

Grant Agreement no. 681988, CSP-Infinity

DFG Research Training Group 1763

Grant Agreement no. 771779, DeciGUT

Datalog-Expressibility for Monadic and Guarded Second-Order Logic

Manuel Bodirsky¹, Simon Knäuer¹, and Sebastian Rudolph²

¹TU Dresden, Institut für Algebra
²TU Dresden, Computational Logic Group, Germany

48th International Colloquium on Automata, Languages and Programming July 12-16, 2021

Monadic Second-Order Logic:

Monadic Second-Order Logic:

• Büchi's theorem, 1960: MSO on words = regular languages.

Monadic Second-Order Logic:

- Büchi's theorem, 1960: MSO on words = regular languages.
- Courcelle's theorem, 1990: MSO properties can be decided in linear time on graphs of bounded treewidth.

Monadic Second-Order Logic:

- Büchi's theorem, 1960: MSO on words = regular languages.
- Courcelle's theorem, 1990: MSO properties can be decided in linear time on graphs of bounded treewidth.

Monadic Second-Order Logic:

- Büchi's theorem, 1960: MSO on words = regular languages.
- Courcelle's theorem, 1990: MSO properties can be decided in linear time on graphs of bounded treewidth.

Datalog:

• "Prolog without function symbols."

Monadic Second-Order Logic:

- Büchi's theorem, 1960: MSO on words = regular languages.
- Courcelle's theorem, 1990: MSO properties can be decided in linear time on graphs of bounded treewidth.

- "Prolog without function symbols."
- "Local consistency algorithms."

Monadic Second-Order Logic:

- Büchi's theorem, 1960: MSO on words = regular languages.
- Courcelle's theorem, 1990: MSO properties can be decided in linear time on graphs of bounded treewidth.

- "Prolog without function symbols."
- "Local consistency algorithms."
- Query answering in database theory.

Monadic Second-Order Logic:

- Büchi's theorem, 1960: MSO on words = regular languages.
- Courcelle's theorem, 1990: MSO properties can be decided in linear time on graphs of bounded treewidth.

- "Prolog without function symbols."
- "Local consistency algorithms."
- Query answering in database theory.
- Fragment of second-order logic.

Monadic Second-Order Logic:

- Büchi's theorem, 1960: MSO on words = regular languages.
- Courcelle's theorem, 1990: MSO properties can be decided in linear time on graphs of bounded treewidth.

Datalog:

- "Prolog without function symbols."
- "Local consistency algorithms."
- Query answering in database theory.
- Fragment of second-order logic.

<u>Wish:</u> Combination of the good computational properties of expressibility in Datalog and of expressibility in MSO.

Which computational problems are expressible in MSO AND can be solved by a Datalog program?

• Description of $\mathsf{MSO}\cap\mathsf{Datalog}$ in terms of Constraint Satisfaction Problems.

- Description of $\mathsf{MSO}\cap\mathsf{Datalog}$ in terms of Constraint Satisfaction Problems.
- A necessary condition whether a given Datalog program is in MSO.

- Description of $\mathsf{MSO}\cap\mathsf{Datalog}$ in terms of Constraint Satisfaction Problems.
- A necessary condition whether a given Datalog program is in MSO.
- Pebble game characterization of MSO \cap Datalog. Not in this talk!

- Description of MSO \cap Datalog in terms of Constraint Satisfaction Problems.
- A necessary condition whether a given Datalog program is in MSO.
- Pebble game characterization of MSO ∩ Datalog. Not in this talk!
- All results also hold more generally for GSO (Guarded Second-Order Logic) instead of MSO. Also not in this talk!

Second-order logic: extension of first-order logic by (existential and universal) quantification over relations.

Second-order logic: extension of first-order logic by (existential and universal) quantification over relations.

Monadic second-order logic (MSO): all quantified relations are unary.

Second-order logic: extension of first-order logic by (existential and universal) quantification over relations.

Monadic second-order logic (MSO): all quantified relations are unary.

Monadic second-order τ -sentence: all first-order variables are quantified, τ symbols are not quantified.

Second-order logic: extension of first-order logic by (existential and universal) quantification over relations.

Monadic second-order logic (MSO): all quantified relations are unary.

Monadic second-order τ -sentence: all first-order variables are quantified, τ symbols are not quantified.

Example

Monadic second-order $\{E\}$ -sentence:

$$\forall R: ((\exists z \in R) \Rightarrow (\exists x \in R \ \forall y \in R: \neg E(y, x)))$$

 $[\Phi]$: all finite τ -structures \mathfrak{A} such that $\mathfrak{A} \models \Phi$.

 $\llbracket \Phi \rrbracket$: all finite τ -structures \mathfrak{A} such that $\mathfrak{A} \models \Phi$.

Example

```
Consider the MSO \{E\}-sentence \Phi
```

```
\forall R: ((\exists z \in R) \Rightarrow (\exists x \in R \quad \forall y \in R: \neg E(y, x)))
```

 $\llbracket \Phi \rrbracket$: all finite τ -structures \mathfrak{A} such that $\mathfrak{A} \models \Phi$.

Example

Consider the MSO $\{E\}$ -sentence Φ

$$\forall R: ((\exists z \in R) \Rightarrow (\exists x \in R \quad \forall y \in R: \neg E(y, x)))$$

A structure that satisfies $\neg \Phi$:

 $\llbracket \Phi \rrbracket$: all finite τ -structures \mathfrak{A} such that $\mathfrak{A} \models \Phi$.

Example

Consider the MSO $\{E\}$ -sentence Φ

$$\forall R: ((\exists z \in R) \Rightarrow (\exists x \in R \quad \forall y \in R: \neg E(y, x)))$$

A structure that satisfies $\neg \Phi$:

 $\llbracket \Phi \rrbracket$: all finite τ -structures \mathfrak{A} such that $\mathfrak{A} \models \Phi$.

ExampleConsider the MSO {E}-sentence Φ $\forall R : ((\exists z \in R) \Rightarrow (\exists x \in R \ \forall y \in R : \neg E(y, x)))$ The class $\llbracket \Phi \rrbracket$ consists of all directed graphs that do not contain a cycle.

A structure that satisfies $\neg \Phi$:

Datalog rule: a term $\psi_0 : -\psi_1, \dots, \psi_n$, where ψ_0 is an atomic ρ -formula and $\{\psi_1, \dots, \psi_n\}$ are atomic $\tau \cup \rho$ -formulas.

Datalog rule: a term $\psi_0 : -\psi_1, \dots, \psi_n$, where ψ_0 is an atomic ρ -formula and $\{\psi_1, \dots, \psi_n\}$ are atomic $\tau \cup \rho$ -formulas.

Datalog program: set of Datalog rules.

Datalog rule: a term $\psi_0 : -\psi_1, \dots, \psi_n$, where ψ_0 is an atomic ρ -formula and $\{\psi_1, \dots, \psi_n\}$ are atomic $\tau \cup \rho$ -formulas.

Datalog program: set of Datalog rules.

Datalog Semantics

A Datalog program Π rejects an instance, if the predicate **false** can be derived by *iterative rule application*. Otherwise Π accepts the instance.

Datalog rule: a term $\psi_0 : -\psi_1, \dots, \psi_n$, where ψ_0 is an atomic ρ -formula and $\{\psi_1, \dots, \psi_n\}$ are atomic $\tau \cup \rho$ -formulas.

Datalog program: set of Datalog rules.

Datalog Semantics

A Datalog program Π rejects an instance, if the predicate **false** can be derived by *iterative rule application*. Otherwise Π accepts the instance.

We denote the class of accepted instances by $[\Pi]$.

Datalog program Π^{succ} with EDB Succ and IDBs L, S, T and false:

 $\begin{array}{l} S(x,y) & :- \; Succ(x,y) \\ L(x,z) & :- \; L(x,y), \; L(y,z) \\ S(y,x') & :- \; L(x,y), \; S(x,x') \\ L(x',y') & :- \; S(x,x'), \; S(x,y') \end{array}$

 $\begin{array}{l} \mathsf{T}(x,y) \ :- \ \mathsf{S}(x,y) \\ \mathsf{T}(x,z) \ :- \ \mathsf{T}(x,y), \ \mathsf{T}(y,z) \\ \textbf{false} \ :- \ \mathsf{T}(x,x) \end{array}$

Datalog program Π^{succ} with EDB Succ and IDBs L, S, T and false:

 $\begin{array}{l} S(x,y) & :- \; Succ(x,y) \\ L(x,z) & :- \; L(x,y), \; L(y,z) \\ S(y,x') & :- \; L(x,y), \; S(x,x') \\ L(x',y') & :- \; S(x,x'), \; S(x,y') \end{array}$

 $\begin{array}{l} \mathsf{T}(x,y) \: := \: \mathsf{S}(x,y) \\ \mathsf{T}(x,z) \: := \: \mathsf{T}(x,y), \: \mathsf{T}(y,z) \\ \mathsf{false} \: := \: \mathsf{T}(x,x) \end{array}$

Datalog program Π^{succ} with EDB Succ and IDBs L, S, T and false:

 $\begin{array}{l} S(x,y) :-Succ(x,y) \\ L(x,z) :- L(x,y), L(y,z) \\ S(y,x') :- L(x,y), S(x,x') \\ L(x',y') :- S(x,x'), S(x,y') \end{array}$

 $\begin{array}{l} \mathsf{T}(x,y) \: := \: \mathsf{S}(x,y) \\ \mathsf{T}(x,z) \: := \: \mathsf{T}(x,y), \: \mathsf{T}(y,z) \\ \mathsf{false} \: := \: \mathsf{T}(x,x) \end{array}$

Datalog program Π^{succ} with EDB Succ and IDBs L, S, T and false:

 $\begin{array}{l} {\sf S}({\sf x},{\sf y}) := {\sf Succ}({\sf x},{\sf y}) \\ {\sf L}({\sf x},{\sf z}) := {\sf L}({\sf x},{\sf y}), \, {\sf L}({\sf y},{\sf z}) \\ {\sf S}({\sf y},{\sf x}') := {\sf L}({\sf x},{\sf y}), \, {\sf S}({\sf x},{\sf x}') \\ {\sf L}({\sf x}',{\sf y}') := {\sf S}({\sf x},{\sf x}'), \, {\sf S}({\sf x},{\sf y}') \end{array}$

 $\begin{array}{l} \mathsf{T}(\mathsf{x},\mathsf{y}) \ \coloneqq \ \mathsf{S}(\mathsf{x},\mathsf{y}) \\ \mathsf{T}(\mathsf{x},\mathsf{z}) \ \coloneqq \ \mathsf{T}(\mathsf{x},\mathsf{y}), \ \mathsf{T}(\mathsf{y},\mathsf{z}) \\ \mathbf{false} \ \coloneqq \ \mathsf{T}(\mathsf{x},\mathsf{x}) \end{array}$

Datalog program Π^{succ} with EDB Succ and IDBs L, S, T and false:

 $\begin{array}{l} S(x,y) & :-Succ(x,y) \\ L(x,z) & :- L(x,y), \ L(y,z) \\ \hline S(y,x') & :- L(x,y), \ S(x,x') \\ L(x',y') & :- S(x,x'), \ S(x,y') \end{array}$

 $\begin{array}{l} \mathsf{T}(\mathsf{x},\mathsf{y}) \ \coloneqq \ \mathsf{S}(\mathsf{x},\mathsf{y}) \\ \mathsf{T}(\mathsf{x},\mathsf{z}) \ \coloneqq \ \mathsf{T}(\mathsf{x},\mathsf{y}), \ \mathsf{T}(\mathsf{y},\mathsf{z}) \\ \mathbf{false} \ \coloneqq \ \mathsf{T}(\mathsf{x},\mathsf{x}) \end{array}$

Datalog program Π^{succ} with EDB Succ and IDBs L, S, T and false:

 $\begin{array}{l} {\sf S}({\sf x},{\sf y}) := {\sf Succ}({\sf x},{\sf y}) \\ {\sf L}({\sf x},{\sf z}) := {\sf L}({\sf x},{\sf y}), \, {\sf L}({\sf y},{\sf z}) \\ {\sf S}({\sf y},{\sf x}') := {\sf L}({\sf x},{\sf y}), \, {\sf S}({\sf x},{\sf x}') \\ {\sf L}({\sf x}',{\sf y}') := {\sf S}({\sf x},{\sf x}'), \, {\sf S}({\sf x},{\sf y}') \end{array}$

 $\begin{array}{l} \mathsf{T}(\mathsf{x},\mathsf{y}) \ \coloneqq \ \mathsf{S}(\mathsf{x},\mathsf{y}) \\ \mathsf{T}(\mathsf{x},\mathsf{z}) \ \coloneqq \ \mathsf{T}(\mathsf{x},\mathsf{y}), \ \mathsf{T}(\mathsf{y},\mathsf{z}) \\ \mathbf{false} \ \coloneqq \ \mathsf{T}(\mathsf{x},\mathsf{x}) \end{array}$

Datalog program Π^{succ} with EDB Succ and IDBs L, S, T and false:

 $\begin{array}{l} S(x,y) & :-Succ(x,y) \\ L(x,z) & :- L(x,y), \ L(y,z) \\ \hline S(y,x') & :- L(x,y), \ S(x,x') \\ L(x',y') & :- S(x,x'), \ S(x,y') \end{array}$

 $\begin{array}{l} \mathsf{T}(x,y) \: := \: \mathsf{S}(x,y) \\ \mathsf{T}(x,z) \: := \: \mathsf{T}(x,y), \: \mathsf{T}(y,z) \\ \mathsf{false} \: := \: \mathsf{T}(x,x) \end{array}$

Datalog program Π^{succ} with EDB Succ and IDBs L, S, T and false:

 $\begin{array}{l} S(x,y) :-Succ(x,y) \\ L(x,z) :- L(x,y), L(y,z) \\ S(y,x') :- L(x,y), S(x,x') \\ L(x',y') :- S(x,x'), S(x,y') \end{array}$

Datalog program Π^{succ} with EDB Succ and IDBs L, S, T and false:

 $\begin{array}{l} S(x,y) & :-Succ(x,y) \\ L(x,z) & :- L(x,y), \ L(y,z) \\ \hline S(y,x') & :- L(x,y), \ S(x,x') \\ L(x',y') & :- S(x,x'), \ S(x,y') \end{array}$

 $\begin{array}{l} \mathsf{T}(x,y) \: := \: \mathsf{S}(x,y) \\ \mathsf{T}(x,z) \: := \: \mathsf{T}(x,y), \: \mathsf{T}(y,z) \\ \mathsf{false} \: := \: \mathsf{T}(x,x) \end{array}$

Datalog program Π^{succ} with EDB Succ and IDBs L, S, T and false:

 $\begin{array}{l} S(x,y) & :-Succ(x,y) \\ L(x,z) & :- L(x,y), \ L(y,z) \\ S(y,x') & :- L(x,y), \ S(x,x') \\ L(x',y') & :- S(x,x'), \ S(x,y') \end{array}$

T(x,y) := S(x,y)T(x,z) := T(x,y), T(y,z) false := T(x,x)

Datalog program Π^{succ} with EDB Succ and IDBs L, S, T and false:

 $\begin{array}{l} S(x,y) & :-Succ(x,y) \\ L(x,z) & :- L(x,y), \ L(y,z) \\ S(y,x') & :- L(x,y), \ S(x,x') \\ L(x',y') & :- S(x,x'), \ S(x,y') \end{array}$

T(x,y) := S(x,y) T(x,z) := T(x,y), T(y,z)false := T(x,x)

Datalog program Π^{succ} with EDB Succ and IDBs L, S, T and false:

 $\begin{array}{l} S(x,y) & :-Succ(x,y) \\ L(x,z) & :- L(x,y), \ L(y,z) \\ S(y,x') & :- L(x,y), \ S(x,x') \\ L(x',y') & :- S(x,x'), \ S(x,y') \end{array}$

 $\begin{array}{l} {\sf T}({\sf x},{\sf y}) \ :- \ {\sf S}({\sf x},{\sf y}) \\ {\sf T}({\sf x},{\sf z}) \ :- \ {\sf T}({\sf x},{\sf y}), \ {\sf T}({\sf y},{\sf z}) \\ \\ {\sf false} \ :- \ {\sf T}({\sf x},{\sf x}) \end{array}$

Datalog program Π^{succ} with EDB Succ and IDBs L, S, T and false:

 $\begin{array}{l} S(x,y) & :-Succ(x,y) \\ L(x,z) & :- L(x,y), \ L(y,z) \\ S(y,x') & :- L(x,y), \ S(x,x') \\ L(x',y') & :- S(x,x'), \ S(x,y') \end{array}$

 $\begin{array}{l} \mathsf{T}(x,y) \ :- \ \mathsf{S}(x,y) \\ \mathsf{T}(x,z) \ :- \ \mathsf{T}(x,y), \ \mathsf{T}(y,z) \\ \textbf{false} \ :- \ \mathsf{T}(x,x) \end{array}$

 Π^{succ} accepts exactly the structures where for every cycle the number of traversed forward edges equals the number of traversed backward edges.

Datalog program Π with EDB *E* and IDB *R*:

R(x,y) : -E(x,y)R(x,y) : -R(x,z), R(z,y)false : -R(x,x)

Datalog program Π with EDB *E* and IDB *R*:

R(x,y) : -E(x,y)R(x,y) : -R(x,z), R(z,y)false : -R(x,x)

Instance \mathfrak{I} :

Datalog program Π with EDB *E* and IDB *R*:

R(x, y) : -E(x, y)R(x, y) : -R(x, z), R(z, y)false : -R(x, x)

Instance \mathfrak{I} :

Datalog program Π with EDB *E* and IDB *R*:

R(x,y) : -E(x,y)R(x,y) : -R(x,z), R(z,y)false : -R(x,x)

Instance \Im :

Datalog program Π with EDB *E* and IDB *R*:

R(x,y) : -E(x,y)R(x,y) : -R(x,z), R(z,y)false : -R(x,x)

Instance \Im :

Datalog program Π with EDB *E* and IDB *R*:

R(x, y) : -E(x, y)R(x, y) : -R(x, z), R(z, y)false : -R(x, x)

Instance \Im :

Datalog program Π with EDB *E* and IDB *R*:

R(x, y) : -E(x, y)R(x, y) : -R(x, z), R(z, y)false : -R(x, x)

Instance \Im :

Datalog program Π with EDB *E* and IDB *R*:

R(x,y) : -E(x,y)R(x,y) : -R(x,z), R(z,y)false : -R(x,x)

Instance \Im :

Datalog program Π with EDB *E* and IDB *R*:

R(x,y):-E(x,y)R(x,y):-R(x,z), R(z,y)false:-R(x,x)

Instance \Im :

Datalog program Π with EDB *E* and IDB *R*:

R(x,y):-E(x,y)R(x,y):-R(x,z), R(z,y)false:-R(x,x)

Instance \Im :

Datalog program Π with EDB *E* and IDB *R*:

 $\begin{aligned} R(x,y) &: -E(x,y) \\ R(x,y) &: -R(x,z), R(z,y) \\ \text{false} &: -R(x,x) \end{aligned}$

Datalog program Π with EDB *E* and IDB *R*:

R(x,y):-E(x,y)R(x,y):-R(x,z), R(z,y)false:-R(x,x)

Observation

Let C be defined by a Datalog program. Let \mathfrak{A} and \mathfrak{B} be structures where \mathfrak{B} is in C and \mathfrak{A} has a homomorphism to \mathfrak{B} . Then \mathfrak{A} is in C. We say that C is closed under inverse homomorphisms.

Let Φ be an MSO sentence such that $[\![\Phi]\!]$ is closed under inverse homomorphisms.

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is a finite union of MSO-definable CSPs.

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is a finite union of MSO-definable CSPs.

Definition

Let \mathfrak{D} be a τ -structure. The CSP of \mathfrak{D} is the class of all finite τ -structures that have a homomorphism to \mathfrak{D} . We denote it by CSP(\mathfrak{D}).

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is a finite union of MSO-definable CSPs.

Definition

Let \mathfrak{D} be a τ -structure. The CSP of \mathfrak{D} is the class of all finite τ -structures that have a homomorphism to \mathfrak{D} . We denote it by CSP(\mathfrak{D}).

Example:

• $\mathsf{CSP}(\mathbb{Q}; <)$ is the class of all digraphs without a cycle.

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is a finite union of MSO-definable CSPs.

Definition

Let \mathfrak{D} be a τ -structure. The CSP of \mathfrak{D} is the class of all finite τ -structures that have a homomorphism to \mathfrak{D} . We denote it by $CSP(\mathfrak{D})$.

Example:

- $\mathsf{CSP}(\mathbb{Q}; <)$ is the class of all digraphs without a cycle.
- CSP(ℤ; Succ = {(x, y) | x + 1 = y}) = [[Π^{succ}]] is the class of all graphs where for each two nodes all connecting paths have the same length.

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is a finite union of MSO-definable CSPs.

Definition

Let \mathfrak{D} be a τ -structure. The CSP of \mathfrak{D} is the class of all finite τ -structures that have a homomorphism to \mathfrak{D} . We denote it by CSP(\mathfrak{D}).

Proposition

A class of τ -structures C is a CSP for some structure iff it is closed under inverse homomorphisms and closed under disjoint unions, i.e. if $\mathfrak{A}, \mathfrak{B} \in C$, then $\mathfrak{A} \uplus \mathfrak{B} \in C$.

Let B and R be unary and let E be a binary relation symbol.

Datalog program ∏

L(x, y) := -B(x), B(y) L(x, y) := -L(x', y'), E(x', x), E(y', y)false : -R(x), L(x, x'), E(x', y)

Let B and R be unary and let E be a binary relation symbol.

Datalog program ∏

$$\begin{split} & L(x,y) : -B(x), B(y) \\ & L(x,y) : -L(x',y'), E(x',x), E(y',y) \\ & \text{false} : -R(x), L(x,x'), E(x',y) \end{split}$$

Claim

 $\llbracket \Pi \rrbracket$ is not MSO-definable.

Let B and R be unary and let E be a binary relation symbol.

Datalog program ∏

$$\begin{split} & L(x,y) : -B(x), B(y) \\ & L(x,y) : -L(x',y'), E(x',x), E(y',y) \\ & \text{false} : -R(x), L(x,x'), E(x',y) \end{split}$$

Claim

Let B and R be unary and let E be a binary relation symbol.

Datalog program ∏

$$\begin{split} & L(x,y) : -B(x), B(y) \\ & L(x,y) : -L(x',y'), E(x',x), E(y',y) \\ & \text{false} : -R(x), L(x,x'), E(x',y) \end{split}$$

Claim

Let B and R be unary and let E be a binary relation symbol.

Datalog program ∏

$$\begin{split} & L(x,y) : -B(x), B(y) \\ & L(x,y) : -L(x',y'), E(x',x), E(y',y) \\ & \text{false} : -R(x), L(x,x'), E(x',y) \end{split}$$

Claim

Let B and R be unary and let E be a binary relation symbol.

Datalog program ∏

$$\begin{split} & L(x,y) : -B(x), B(y) \\ & L(x,y) : -L(x',y'), E(x',x), E(y',y) \\ & \text{false} : -R(x), L(x,x'), E(x',y) \end{split}$$

Claim

 $\llbracket \Pi \rrbracket$ is not MSO-definable.

Let B and R be unary and let E be a binary relation symbol.

Datalog program ∏

$$\begin{split} & L(x,y) : -B(x), B(y) \\ & L(x,y) : -L(x',y'), E(x',x), E(y',y) \\ & \text{false} : -R(x), L(x,x'), E(x',y) \end{split}$$

Claim

Let B and R be unary and let E be a binary relation symbol.

Datalog program ∏

$$L(x, y) : -B(x), B(y)$$

$$L(x, y) : -L(x', y'), E(x', x), E(y', y)$$

false : -R(x), L(x, x'), E(x', y)

Claim

 $\llbracket\Pi\rrbracket$ is not MSO-definable.

€ [[Π]]

Let B and R be unary and let E be a binary relation symbol.

Datalog program ∏

$$\begin{split} & L(x,y) : -B(x), B(y) \\ & L(x,y) : -L(x',y'), E(x',x), E(y',y) \\ & \text{false} : -R(x), L(x,x'), E(x',y) \end{split}$$

Claim

 $\llbracket \Pi \rrbracket$ is not MSO-definable.

Let B and R be unary and let E be a binary relation symbol.

Datalog program ∏

$$\begin{split} & L(x,y) : -B(x), B(y) \\ & L(x,y) : -L(x',y'), E(x',x), E(y',y) \\ & \text{false} : -R(x), L(x,x'), E(x',y) \end{split}$$

Claim

 $\llbracket \Pi \rrbracket$ is not MSO-definable.

Let B and R be unary and let E be a binary relation symbol.

Datalog program ∏

$$\begin{split} & L(x,y) : -B(x), B(y) \\ & L(x,y) : -L(x',y'), E(x',x), E(y',y) \\ & \text{false} : -R(x), L(x,x'), E(x',y) \end{split}$$

Claim

 $\llbracket \Pi \rrbracket$ is not MSO-definable.

Let B and R be unary and let E be a binary relation symbol.

Datalog program ∏

$$L(x, y) : -B(x), B(y)$$

$$L(x, y) : -L(x', y'), E(x', x), E(y', y)$$

false : -R(x), L(x, x'), E(x', y)

Claim

 $\llbracket \Pi \rrbracket$ is not MSO-definable.

Observation: There exists an infinite set $X \subset \llbracket\Pi\rrbracket$ such that for all distinct elements $\mathfrak{A}, \mathfrak{B} \in X$ the disjoint union $\mathfrak{A} \uplus \mathfrak{B}$ is not in $\llbracket\Pi\rrbracket$.

Let B and R be unary and let E be a binary relation symbol.

Datalog program ∏

$$L(x, y) : -B(x), B(y)$$

$$L(x, y) : -L(x', y'), E(x', x), E(y', y)$$

false : -R(x), L(x, x'), E(x', y)

Claim

 $\llbracket \Pi \rrbracket$ is not MSO-definable.

Observation: There exists an infinite set $X \subset \llbracket\Pi\rrbracket$ such that for all distinct elements $\mathfrak{A}, \mathfrak{B} \in X$ the disjoint union $\mathfrak{A} \uplus \mathfrak{B}$ is not in $\llbracket\Pi\rrbracket$.

 $\longrightarrow \llbracket \Pi \rrbracket$ is not a finite union of CSPs.

Let B and R be unary and let E be a binary relation symbol.

Datalog program ∏

$$L(x, y) : -B(x), B(y)$$

$$L(x, y) : -L(x', y'), E(x', x), E(y', y)$$

false : -R(x), L(x, x'), E(x', y)

Claim

 $\llbracket \Pi \rrbracket$ is not MSO-definable.

Observation: There exists an infinite set $X \subset \llbracket\Pi\rrbracket$ such that for all distinct elements $\mathfrak{A}, \mathfrak{B} \in X$ the disjoint union $\mathfrak{A} \uplus \mathfrak{B}$ is not in $\llbracket\Pi\rrbracket$.

 $\longrightarrow \llbracket \Pi \rrbracket$ is not a finite union of CSPs.

 \longrightarrow By Result 1 and the observation about Datalog, the class $[\![\Pi]\!]$ is not MSO-definable.

Let Φ be an MSO sentence such that $[\![\Phi]\!]$ is closed under disjoint unions and inverse homomorphisms.

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under disjoint unions and inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is the CSP of an ω -categorical structure.

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under disjoint unions and inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is the CSP of an ω -categorical structure.

Definition

A countable structure \mathfrak{D} is called ω -categorical if all countable models of the first-order theory of \mathfrak{D} are isomorphic to \mathfrak{D} .

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under disjoint unions and inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is the CSP of an ω -categorical structure.

Definition

A countable structure \mathfrak{D} is called ω -categorical if all countable models of the first-order theory of \mathfrak{D} are isomorphic to \mathfrak{D} .

Example: $(\mathbb{Q}; <)$ is ω -categorical.

• There exists up to isomorphism only one countable dense linear order without endpoints.

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under disjoint unions and inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is the CSP of an ω -categorical structure.

Definition

A countable structure \mathfrak{D} is called ω -categorical if all countable models of the first-order theory of \mathfrak{D} are isomorphic to \mathfrak{D} .

Example: $(\mathbb{Q}; <)$ is ω -categorical.

- There exists up to isomorphism only one countable dense linear order without endpoints.
- "Dense linear order without endpoints" can be expressed in first-order logic.

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under disjoint unions and inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is the CSP of an ω -categorical structure.

Definition

A countable structure \mathfrak{D} is called ω -categorical if all countable models of the first-order theory of \mathfrak{D} are isomorphic to \mathfrak{D} .

Remark

Result 2 can be used to achieve a characterization of MSO \cap Datalog in terms of *existential pebble games*.

For the Datalog program Π^{succ} the class $[\Pi^{succ}]$ is not definable in MSO.

For the Datalog program Π^{succ} the class $[\Pi^{succ}]$ is not definable in MSO.

• Consider $\mathfrak{A} = (\mathbb{Z}; \operatorname{Succ} = \{(x, y) \mid x + 1 = y\}).$

For the Datalog program Π^{succ} the class $[\Pi^{succ}]$ is not definable in MSO.

- Consider $\mathfrak{A} = (\mathbb{Z}; \operatorname{Succ} = \{(x, y) \mid x + 1 = y\}).$
- $\mathsf{CSP}(\mathfrak{A}) = \llbracket \Pi^{\mathsf{succ}} \rrbracket.$

For the Datalog program Π^{succ} the class $[\Pi^{succ}]$ is not definable in MSO.

- Consider $\mathfrak{A} = (\mathbb{Z}; \operatorname{Succ} = \{(x, y) \mid x + 1 = y\}).$
- $\mathsf{CSP}(\mathfrak{A}) = \llbracket \Pi^{\mathsf{succ}} \rrbracket.$
- \mathfrak{A} and $\mathfrak{A} \uplus \mathfrak{A}$ satisfy exactly the same first-order sentences, e.g.,

 $\forall x \exists y, z. \operatorname{Succ}(y, x) \land \operatorname{Succ}(x, y).$

For the Datalog program Π^{succ} the class $[\Pi^{succ}]$ is not definable in MSO.

- Consider $\mathfrak{A} = (\mathbb{Z}; \operatorname{Succ} = \{(x, y) \mid x + 1 = y\}).$
- $\mathsf{CSP}(\mathfrak{A}) = \llbracket \Pi^{\mathsf{succ}} \rrbracket.$
- $\mathfrak A$ and $\mathfrak A \uplus \mathfrak A$ satisfy exactly the same first-order sentences, e.g.,

```
\forall x \exists y, z. \operatorname{Succ}(y, x) \land \operatorname{Succ}(x, y).
```

• \mathfrak{A} and $\mathfrak{A} \uplus \mathfrak{A}$ are not isomorphic.

For the Datalog program Π^{succ} the class $\llbracket\Pi^{succ}\rrbracket$ is not definable in MSO.

- Consider $\mathfrak{A} = (\mathbb{Z}; \operatorname{Succ} = \{(x, y) \mid x + 1 = y\}).$
- $\mathsf{CSP}(\mathfrak{A}) = \llbracket \Pi^{\mathsf{succ}} \rrbracket.$
- $\mathfrak A$ and $\mathfrak A \uplus \mathfrak A$ satisfy exactly the same first-order sentences, e.g.,

```
\forall x \exists y, z. \operatorname{Succ}(y, x) \land \operatorname{Succ}(x, y).
```

- \mathfrak{A} and $\mathfrak{A} \uplus \mathfrak{A}$ are not isomorphic.
- Therefore \mathfrak{A} is not ω -categorical.

For the Datalog program Π^{succ} the class $\llbracket\Pi^{succ}\rrbracket$ is not definable in MSO.

- Consider $\mathfrak{A} = (\mathbb{Z}; \operatorname{Succ} = \{(x, y) \mid x + 1 = y\}).$
- $\mathsf{CSP}(\mathfrak{A}) = \llbracket \Pi^{\mathsf{succ}} \rrbracket.$
- $\mathfrak A$ and $\mathfrak A \uplus \mathfrak A$ satisfy exactly the same first-order sentences, e.g.,

```
\forall x \exists y, z. \operatorname{Succ}(y, x) \land \operatorname{Succ}(x, y).
```

- \mathfrak{A} and $\mathfrak{A} \uplus \mathfrak{A}$ are not isomorphic.
- Therefore \mathfrak{A} is not ω -categorical.
- Even more: there exists no ω -categorical structure \mathfrak{B} with $CSP(\mathfrak{B}) = CSP(\mathfrak{A})$ (needs short proof).

For the Datalog program Π^{succ} the class $\llbracket\Pi^{succ}\rrbracket$ is not definable in MSO.

- Consider $\mathfrak{A} = (\mathbb{Z}; \operatorname{Succ} = \{(x, y) \mid x + 1 = y\}).$
- $\mathsf{CSP}(\mathfrak{A}) = \llbracket \Pi^{\mathsf{succ}} \rrbracket.$
- $\mathfrak A$ and $\mathfrak A \uplus \mathfrak A$ satisfy exactly the same first-order sentences, e.g.,

```
\forall x \exists y, z. \operatorname{Succ}(y, x) \land \operatorname{Succ}(x, y).
```

- \mathfrak{A} and $\mathfrak{A} \uplus \mathfrak{A}$ are not isomorphic.
- Therefore \mathfrak{A} is not ω -categorical.
- Even more: there exists no ω -categorical structure \mathfrak{B} with $CSP(\mathfrak{B}) = CSP(\mathfrak{A})$ (needs short proof).
- By Result 2, $CSP(\mathfrak{A}) = \llbracket \Pi^{succ} \rrbracket$ is not definable in MSO.

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is a finite union of MSO-definable CSPs.

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is a finite union of MSO-definable CSPs.

Result 2

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under disjoint unions and inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is the CSP of an ω -categorical structure.

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is a finite union of MSO-definable CSPs.

Result 2

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under disjoint unions and inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is the CSP of an ω -categorical structure.

Result 3

Every problem in MSO \cap Datalog is the finite union of ω -categorical CSPs.

• Guarded second-order logic (GSO) is a generalization of MSO.

- Guarded second-order logic (GSO) is a generalization of MSO.
- GSO coincides with Courselle's MSO₂.

- Guarded second-order logic (GSO) is a generalization of MSO.
- GSO coincides with Courselle's MSO₂.
- Result 1, Result 2 and Result 3 hold also for GSO.

• The logic Nemodeq introduced by Rudolph and Krötzsch is contained in MSO \cap Datalog. Does the converse also hold?

- The logic Nemodeq introduced by Rudolph and Krötzsch is contained in MSO \cap Datalog. Does the converse also hold?
- Can the intersection of GSO and Datalog be described by some logic?

- The logic Nemodeq introduced by Rudolph and Krötzsch is contained in MSO \cap Datalog. Does the converse also hold?
- Can the intersection of GSO and Datalog be described by some logic?
- Is there an example of a CSP for a reduct of a finitely bounded homogeneous structure that is not in GSO?

Thank you for your attention!

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is a finite union of MSO definable CSPs.

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is a finite union of MSO definable CSPs.

• Equivalence relation \sim on $\mathcal{C}=[\![\Phi]\!]$ with A \sim B if and only if

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is a finite union of MSO definable CSPs.

• Equivalence relation \sim on $\mathcal{C} = [\![\Phi]\!]$ with A \sim B if and only if

 $\forall \, D \in \mathcal{C} : A \uplus D \in \mathcal{C} \Leftrightarrow B \uplus D \in \mathcal{C}.$

• ~ has finitely many classes.

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is a finite union of MSO definable CSPs.

• Equivalence relation \sim on $\mathcal{C}=[\![\Phi]\!]$ with A \sim B if and only if

- $\bullet~\sim$ has finitely many classes.
 - Let q be the quantifier rank of Φ .

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is a finite union of MSO definable CSPs.

• Equivalence relation \sim on $\mathcal{C} = [\![\Phi]\!]$ with A \sim B if and only if

- ~ has finitely many classes.
 - Let q be the quantifier rank of Φ .
 - $A \equiv_q B$ if A and B satisfy the same MSO sentences of quantifier rank q.

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is a finite union of MSO definable CSPs.

• Equivalence relation ~ on $C = \llbracket \Phi \rrbracket$ with A ~ B if and only if

- ~ has finitely many classes.
 - Let q be the quantifier rank of Φ .
 - $A \equiv_q B$ if A and B satisfy the same MSO sentences of quantifier rank q.
 - \equiv_q has finitely many classes.

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is a finite union of MSO definable CSPs.

• Equivalence relation ~ on $C = \llbracket \Phi \rrbracket$ with A ~ B if and only if

- ~ has finitely many classes.
 - Let q be the quantifier rank of Φ .
 - $A \equiv_q B$ if A and B satisfy the same MSO sentences of quantifier rank q.
 - \equiv_q has finitely many classes.
 - If $A \equiv_q B$, then $A \sim B$.

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is a finite union of MSO definable CSPs.

• Equivalence relation ~ on $C = \llbracket \Phi \rrbracket$ with A ~ B if and only if

- ~ has finitely many classes.
 - Let q be the quantifier rank of Φ .
 - $A \equiv_q B$ if A and B satisfy the same MSO sentences of quantifier rank q.
 - \equiv_q has finitely many classes.
 - If $A \equiv_q B$, then $A \sim B$.
 - Therefore ~ has finitely many classes.
Result 1

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is a finite union of MSO definable CSPs.

• Equivalence relation \sim on $\mathcal{C} = [\![\Phi]\!]$ with A \sim B if and only if

 $\forall \, D \in \mathcal{C} : A \uplus D \in \mathcal{C} \Leftrightarrow B \uplus D \in \mathcal{C}.$

- ~ has finitely many classes.
- ${\mathcal C}$ is a CSP iff \sim has only one class.

Result 1

Let Φ be an MSO sentence such that $\llbracket \Phi \rrbracket$ is closed under inverse homomorphisms. Then $\llbracket \Phi \rrbracket$ is a finite union of MSO definable CSPs.

• Equivalence relation \sim on $\mathcal{C}=[\![\Phi]\!]$ with A \sim B if and only if

 $\forall \, D \in \mathcal{C} : A \uplus D \in \mathcal{C} \Leftrightarrow B \uplus D \in \mathcal{C}.$

- ~ has finitely many classes.
- ${\mathcal C}$ is a CSP iff \sim has only one class.
- Induction argument over the number of classes of ~.

Generalize the equivalence relation \sim :

Generalize the equivalence relation ~:

• Let $C = \llbracket \Phi \rrbracket$ and let X be a set of new constant symbols, |X| = n.

Generalize the equivalence relation \sim :

- Let $C = \llbracket \Phi \rrbracket$ and let X be a set of new constant symbols, |X| = n.
- Let \mathcal{C}^X be the class of $\tau \cup X$ -structures whose τ -reducts are from \mathcal{C} .

Generalize the equivalence relation \sim :

- Let $C = \llbracket \Phi \rrbracket$ and let X be a set of new constant symbols, |X| = n.
- Let \mathcal{C}^X be the class of $\tau \cup X$ -structures whose τ -reducts are from \mathcal{C} .
- For two structures $A, B \in C^X$ the structure $A \uplus_X B$ is defined as the pairwise identification of the constants X in $A \uplus B$.

Generalize the equivalence relation ~:

- Let $C = \llbracket \Phi \rrbracket$ and let X be a set of new constant symbols, |X| = n.
- Let \mathcal{C}^X be the class of $\tau \cup X$ -structures whose τ -reducts are from \mathcal{C} .
- For two structures $A, B \in C^X$ the structure $A \uplus_X B$ is defined as the pairwise identification of the constants X in $A \uplus B$.

Generalize the equivalence relation \sim :

- Let $C = \llbracket \Phi \rrbracket$ and let X be a set of new constant symbols, |X| = n.
- Let \mathcal{C}^X be the class of $\tau \cup X$ -structures whose τ -reducts are from \mathcal{C} .
- For two structures $A, B \in C^X$ the structure $A \uplus_X B$ is defined as the pairwise identification of the constants X in $A \uplus B$.
- Consider equivalence relation $\sim_n^{\mathcal{C}}$ on \mathcal{C}^X with A $\sim_n^{\mathcal{C}}$ B if and only if

 $\forall \mathsf{D} \in \mathcal{C}^X : \mathsf{A} \uplus_X \mathsf{D} \in \mathcal{C}^X \Leftrightarrow \mathsf{B} \uplus_X \mathsf{D} \in \mathcal{C}^X.$

Generalize the equivalence relation \sim :

- Let $C = \llbracket \Phi \rrbracket$ and let X be a set of new constant symbols, |X| = n.
- Let \mathcal{C}^X be the class of $\tau \cup X$ -structures whose τ -reducts are from \mathcal{C} .
- For two structures $A, B \in C^X$ the structure $A \uplus_X B$ is defined as the pairwise identification of the constants X in $A \uplus B$.
- Consider equivalence relation $\sim_n^{\mathcal{C}}$ on \mathcal{C}^X with A $\sim_n^{\mathcal{C}}$ B if and only if

$$\forall \mathsf{D} \in \mathcal{C}^X : \mathsf{A} \uplus_X \mathsf{D} \in \mathcal{C}^X \Leftrightarrow \mathsf{B} \uplus_X \mathsf{D} \in \mathcal{C}^X.$$

Use of the following theorem:

Theorem (Bodirsky, Hils, Martin) Let C be closed under inverse homomorphisms and disjoint unions. Then there exists an ω -categorical structure B such that CSP(B) = C if and only if \sim_n^C has finitely many equivalence classes for each $n \in \mathbb{N}$.