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Introduction 1

Monadic Second-Order Logic:

• Büchi’s theorem, 1960: MSO on words = regular languages.

• Courcelle’s theorem, 1990: MSO properties can be decided in linear time
on graphs of bounded treewidth.

Datalog:

• “Prolog without function symbols.”

• “Local consistency algorithms.”

• Query answering in database theory.

• Fragment of second-order logic.

Wish: Combination of the good computational properties of expressibility in
Datalog and of expressibility in MSO.

Which computational problems are expressible in MSO
AND can be solved by a Datalog program?
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Introduction 2

Contributions:

• Description of MSO ∩Datalog in terms of Constraint Satisfaction
Problems.

• A necessary condition whether a given Datalog program is in MSO.

• Pebble game characterization of MSO ∩Datalog. Not in this talk!

• All results also hold more generally for GSO (Guarded Second-Order
Logic) instead of MSO. Also not in this talk!
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Monadic Second-Order Logic

τ : finite relational signature.

Second-order logic: extension of first-order logic by (existential and universal)
quantification over relations.

Monadic second-order logic (MSO): all quantified relations are unary.

Monadic second-order τ -sentence: all first-order variables are quantified,
τ symbols are not quantified.

Example
Monadic second-order {E}-sentence:

∀R ∶ ((∃z ∈ R)⇒ (∃x ∈ R ∀y ∈ R ∶ ¬E(y , x)))
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MSO-definable classes

Φ: MSO τ -sentence.

JΦK: all finite τ -structures A such that A ⊧ Φ.

Example
Consider the MSO {E}-sentence Φ

∀R ∶ ((∃z ∈ R)⇒ (∃x ∈ R ∀y ∈ R ∶ ¬E(y , x)))

The class JΦK consists of all directed graphs that do not contain a cycle.

A structure that satisfies ¬Φ:
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Datalog

EDBs τ and IDBs ρ: disjoint sets of relation symbols, such that ρ contains a
symbol false of arity 0.

Datalog rule: a term ψ0 ∶ −ψ1, . . . , ψn, where ψ0 is an atomic ρ-formula and
{ψ1, . . . , ψn} are atomic τ ∪ ρ-formulas.

Datalog program: set of Datalog rules.

Datalog Semantics
A Datalog program Π rejects an instance, if the predicate false can be derived
by iterative rule application. Otherwise Π accepts the instance.

We denote the class of accepted instances by JΠK.
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Datalog example

Datalog program Πsucc with EDB Succ and IDBs L, S , T and false:

S(x,y) :- Succ(x,y)

L(x,z) :- L(x,y), L(y,z)

S(y,x’) :- L(x,y), S(x,x’)

L(x’,y’) :- S(x,x’), S(x,y’)

T(x,y) :- S(x,y)

T(x,z) :- T(x,y), T(y,z)

false :- T(x,x)

Ð→ Πsucc derives false on IInstance I:
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Datalog example

Datalog program Πsucc with EDB Succ and IDBs L, S , T and false:

S(x,y) :-Succ(x,y)
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Πsucc accepts exactly the structures where for every cycle the number of
traversed forward edges equals the number of traversed backward edges.



An observation about Datalog

Datalog program Π with EDB E and IDB R:
R(x , y) ∶ −E(x , y)

R(x , y) ∶ −R(x , z),R(z , y)

false ∶ −R(x , x)

Instance I:

Π derives false on I.

Instance J:

homomorphism

Π derives false on J.

Observation
Let C be defined by a Datalog program. Let A and B be structures where B

is in C and A has a homomorphism to B. Then A is in C.
We say that C is closed under inverse homomorphisms.
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Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms. Then JΦK is a finite union of MSO-definable CSPs.

Definition
Let D be a τ -structure. The CSP of D is the class of all finite τ -structures
that have a homomorphism to D. We denote it by CSP(D).

Proposition
A class of τ -structures C is a CSP for some structure iff it is closed under
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Claim
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Observation: There exists an infinite set X ⊂ JΠK such that for all distinct
elements A,B ∈ X the disjoint union A ⊎B is not in JΠK.

Ð→ JΠK is not a finite union of CSPs.

Ð→ By Result 1 and the observation about Datalog, the class JΠK is not
MSO-definable.
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Example: (Q;<) is ω-categorical.

• There exists up to isomorphism only one countable dense linear order
without endpoints.

• “Dense linear order without endpoints” can be expressed in first-order logic.
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Result 2
Let Φ be an MSO sentence such that JΦK is closed under disjoint unions and
inverse homomorphisms.Then JΦK is the CSP of an ω-categorical structure.

Definition
A countable structure D is called ω-categorical if all countable models of the
first-order theory of D are isomorphic to D.

Remark
Result 2 can be used to achieve a characterization of MSO ∩Datalog in terms
of existential pebble games.
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homogeneous structure that is not in GSO?



Thank you for your attention!
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Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms. Then JΦK is a finite union of MSO definable CSPs.

• Equivalence relation ∼ on C = JΦK with A ∼ B if and only if

∀D ∈ C ∶ A ⊎D ∈ C⇔ B ⊎D ∈ C.

• ∼ has finitely many classes.

• C is a CSP iff ∼ has only one class.

• Induction argument over the number of classes of ∼.
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Generalize the equivalence relation ∼:

• Let C = JΦK and let X be a set of new constant symbols, ∣X ∣ = n.

• Let CX be the class of τ ∪X -structures whose τ -reducts are from C.

• For two structures A,B ∈ CX the structure A ⊎X B is defined as the
pairwise identification of the constants X in A ⊎B.
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Generalize the equivalence relation ∼:

• Let C = JΦK and let X be a set of new constant symbols, ∣X ∣ = n.

• Let CX be the class of τ ∪X -structures whose τ -reducts are from C.

• For two structures A,B ∈ CX the structure A ⊎X B is defined as the
pairwise identification of the constants X in A ⊎B.

• Consider equivalence relation ∼Cn on CX with A ∼Cn B if and only if

∀D ∈ CX ∶ A ⊎X D ∈ CX ⇔ B ⊎X D ∈ CX .

Use of the following theorem:

Theorem (Bodirsky, Hils, Martin)
Let C be closed under inverse homomorphisms and disjoint unions. Then there
exists an ω-categorical structure B such that CSP(B) = C if and only if ∼Cn has
finitely many equivalence classes for each n ∈ N.


