inverse

homomorphisms. Then [®] is a finite union of MSO definable CSPs.
e Equivalence relation ~ on C = [®] with A ~ B if and only if
VDeC:AwDeC=BwDeC.

e ~ has finitely many classes.
e C is a CSP iff ~ has only one class.

e Induction argument over the number of classes of ~.

Result 2 (proof idea)

Generalize the equivalence relation ~:

Result 2 (proof idea)

Generalize the equivalence relation ~:

o Let C = [®] and let X be a set of new constant symbols, |X| = n.

Result 2 (proof idea)

Generalize the equivalence relation ~:
o Let C = [®] and let X be a set of new constant symbols, |X| = n.

e Let CX be the class of 7 U X-structures whose 7-reducts are from C.

Result 2 (proof idea)

Generalize the equivalence relation ~:
o Let C = [®] and let X be a set of new constant symbols, |X| = n.
e Let C* be the class of 7 U X-structures whose 7-reducts are from C.

e For two structures A, B € C* the structure A wx B is defined as the
pairwise identification of the constants X in A w B.

o —» 0 X3

&

N

° X2 Wixg,x2,x3} X2

oe—> o —> o
o—> 0o <+——eo

o — >0 X1

&

Result 2 (proof idea)

Generalize the equivalence relation ~:
o Let C = [®] and let X be a set of new constant symbols, |X| = n.
e Let C* be the class of 7 U X-structures whose 7-reducts are from C.

e For two structures A, B € C* the structure A wx B is defined as the
pairwise identification of the constants X in A w B.

N
an

O — >0 +——
X1

o —» 0 X3

&

oe—>o0o—>o

N

° X2 Wixg,x2,x3} X2

e— >0 <+—o
|

o — >0 X1

&

Result 2 (proof idea)

Generalize the equivalence relation ~:
o Let C = [®] and let X be a set of new constant symbols, |X| = n.
e Let C* be the class of 7 U X-structures whose 7-reducts are from C.

e For two structures A, B € C* the structure A wx B is defined as the
pairwise identification of the constants X in A w B.

e Consider equivalence relation ~$ on C* with A ~¢ B if and only if

VDeC¥:AuwxDeCX < BuyxDeC”.

Result 2 (proof idea)

Generalize the equivalence relation ~:
o Let C = [®] and let X be a set of new constant symbols, |X| = n.
e Let C* be the class of 7 U X-structures whose 7-reducts are from C.

e For two structures A, B € C* the structure A wx B is defined as the
pairwise identification of the constants X in A w B.

e Consider equivalence relation ~$ on C* with A ~¢ B if and only if

VDeC¥:AuwxDeCX < BuyxDeC”.

Use of the following theorem:

Theorem ﬁBodirsky, Hils, Martin)

Let C be closed under inverse homomorphisms and disjoint unions. Then there
exists an w-categorical structure B such that CSP(B) = C if and only if ~§ has
finitely many equivalence classes for each n e N.

