
Datalog-Expressibility for Monadic and Guarded
Second-Order Logic

Manuel Bodirsky1, Simon Knäuer1, and Sebastian Rudolph2

1TU Dresden, Institut für Algebra
2TU Dresden, Computational Logic Group, Germany

48th International Colloquium on Automata, Languages and Programming
July 12-16, 2021

Introduction 1

Monadic Second-Order Logic:

• Büchi’s theorem, 1960: MSO on words = regular languages.

• Courcelle’s theorem, 1990: MSO properties can be decided in linear time
on graphs of bounded treewidth.

Datalog:

• “Prolog without function symbols.”

• “Local consistency algorithms.”

• Query answering in database theory.

• Fragment of second-order logic.

Wish: Combination of the good computational properties of expressibility in
Datalog and of expressibility in MSO.

Which computational problems are expressible in MSO
AND can be solved by a Datalog program?

Introduction 1

Monadic Second-Order Logic:

• Büchi’s theorem, 1960: MSO on words = regular languages.

• Courcelle’s theorem, 1990: MSO properties can be decided in linear time
on graphs of bounded treewidth.

Datalog:

• “Prolog without function symbols.”

• “Local consistency algorithms.”

• Query answering in database theory.

• Fragment of second-order logic.

Wish: Combination of the good computational properties of expressibility in
Datalog and of expressibility in MSO.

Which computational problems are expressible in MSO
AND can be solved by a Datalog program?

Introduction 1

Monadic Second-Order Logic:

• Büchi’s theorem, 1960: MSO on words = regular languages.

• Courcelle’s theorem, 1990: MSO properties can be decided in linear time
on graphs of bounded treewidth.

Datalog:

• “Prolog without function symbols.”

• “Local consistency algorithms.”

• Query answering in database theory.

• Fragment of second-order logic.

Wish: Combination of the good computational properties of expressibility in
Datalog and of expressibility in MSO.

Which computational problems are expressible in MSO
AND can be solved by a Datalog program?

Introduction 1

Monadic Second-Order Logic:

• Büchi’s theorem, 1960: MSO on words = regular languages.

• Courcelle’s theorem, 1990: MSO properties can be decided in linear time
on graphs of bounded treewidth.

Datalog:

• “Prolog without function symbols.”

• “Local consistency algorithms.”

• Query answering in database theory.

• Fragment of second-order logic.

Wish: Combination of the good computational properties of expressibility in
Datalog and of expressibility in MSO.

Which computational problems are expressible in MSO
AND can be solved by a Datalog program?

Introduction 1

Monadic Second-Order Logic:

• Büchi’s theorem, 1960: MSO on words = regular languages.

• Courcelle’s theorem, 1990: MSO properties can be decided in linear time
on graphs of bounded treewidth.

Datalog:

• “Prolog without function symbols.”

• “Local consistency algorithms.”

• Query answering in database theory.

• Fragment of second-order logic.

Wish: Combination of the good computational properties of expressibility in
Datalog and of expressibility in MSO.

Which computational problems are expressible in MSO
AND can be solved by a Datalog program?

Introduction 1

Monadic Second-Order Logic:

• Büchi’s theorem, 1960: MSO on words = regular languages.

• Courcelle’s theorem, 1990: MSO properties can be decided in linear time
on graphs of bounded treewidth.

Datalog:

• “Prolog without function symbols.”

• “Local consistency algorithms.”

• Query answering in database theory.

• Fragment of second-order logic.

Wish: Combination of the good computational properties of expressibility in
Datalog and of expressibility in MSO.

Which computational problems are expressible in MSO
AND can be solved by a Datalog program?

Introduction 1

Monadic Second-Order Logic:

• Büchi’s theorem, 1960: MSO on words = regular languages.

• Courcelle’s theorem, 1990: MSO properties can be decided in linear time
on graphs of bounded treewidth.

Datalog:

• “Prolog without function symbols.”

• “Local consistency algorithms.”

• Query answering in database theory.

• Fragment of second-order logic.

Wish: Combination of the good computational properties of expressibility in
Datalog and of expressibility in MSO.

Which computational problems are expressible in MSO
AND can be solved by a Datalog program?

Introduction 1

Monadic Second-Order Logic:

• Büchi’s theorem, 1960: MSO on words = regular languages.

• Courcelle’s theorem, 1990: MSO properties can be decided in linear time
on graphs of bounded treewidth.

Datalog:

• “Prolog without function symbols.”

• “Local consistency algorithms.”

• Query answering in database theory.

• Fragment of second-order logic.

Wish: Combination of the good computational properties of expressibility in
Datalog and of expressibility in MSO.

Which computational problems are expressible in MSO
AND can be solved by a Datalog program?

Introduction 1

Monadic Second-Order Logic:

• Büchi’s theorem, 1960: MSO on words = regular languages.

• Courcelle’s theorem, 1990: MSO properties can be decided in linear time
on graphs of bounded treewidth.

Datalog:

• “Prolog without function symbols.”

• “Local consistency algorithms.”

• Query answering in database theory.

• Fragment of second-order logic.

Wish: Combination of the good computational properties of expressibility in
Datalog and of expressibility in MSO.

Which computational problems are expressible in MSO
AND can be solved by a Datalog program?

Introduction 2

Contributions:

• Description of MSO ∩Datalog in terms of Constraint Satisfaction
Problems.

• A necessary condition whether a given Datalog program is in MSO.

• Pebble game characterization of MSO ∩Datalog. Not in this talk!

• All results also hold more generally for GSO (Guarded Second-Order
Logic) instead of MSO. Also not in this talk!

Introduction 2

Contributions:

• Description of MSO ∩Datalog in terms of Constraint Satisfaction
Problems.

• A necessary condition whether a given Datalog program is in MSO.

• Pebble game characterization of MSO ∩Datalog. Not in this talk!

• All results also hold more generally for GSO (Guarded Second-Order
Logic) instead of MSO. Also not in this talk!

Introduction 2

Contributions:

• Description of MSO ∩Datalog in terms of Constraint Satisfaction
Problems.

• A necessary condition whether a given Datalog program is in MSO.

• Pebble game characterization of MSO ∩Datalog. Not in this talk!

• All results also hold more generally for GSO (Guarded Second-Order
Logic) instead of MSO. Also not in this talk!

Introduction 2

Contributions:

• Description of MSO ∩Datalog in terms of Constraint Satisfaction
Problems.

• A necessary condition whether a given Datalog program is in MSO.

• Pebble game characterization of MSO ∩Datalog. Not in this talk!

• All results also hold more generally for GSO (Guarded Second-Order
Logic) instead of MSO. Also not in this talk!

Introduction 2

Contributions:

• Description of MSO ∩Datalog in terms of Constraint Satisfaction
Problems.

• A necessary condition whether a given Datalog program is in MSO.

• Pebble game characterization of MSO ∩Datalog. Not in this talk!

• All results also hold more generally for GSO (Guarded Second-Order
Logic) instead of MSO. Also not in this talk!

Monadic Second-Order Logic

τ : finite relational signature.

Second-order logic: extension of first-order logic by (existential and universal)
quantification over relations.

Monadic second-order logic (MSO): all quantified relations are unary.

Monadic second-order τ -sentence: all first-order variables are quantified,
τ symbols are not quantified.

Example
Monadic second-order {E}-sentence:

∀R ∶ ((∃z ∈ R)⇒ (∃x ∈ R ∀y ∈ R ∶ ¬E(y , x)))

Monadic Second-Order Logic

τ : finite relational signature.

Second-order logic: extension of first-order logic by (existential and universal)
quantification over relations.

Monadic second-order logic (MSO): all quantified relations are unary.

Monadic second-order τ -sentence: all first-order variables are quantified,
τ symbols are not quantified.

Example
Monadic second-order {E}-sentence:

∀R ∶ ((∃z ∈ R)⇒ (∃x ∈ R ∀y ∈ R ∶ ¬E(y , x)))

Monadic Second-Order Logic

τ : finite relational signature.

Second-order logic: extension of first-order logic by (existential and universal)
quantification over relations.

Monadic second-order logic (MSO): all quantified relations are unary.

Monadic second-order τ -sentence: all first-order variables are quantified,
τ symbols are not quantified.

Example
Monadic second-order {E}-sentence:

∀R ∶ ((∃z ∈ R)⇒ (∃x ∈ R ∀y ∈ R ∶ ¬E(y , x)))

Monadic Second-Order Logic

τ : finite relational signature.

Second-order logic: extension of first-order logic by (existential and universal)
quantification over relations.

Monadic second-order logic (MSO): all quantified relations are unary.

Monadic second-order τ -sentence: all first-order variables are quantified,
τ symbols are not quantified.

Example
Monadic second-order {E}-sentence:

∀R ∶ ((∃z ∈ R)⇒ (∃x ∈ R ∀y ∈ R ∶ ¬E(y , x)))

Monadic Second-Order Logic

τ : finite relational signature.

Second-order logic: extension of first-order logic by (existential and universal)
quantification over relations.

Monadic second-order logic (MSO): all quantified relations are unary.

Monadic second-order τ -sentence: all first-order variables are quantified,
τ symbols are not quantified.

Example
Monadic second-order {E}-sentence:

∀R ∶ ((∃z ∈ R)⇒ (∃x ∈ R ∀y ∈ R ∶ ¬E(y , x)))

MSO-definable classes

Φ: MSO τ -sentence.

JΦK: all finite τ -structures A such that A ⊧ Φ.

Example
Consider the MSO {E}-sentence Φ

∀R ∶ ((∃z ∈ R)⇒ (∃x ∈ R ∀y ∈ R ∶ ¬E(y , x)))

The class JΦK consists of all directed graphs that do not contain a cycle.

A structure that satisfies ¬Φ:

MSO-definable classes

Φ: MSO τ -sentence.

JΦK: all finite τ -structures A such that A ⊧ Φ.

Example
Consider the MSO {E}-sentence Φ

∀R ∶ ((∃z ∈ R)⇒ (∃x ∈ R ∀y ∈ R ∶ ¬E(y , x)))

The class JΦK consists of all directed graphs that do not contain a cycle.

A structure that satisfies ¬Φ:

MSO-definable classes

Φ: MSO τ -sentence.

JΦK: all finite τ -structures A such that A ⊧ Φ.

Example
Consider the MSO {E}-sentence Φ

∀R ∶ ((∃z ∈ R)⇒ (∃x ∈ R ∀y ∈ R ∶ ¬E(y , x)))

The class JΦK consists of all directed graphs that do not contain a cycle.

A structure that satisfies ¬Φ:

MSO-definable classes

Φ: MSO τ -sentence.

JΦK: all finite τ -structures A such that A ⊧ Φ.

Example
Consider the MSO {E}-sentence Φ

∀R ∶ ((∃z ∈ R)⇒ (∃x ∈ R ∀y ∈ R ∶ ¬E(y , x)))

The class JΦK consists of all directed graphs that do not contain a cycle.

A structure that satisfies ¬Φ:

MSO-definable classes

Φ: MSO τ -sentence.

JΦK: all finite τ -structures A such that A ⊧ Φ.

Example
Consider the MSO {E}-sentence Φ

∀R ∶ ((∃z ∈ R)⇒ (∃x ∈ R ∀y ∈ R ∶ ¬E(y , x)))

The class JΦK consists of all directed graphs that do not contain a cycle.

A structure that satisfies ¬Φ:

MSO-definable classes

Φ: MSO τ -sentence.

JΦK: all finite τ -structures A such that A ⊧ Φ.

Example
Consider the MSO {E}-sentence Φ

∀R ∶ ((∃z ∈ R)⇒ (∃x ∈ R ∀y ∈ R ∶ ¬E(y , x)))

The class JΦK consists of all directed graphs that do not contain a cycle.

A structure that satisfies ¬Φ:

Datalog

EDBs τ and IDBs ρ: disjoint sets of relation symbols, such that ρ contains a
symbol false of arity 0.

Datalog rule: a term ψ0 ∶ −ψ1, . . . , ψn, where ψ0 is an atomic ρ-formula and
{ψ1, . . . , ψn} are atomic τ ∪ ρ-formulas.

Datalog program: set of Datalog rules.

Datalog Semantics
A Datalog program Π rejects an instance, if the predicate false can be derived
by iterative rule application. Otherwise Π accepts the instance.

We denote the class of accepted instances by JΠK.

Datalog

EDBs τ and IDBs ρ: disjoint sets of relation symbols, such that ρ contains a
symbol false of arity 0.

Datalog rule: a term ψ0 ∶ −ψ1, . . . , ψn, where ψ0 is an atomic ρ-formula and
{ψ1, . . . , ψn} are atomic τ ∪ ρ-formulas.

Datalog program: set of Datalog rules.

Datalog Semantics
A Datalog program Π rejects an instance, if the predicate false can be derived
by iterative rule application. Otherwise Π accepts the instance.

We denote the class of accepted instances by JΠK.

Datalog

EDBs τ and IDBs ρ: disjoint sets of relation symbols, such that ρ contains a
symbol false of arity 0.

Datalog rule: a term ψ0 ∶ −ψ1, . . . , ψn, where ψ0 is an atomic ρ-formula and
{ψ1, . . . , ψn} are atomic τ ∪ ρ-formulas.

Datalog program: set of Datalog rules.

Datalog Semantics
A Datalog program Π rejects an instance, if the predicate false can be derived
by iterative rule application. Otherwise Π accepts the instance.

We denote the class of accepted instances by JΠK.

Datalog

EDBs τ and IDBs ρ: disjoint sets of relation symbols, such that ρ contains a
symbol false of arity 0.

Datalog rule: a term ψ0 ∶ −ψ1, . . . , ψn, where ψ0 is an atomic ρ-formula and
{ψ1, . . . , ψn} are atomic τ ∪ ρ-formulas.

Datalog program: set of Datalog rules.

Datalog Semantics
A Datalog program Π rejects an instance, if the predicate false can be derived
by iterative rule application. Otherwise Π accepts the instance.

We denote the class of accepted instances by JΠK.

Datalog

EDBs τ and IDBs ρ: disjoint sets of relation symbols, such that ρ contains a
symbol false of arity 0.

Datalog rule: a term ψ0 ∶ −ψ1, . . . , ψn, where ψ0 is an atomic ρ-formula and
{ψ1, . . . , ψn} are atomic τ ∪ ρ-formulas.

Datalog program: set of Datalog rules.

Datalog Semantics
A Datalog program Π rejects an instance, if the predicate false can be derived
by iterative rule application. Otherwise Π accepts the instance.

We denote the class of accepted instances by JΠK.

Datalog example

Datalog program Πsucc with EDB Succ and IDBs L, S , T and false:

S(x,y) :- Succ(x,y)

L(x,z) :- L(x,y), L(y,z)

S(y,x’) :- L(x,y), S(x,x’)

L(x’,y’) :- S(x,x’), S(x,y’)

T(x,y) :- S(x,y)

T(x,z) :- T(x,y), T(y,z)

false :- T(x,x)

Ð→ Πsucc derives false on IInstance I:

Datalog example

Datalog program Πsucc with EDB Succ and IDBs L, S , T and false:

S(x,y) :- Succ(x,y)

L(x,z) :- L(x,y), L(y,z)

S(y,x’) :- L(x,y), S(x,x’)

L(x’,y’) :- S(x,x’), S(x,y’)

T(x,y) :- S(x,y)

T(x,z) :- T(x,y), T(y,z)

false :- T(x,x)

Ð→ Πsucc derives false on I

Instance I:

Datalog example

Datalog program Πsucc with EDB Succ and IDBs L, S , T and false:

S(x,y) :-Succ(x,y)

L(x,z) :- L(x,y), L(y,z)

S(y,x’) :- L(x,y), S(x,x’)

L(x’,y’) :- S(x,x’), S(x,y’)

T(x,y) :- S(x,y)

T(x,z) :- T(x,y), T(y,z)

false :- T(x,x)

Ð→ Πsucc derives false on I

Instance I:

Datalog example

Datalog program Πsucc with EDB Succ and IDBs L, S , T and false:

S(x,y) :-Succ(x,y)

L(x,z) :- L(x,y), L(y,z)

S(y,x’) :- L(x,y), S(x,x’)

L(x’,y’) :- S(x,x’), S(x,y’)

T(x,y) :- S(x,y)

T(x,z) :- T(x,y), T(y,z)

false :- T(x,x)

Ð→ Πsucc derives false on I

Instance I:

Datalog example

Datalog program Πsucc with EDB Succ and IDBs L, S , T and false:

S(x,y) :-Succ(x,y)

L(x,z) :- L(x,y), L(y,z)

S(y,x’) :- L(x,y), S(x,x’)

L(x’,y’) :- S(x,x’), S(x,y’)

T(x,y) :- S(x,y)

T(x,z) :- T(x,y), T(y,z)

false :- T(x,x)

Ð→ Πsucc derives false on I

Instance I:

Datalog example

Datalog program Πsucc with EDB Succ and IDBs L, S , T and false:

S(x,y) :-Succ(x,y)

L(x,z) :- L(x,y), L(y,z)

S(y,x’) :- L(x,y), S(x,x’)

L(x’,y’) :- S(x,x’), S(x,y’)

T(x,y) :- S(x,y)

T(x,z) :- T(x,y), T(y,z)

false :- T(x,x)

Ð→ Πsucc derives false on I

Instance I:

Datalog example

Datalog program Πsucc with EDB Succ and IDBs L, S , T and false:

S(x,y) :-Succ(x,y)

L(x,z) :- L(x,y), L(y,z)

S(y,x’) :- L(x,y), S(x,x’)

L(x’,y’) :- S(x,x’), S(x,y’)

T(x,y) :- S(x,y)

T(x,z) :- T(x,y), T(y,z)

false :- T(x,x)

Ð→ Πsucc derives false on I

Instance I:

Datalog example

Datalog program Πsucc with EDB Succ and IDBs L, S , T and false:

S(x,y) :-Succ(x,y)

L(x,z) :- L(x,y), L(y,z)

S(y,x’) :- L(x,y), S(x,x’)

L(x’,y’) :- S(x,x’), S(x,y’)

T(x,y) :- S(x,y)

T(x,z) :- T(x,y), T(y,z)

false :- T(x,x)

Ð→ Πsucc derives false on I

Instance I:

Datalog example

Datalog program Πsucc with EDB Succ and IDBs L, S , T and false:

S(x,y) :-Succ(x,y)

L(x,z) :- L(x,y), L(y,z)

S(y,x’) :- L(x,y), S(x,x’)

L(x’,y’) :- S(x,x’), S(x,y’)

T(x,y) :- S(x,y)

T(x,z) :- T(x,y), T(y,z)

false :- T(x,x)

Ð→ Πsucc derives false on I

Instance I:

Datalog example

Datalog program Πsucc with EDB Succ and IDBs L, S , T and false:

S(x,y) :-Succ(x,y)

L(x,z) :- L(x,y), L(y,z)

S(y,x’) :- L(x,y), S(x,x’)

L(x’,y’) :- S(x,x’), S(x,y’)

T(x,y) :- S(x,y)

T(x,z) :- T(x,y), T(y,z)

false :- T(x,x)

Ð→ Πsucc derives false on I

Instance I:

Datalog example

Datalog program Πsucc with EDB Succ and IDBs L, S , T and false:

S(x,y) :-Succ(x,y)

L(x,z) :- L(x,y), L(y,z)

S(y,x’) :- L(x,y), S(x,x’)

L(x’,y’) :- S(x,x’), S(x,y’)

T(x,y) :- S(x,y)

T(x,z) :- T(x,y), T(y,z)

false :- T(x,x)

Ð→ Πsucc derives false on I

Instance I:

Datalog example

Datalog program Πsucc with EDB Succ and IDBs L, S , T and false:

S(x,y) :-Succ(x,y)

L(x,z) :- L(x,y), L(y,z)

S(y,x’) :- L(x,y), S(x,x’)

L(x’,y’) :- S(x,x’), S(x,y’)

T(x,y) :- S(x,y)

T(x,z) :- T(x,y), T(y,z)

(false :- T(x,x)

Ð→ Πsucc derives false on IInstance I:

Datalog example

Datalog program Πsucc with EDB Succ and IDBs L, S , T and false:

S(x,y) :-Succ(x,y)

L(x,z) :- L(x,y), L(y,z)

S(y,x’) :- L(x,y), S(x,x’)

L(x’,y’) :- S(x,x’), S(x,y’)

T(x,y) :- S(x,y)

T(x,z) :- T(x,y), T(y,z)

false :- T(x,x)

Πsucc accepts exactly the structures where for every cycle the number of
traversed forward edges equals the number of traversed backward edges.

An observation about Datalog

Datalog program Π with EDB E and IDB R:
R(x , y) ∶ −E(x , y)

R(x , y) ∶ −R(x , z),R(z , y)

false ∶ −R(x , x)

Instance I:

Π derives false on I.

Instance J:

homomorphism

Π derives false on J.

Observation
Let C be defined by a Datalog program. Let A and B be structures where B

is in C and A has a homomorphism to B. Then A is in C.
We say that C is closed under inverse homomorphisms.

An observation about Datalog

Datalog program Π with EDB E and IDB R:
R(x , y) ∶ −E(x , y)

R(x , y) ∶ −R(x , z),R(z , y)

false ∶ −R(x , x)

Instance I:

Π derives false on I.

Instance J:

homomorphism

Π derives false on J.

Observation
Let C be defined by a Datalog program. Let A and B be structures where B

is in C and A has a homomorphism to B. Then A is in C.

We say that C is closed under inverse homomorphisms.

An observation about Datalog

Datalog program Π with EDB E and IDB R:
R(x , y) ∶ −E(x , y)

R(x , y) ∶ −R(x , z),R(z , y)

false ∶ −R(x , x)

Instance I:

Π derives false on I.

Instance J:

homomorphism

Π derives false on J.

Observation
Let C be defined by a Datalog program. Let A and B be structures where B

is in C and A has a homomorphism to B. Then A is in C.
We say that C is closed under inverse homomorphisms.

An observation about Datalog

Datalog program Π with EDB E and IDB R:
R(x , y) ∶ −E(x , y)

R(x , y) ∶ −R(x , z),R(z , y)

false ∶ −R(x , x)

Instance I:

Π derives false on I.

Instance J:

homomorphism

Π derives false on J.

Observation
Let C be defined by a Datalog program. Let A and B be structures where B

is in C and A has a homomorphism to B. Then A is in C.
We say that C is closed under inverse homomorphisms.

An observation about Datalog

Datalog program Π with EDB E and IDB R:
R(x , y) ∶ −E(x , y)

R(x , y) ∶ −R(x , z),R(z , y)

false ∶ −R(x , x)

Instance I:

Π derives false on I.

Instance J:

homomorphism

Π derives false on J.

Observation
Let C be defined by a Datalog program. Let A and B be structures where B

is in C and A has a homomorphism to B. Then A is in C.
We say that C is closed under inverse homomorphisms.

An observation about Datalog

Datalog program Π with EDB E and IDB R:
R(x , y) ∶ −E(x , y)

R(x , y) ∶ −R(x , z),R(z , y)

false ∶ −R(x , x)

Instance I:

Π derives false on I.

Instance J:

homomorphism

Π derives false on J.

Observation
Let C be defined by a Datalog program. Let A and B be structures where B

is in C and A has a homomorphism to B. Then A is in C.
We say that C is closed under inverse homomorphisms.

An observation about Datalog

Datalog program Π with EDB E and IDB R:
R(x , y) ∶ −E(x , y)

R(x , y) ∶ −R(x , z),R(z , y)

false ∶ −R(x , x)

Instance I:

Π derives false on I.

Instance J:

homomorphism

Π derives false on J.

Observation
Let C be defined by a Datalog program. Let A and B be structures where B

is in C and A has a homomorphism to B. Then A is in C.
We say that C is closed under inverse homomorphisms.

An observation about Datalog

Datalog program Π with EDB E and IDB R:
R(x , y) ∶ −E(x , y)

R(x , y) ∶ −R(x , z),R(z , y)

false ∶ −R(x , x)

Instance I:

Π derives false on I.

Instance J:

homomorphism

Π derives false on J.

Observation
Let C be defined by a Datalog program. Let A and B be structures where B

is in C and A has a homomorphism to B. Then A is in C.
We say that C is closed under inverse homomorphisms.

An observation about Datalog

Datalog program Π with EDB E and IDB R:
R(x , y) ∶ −E(x , y)

R(x , y) ∶ −R(x , z),R(z , y)

false ∶ −R(x , x)

Instance I:

Π derives false on I.

Instance J:

homomorphism

Π derives false on J.

Observation
Let C be defined by a Datalog program. Let A and B be structures where B

is in C and A has a homomorphism to B. Then A is in C.
We say that C is closed under inverse homomorphisms.

An observation about Datalog

Datalog program Π with EDB E and IDB R:
R(x , y) ∶ −E(x , y)

R(x , y) ∶ −R(x , z),R(z , y)

false ∶ −R(x , x)

Instance I:

Π derives false on I.

Instance J:

homomorphism

Π derives false on J.

Observation
Let C be defined by a Datalog program. Let A and B be structures where B

is in C and A has a homomorphism to B. Then A is in C.
We say that C is closed under inverse homomorphisms.

An observation about Datalog

Datalog program Π with EDB E and IDB R:
R(x , y) ∶ −E(x , y)

R(x , y) ∶ −R(x , z),R(z , y)

false ∶ −R(x , x)

Instance I:

Π derives false on I.

Instance J:

homomorphism

Π derives false on J.

Observation
Let C be defined by a Datalog program. Let A and B be structures where B

is in C and A has a homomorphism to B. Then A is in C.
We say that C is closed under inverse homomorphisms.

An observation about Datalog

Datalog program Π with EDB E and IDB R:
R(x , y) ∶ −E(x , y)

R(x , y) ∶ −R(x , z),R(z , y)

false ∶ −R(x , x)

Instance I:

Π derives false on I.

Instance J:

homomorphism

Π derives false on J.

Observation
Let C be defined by a Datalog program. Let A and B be structures where B

is in C and A has a homomorphism to B. Then A is in C.
We say that C is closed under inverse homomorphisms.

Result 1

Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms.

Then JΦK is a finite union of MSO-definable CSPs.

Definition
Let D be a τ -structure. The CSP of D is the class of all finite τ -structures
that have a homomorphism to D. We denote it by CSP(D).

Result 1

Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms. Then JΦK is a finite union of MSO-definable CSPs.

Definition
Let D be a τ -structure. The CSP of D is the class of all finite τ -structures
that have a homomorphism to D. We denote it by CSP(D).

Result 1

Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms. Then JΦK is a finite union of MSO-definable CSPs.

Definition
Let D be a τ -structure. The CSP of D is the class of all finite τ -structures
that have a homomorphism to D. We denote it by CSP(D).

Result 1

Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms. Then JΦK is a finite union of MSO-definable CSPs.

Definition
Let D be a τ -structure. The CSP of D is the class of all finite τ -structures
that have a homomorphism to D. We denote it by CSP(D).

Example:

• CSP(Q;<) is the class of all digraphs without a cycle.

• CSP(Z;Succ = {(x , y) ∣ x + 1 = y}) = JΠsuccK is the class of all graphs
where for each two nodes all connecting paths have the same length.

Result 1

Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms. Then JΦK is a finite union of MSO-definable CSPs.

Definition
Let D be a τ -structure. The CSP of D is the class of all finite τ -structures
that have a homomorphism to D. We denote it by CSP(D).

Example:

• CSP(Q;<) is the class of all digraphs without a cycle.

• CSP(Z;Succ = {(x , y) ∣ x + 1 = y}) = JΠsuccK is the class of all graphs
where for each two nodes all connecting paths have the same length.

Result 1

Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms. Then JΦK is a finite union of MSO-definable CSPs.

Definition
Let D be a τ -structure. The CSP of D is the class of all finite τ -structures
that have a homomorphism to D. We denote it by CSP(D).

Proposition
A class of τ -structures C is a CSP for some structure iff it is closed under
inverse homomorphisms and closed under disjoint unions,
i.e. if A,B ∈ C, then A ⊎B ∈ C.

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.

Datalog program Π

L(x , y) ∶ −B(x),B(y)

L(x , y) ∶ −L(x ′, y ′),E(x ′, x),E(y ′, y)

false ∶ −R(x),L(x , x ′),E(x ′, y)

Claim
JΠK is not MSO-definable.

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.

Datalog program Π

L(x , y) ∶ −B(x),B(y)

L(x , y) ∶ −L(x ′, y ′),E(x ′, x),E(y ′, y)

false ∶ −R(x),L(x , x ′),E(x ′, y)

Claim
JΠK is not MSO-definable.

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.

Datalog program Π

L(x , y) ∶ −B(x),B(y)

L(x , y) ∶ −L(x ′, y ′),E(x ′, x),E(y ′, y)

false ∶ −R(x),L(x , x ′),E(x ′, y)

Claim
JΠK is not MSO-definable.

/∈ JΠK

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.

Datalog program Π

L(x , y) ∶ −B(x),B(y)

L(x , y) ∶ −L(x ′, y ′),E(x ′, x),E(y ′, y)

false ∶ −R(x),L(x , x ′),E(x ′, y)

Claim
JΠK is not MSO-definable.

/∈ JΠK

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.

Datalog program Π

L(x , y) ∶ −B(x),B(y)

L(x , y) ∶ −L(x ′, y ′),E(x ′, x),E(y ′, y)

false ∶ −R(x),L(x , x ′),E(x ′, y)

Claim
JΠK is not MSO-definable.

/∈ JΠK

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.

Datalog program Π

L(x , y) ∶ −B(x),B(y)

L(x , y) ∶ −L(x ′, y ′),E(x ′, x),E(y ′, y)

false ∶ −R(x),L(x , x ′),E(x ′, y)

Claim
JΠK is not MSO-definable.

/∈ JΠK

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.

Datalog program Π

L(x , y) ∶ −B(x),B(y)

L(x , y) ∶ −L(x ′, y ′),E(x ′, x),E(y ′, y)

false ∶ −R(x),L(x , x ′),E(x ′, y)

Claim
JΠK is not MSO-definable.

/∈ JΠK

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.

Datalog program Π

L(x , y) ∶ −B(x),B(y)

L(x , y) ∶ −L(x ′, y ′),E(x ′, x),E(y ′, y)

false ∶ −R(x),L(x , x ′),E(x ′, y)

Claim
JΠK is not MSO-definable.

∈ JΠK

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.

Datalog program Π

L(x , y) ∶ −B(x),B(y)

L(x , y) ∶ −L(x ′, y ′),E(x ′, x),E(y ′, y)

false ∶ −R(x),L(x , x ′),E(x ′, y)

Claim
JΠK is not MSO-definable.

∈ JΠK

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.

Datalog program Π

L(x , y) ∶ −B(x),B(y)

L(x , y) ∶ −L(x ′, y ′),E(x ′, x),E(y ′, y)

false ∶ −R(x),L(x , x ′),E(x ′, y)

Claim
JΠK is not MSO-definable.

∈ JΠK

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.

Datalog program Π

L(x , y) ∶ −B(x),B(y)

L(x , y) ∶ −L(x ′, y ′),E(x ′, x),E(y ′, y)

false ∶ −R(x),L(x , x ′),E(x ′, y)

Claim
JΠK is not MSO-definable.

⋮ ∈ JΠK

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.

Datalog program Π

L(x , y) ∶ −B(x),B(y)

L(x , y) ∶ −L(x ′, y ′),E(x ′, x),E(y ′, y)

false ∶ −R(x),L(x , x ′),E(x ′, y)

Claim
JΠK is not MSO-definable.

Observation: There exists an infinite set X ⊂ JΠK such that for all distinct
elements A,B ∈ X the disjoint union A ⊎B is not in JΠK.

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.

Datalog program Π

L(x , y) ∶ −B(x),B(y)

L(x , y) ∶ −L(x ′, y ′),E(x ′, x),E(y ′, y)

false ∶ −R(x),L(x , x ′),E(x ′, y)

Claim
JΠK is not MSO-definable.

Observation: There exists an infinite set X ⊂ JΠK such that for all distinct
elements A,B ∈ X the disjoint union A ⊎B is not in JΠK.

Ð→ JΠK is not a finite union of CSPs.

Application of Result 1

Let B and R be unary and let E be a binary relation symbol.

Datalog program Π

L(x , y) ∶ −B(x),B(y)

L(x , y) ∶ −L(x ′, y ′),E(x ′, x),E(y ′, y)

false ∶ −R(x),L(x , x ′),E(x ′, y)

Claim
JΠK is not MSO-definable.

Observation: There exists an infinite set X ⊂ JΠK such that for all distinct
elements A,B ∈ X the disjoint union A ⊎B is not in JΠK.

Ð→ JΠK is not a finite union of CSPs.

Ð→ By Result 1 and the observation about Datalog, the class JΠK is not
MSO-definable.

Result 2

Result 2
Let Φ be an MSO sentence such that JΦK is closed under disjoint unions and
inverse homomorphisms.

Then JΦK is the CSP of an ω-categorical structure.

Definition
A countable structure D is called ω-categorical if all countable models of the
first-order theory of D are isomorphic to D.

Result 2

Result 2
Let Φ be an MSO sentence such that JΦK is closed under disjoint unions and
inverse homomorphisms.Then JΦK is the CSP of an ω-categorical structure.

Definition
A countable structure D is called ω-categorical if all countable models of the
first-order theory of D are isomorphic to D.

Result 2

Result 2
Let Φ be an MSO sentence such that JΦK is closed under disjoint unions and
inverse homomorphisms.Then JΦK is the CSP of an ω-categorical structure.

Definition
A countable structure D is called ω-categorical if all countable models of the
first-order theory of D are isomorphic to D.

Result 2

Result 2
Let Φ be an MSO sentence such that JΦK is closed under disjoint unions and
inverse homomorphisms.Then JΦK is the CSP of an ω-categorical structure.

Definition
A countable structure D is called ω-categorical if all countable models of the
first-order theory of D are isomorphic to D.

Example: (Q;<) is ω-categorical.

• There exists up to isomorphism only one countable dense linear order
without endpoints.

Result 2

Result 2
Let Φ be an MSO sentence such that JΦK is closed under disjoint unions and
inverse homomorphisms.Then JΦK is the CSP of an ω-categorical structure.

Definition
A countable structure D is called ω-categorical if all countable models of the
first-order theory of D are isomorphic to D.

Example: (Q;<) is ω-categorical.

• There exists up to isomorphism only one countable dense linear order
without endpoints.

• “Dense linear order without endpoints” can be expressed in first-order logic.

Result 2

Result 2
Let Φ be an MSO sentence such that JΦK is closed under disjoint unions and
inverse homomorphisms.Then JΦK is the CSP of an ω-categorical structure.

Definition
A countable structure D is called ω-categorical if all countable models of the
first-order theory of D are isomorphic to D.

Remark
Result 2 can be used to achieve a characterization of MSO ∩Datalog in terms
of existential pebble games.

Application of Result 2

Claim
For the Datalog program Πsucc the class JΠsuccK is not definable in MSO.

• Consider A = (Z;Succ = {(x , y) ∣ x + 1 = y}).

• CSP(A) = JΠsuccK.

• A and A ⊎A satisfy exactly the same first-order sentences, e.g.,

∀x∃y , z . Succ(y , x) ∧ Succ(x , y).

• A and A ⊎A are not isomorphic.

• Therefore A is not ω-categorical.

• Even more: there exists no ω-categorical structure B with
CSP(B) = CSP(A) (needs short proof).

• By Result 2, CSP(A) = JΠsuccK is not definable in MSO.

Application of Result 2

Claim
For the Datalog program Πsucc the class JΠsuccK is not definable in MSO.

• Consider A = (Z;Succ = {(x , y) ∣ x + 1 = y}).

• CSP(A) = JΠsuccK.

• A and A ⊎A satisfy exactly the same first-order sentences, e.g.,

∀x∃y , z . Succ(y , x) ∧ Succ(x , y).

• A and A ⊎A are not isomorphic.

• Therefore A is not ω-categorical.

• Even more: there exists no ω-categorical structure B with
CSP(B) = CSP(A) (needs short proof).

• By Result 2, CSP(A) = JΠsuccK is not definable in MSO.

Application of Result 2

Claim
For the Datalog program Πsucc the class JΠsuccK is not definable in MSO.

• Consider A = (Z;Succ = {(x , y) ∣ x + 1 = y}).

• CSP(A) = JΠsuccK.

• A and A ⊎A satisfy exactly the same first-order sentences, e.g.,

∀x∃y , z . Succ(y , x) ∧ Succ(x , y).

• A and A ⊎A are not isomorphic.

• Therefore A is not ω-categorical.

• Even more: there exists no ω-categorical structure B with
CSP(B) = CSP(A) (needs short proof).

• By Result 2, CSP(A) = JΠsuccK is not definable in MSO.

Application of Result 2

Claim
For the Datalog program Πsucc the class JΠsuccK is not definable in MSO.

• Consider A = (Z;Succ = {(x , y) ∣ x + 1 = y}).

• CSP(A) = JΠsuccK.

• A and A ⊎A satisfy exactly the same first-order sentences, e.g.,

∀x∃y , z . Succ(y , x) ∧ Succ(x , y).

• A and A ⊎A are not isomorphic.

• Therefore A is not ω-categorical.

• Even more: there exists no ω-categorical structure B with
CSP(B) = CSP(A) (needs short proof).

• By Result 2, CSP(A) = JΠsuccK is not definable in MSO.

Application of Result 2

Claim
For the Datalog program Πsucc the class JΠsuccK is not definable in MSO.

• Consider A = (Z;Succ = {(x , y) ∣ x + 1 = y}).

• CSP(A) = JΠsuccK.

• A and A ⊎A satisfy exactly the same first-order sentences, e.g.,

∀x∃y , z . Succ(y , x) ∧ Succ(x , y).

• A and A ⊎A are not isomorphic.

• Therefore A is not ω-categorical.

• Even more: there exists no ω-categorical structure B with
CSP(B) = CSP(A) (needs short proof).

• By Result 2, CSP(A) = JΠsuccK is not definable in MSO.

Application of Result 2

Claim
For the Datalog program Πsucc the class JΠsuccK is not definable in MSO.

• Consider A = (Z;Succ = {(x , y) ∣ x + 1 = y}).

• CSP(A) = JΠsuccK.

• A and A ⊎A satisfy exactly the same first-order sentences, e.g.,

∀x∃y , z . Succ(y , x) ∧ Succ(x , y).

• A and A ⊎A are not isomorphic.

• Therefore A is not ω-categorical.

• Even more: there exists no ω-categorical structure B with
CSP(B) = CSP(A) (needs short proof).

• By Result 2, CSP(A) = JΠsuccK is not definable in MSO.

Application of Result 2

Claim
For the Datalog program Πsucc the class JΠsuccK is not definable in MSO.

• Consider A = (Z;Succ = {(x , y) ∣ x + 1 = y}).

• CSP(A) = JΠsuccK.

• A and A ⊎A satisfy exactly the same first-order sentences, e.g.,

∀x∃y , z . Succ(y , x) ∧ Succ(x , y).

• A and A ⊎A are not isomorphic.

• Therefore A is not ω-categorical.

• Even more: there exists no ω-categorical structure B with
CSP(B) = CSP(A) (needs short proof).

• By Result 2, CSP(A) = JΠsuccK is not definable in MSO.

Application of Result 2

Claim
For the Datalog program Πsucc the class JΠsuccK is not definable in MSO.

• Consider A = (Z;Succ = {(x , y) ∣ x + 1 = y}).

• CSP(A) = JΠsuccK.

• A and A ⊎A satisfy exactly the same first-order sentences, e.g.,

∀x∃y , z . Succ(y , x) ∧ Succ(x , y).

• A and A ⊎A are not isomorphic.

• Therefore A is not ω-categorical.

• Even more: there exists no ω-categorical structure B with
CSP(B) = CSP(A) (needs short proof).

• By Result 2, CSP(A) = JΠsuccK is not definable in MSO.

Description of MSO ∩ Datalog

Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms. Then JΦK is a finite union of MSO-definable CSPs.

Result 2
Let Φ be an MSO sentence such that JΦK is closed under disjoint unions and
inverse homomorphisms. Then JΦK is the CSP of an ω-categorical structure.

Result 3
Every problem in MSO ∩Datalog is the finite union of ω-categorical CSPs.

Description of MSO ∩ Datalog

Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms. Then JΦK is a finite union of MSO-definable CSPs.

Result 2
Let Φ be an MSO sentence such that JΦK is closed under disjoint unions and
inverse homomorphisms. Then JΦK is the CSP of an ω-categorical structure.

Result 3
Every problem in MSO ∩Datalog is the finite union of ω-categorical CSPs.

Description of MSO ∩ Datalog

Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms. Then JΦK is a finite union of MSO-definable CSPs.

Result 2
Let Φ be an MSO sentence such that JΦK is closed under disjoint unions and
inverse homomorphisms. Then JΦK is the CSP of an ω-categorical structure.

Result 3
Every problem in MSO ∩Datalog is the finite union of ω-categorical CSPs.

A generalization of the results

• Guarded second-order logic (GSO) is a generalization of MSO.

• GSO coincides with Courselle’s MSO2.

• Result 1, Result 2 and Result 3 hold also for GSO.

A generalization of the results

• Guarded second-order logic (GSO) is a generalization of MSO.

• GSO coincides with Courselle’s MSO2.

• Result 1, Result 2 and Result 3 hold also for GSO.

A generalization of the results

• Guarded second-order logic (GSO) is a generalization of MSO.

• GSO coincides with Courselle’s MSO2.

• Result 1, Result 2 and Result 3 hold also for GSO.

Open problems

• The logic Nemodeq introduced by Rudolph and Krötzsch is contained in
MSO ∩ Datalog. Does the converse also hold?

• Can the intersection of GSO and Datalog be described by some logic?

• Is there an example of a CSP for a reduct of a finitely bounded
homogeneous structure that is not in GSO?

Open problems

• The logic Nemodeq introduced by Rudolph and Krötzsch is contained in
MSO ∩ Datalog. Does the converse also hold?

• Can the intersection of GSO and Datalog be described by some logic?

• Is there an example of a CSP for a reduct of a finitely bounded
homogeneous structure that is not in GSO?

Open problems

• The logic Nemodeq introduced by Rudolph and Krötzsch is contained in
MSO ∩ Datalog. Does the converse also hold?

• Can the intersection of GSO and Datalog be described by some logic?

• Is there an example of a CSP for a reduct of a finitely bounded
homogeneous structure that is not in GSO?

Thank you for your attention!

Result 1 (proof idea)

Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms. Then JΦK is a finite union of MSO definable CSPs.

Result 1 (proof idea)

Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms. Then JΦK is a finite union of MSO definable CSPs.

• Equivalence relation ∼ on C = JΦK with A ∼ B if and only if

∀D ∈ C ∶ A ⊎D ∈ C⇔ B ⊎D ∈ C.

Result 1 (proof idea)

Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms. Then JΦK is a finite union of MSO definable CSPs.

• Equivalence relation ∼ on C = JΦK with A ∼ B if and only if

∀D ∈ C ∶ A ⊎D ∈ C⇔ B ⊎D ∈ C.

• ∼ has finitely many classes.

Result 1 (proof idea)

Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms. Then JΦK is a finite union of MSO definable CSPs.

• Equivalence relation ∼ on C = JΦK with A ∼ B if and only if

∀D ∈ C ∶ A ⊎D ∈ C⇔ B ⊎D ∈ C.

• ∼ has finitely many classes.
• Let q be the quantifier rank of Φ.

• A ≡q B if A and B satisfy the same MSO sentences of quantifier rank q.
• ≡q has finitely many classes.
• If A ≡q B, then A ∼ B.
• Therefore ∼ has finitely many classes.

Result 1 (proof idea)

Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms. Then JΦK is a finite union of MSO definable CSPs.

• Equivalence relation ∼ on C = JΦK with A ∼ B if and only if

∀D ∈ C ∶ A ⊎D ∈ C⇔ B ⊎D ∈ C.

• ∼ has finitely many classes.
• Let q be the quantifier rank of Φ.
• A ≡q B if A and B satisfy the same MSO sentences of quantifier rank q.

• ≡q has finitely many classes.
• If A ≡q B, then A ∼ B.
• Therefore ∼ has finitely many classes.

Result 1 (proof idea)

Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms. Then JΦK is a finite union of MSO definable CSPs.

• Equivalence relation ∼ on C = JΦK with A ∼ B if and only if

∀D ∈ C ∶ A ⊎D ∈ C⇔ B ⊎D ∈ C.

• ∼ has finitely many classes.
• Let q be the quantifier rank of Φ.
• A ≡q B if A and B satisfy the same MSO sentences of quantifier rank q.
• ≡q has finitely many classes.

• If A ≡q B, then A ∼ B.
• Therefore ∼ has finitely many classes.

Result 1 (proof idea)

Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms. Then JΦK is a finite union of MSO definable CSPs.

• Equivalence relation ∼ on C = JΦK with A ∼ B if and only if

∀D ∈ C ∶ A ⊎D ∈ C⇔ B ⊎D ∈ C.

• ∼ has finitely many classes.
• Let q be the quantifier rank of Φ.
• A ≡q B if A and B satisfy the same MSO sentences of quantifier rank q.
• ≡q has finitely many classes.
• If A ≡q B, then A ∼ B.

• Therefore ∼ has finitely many classes.

Result 1 (proof idea)

Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms. Then JΦK is a finite union of MSO definable CSPs.

• Equivalence relation ∼ on C = JΦK with A ∼ B if and only if

∀D ∈ C ∶ A ⊎D ∈ C⇔ B ⊎D ∈ C.

• ∼ has finitely many classes.
• Let q be the quantifier rank of Φ.
• A ≡q B if A and B satisfy the same MSO sentences of quantifier rank q.
• ≡q has finitely many classes.
• If A ≡q B, then A ∼ B.
• Therefore ∼ has finitely many classes.

Result 1 (proof idea)

Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms. Then JΦK is a finite union of MSO definable CSPs.

• Equivalence relation ∼ on C = JΦK with A ∼ B if and only if

∀D ∈ C ∶ A ⊎D ∈ C⇔ B ⊎D ∈ C.

• ∼ has finitely many classes.

• C is a CSP iff ∼ has only one class.

Result 1 (proof idea)

Result 1
Let Φ be an MSO sentence such that JΦK is closed under inverse
homomorphisms. Then JΦK is a finite union of MSO definable CSPs.

• Equivalence relation ∼ on C = JΦK with A ∼ B if and only if

∀D ∈ C ∶ A ⊎D ∈ C⇔ B ⊎D ∈ C.

• ∼ has finitely many classes.

• C is a CSP iff ∼ has only one class.

• Induction argument over the number of classes of ∼.

Result 2 (proof idea)

Generalize the equivalence relation ∼:

• Let C = JΦK and let X be a set of new constant symbols, ∣X ∣ = n.

• Let CX be the class of τ ∪X -structures whose τ -reducts are from C.

• For two structures A,B ∈ CX the structure A ⊎X B is defined as the
pairwise identification of the constants X in A ⊎B.

Result 2 (proof idea)

Generalize the equivalence relation ∼:

• Let C = JΦK and let X be a set of new constant symbols, ∣X ∣ = n.

• Let CX be the class of τ ∪X -structures whose τ -reducts are from C.

• For two structures A,B ∈ CX the structure A ⊎X B is defined as the
pairwise identification of the constants X in A ⊎B.

Result 2 (proof idea)

Generalize the equivalence relation ∼:

• Let C = JΦK and let X be a set of new constant symbols, ∣X ∣ = n.

• Let CX be the class of τ ∪X -structures whose τ -reducts are from C.

• For two structures A,B ∈ CX the structure A ⊎X B is defined as the
pairwise identification of the constants X in A ⊎B.

Result 2 (proof idea)

Generalize the equivalence relation ∼:

• Let C = JΦK and let X be a set of new constant symbols, ∣X ∣ = n.

• Let CX be the class of τ ∪X -structures whose τ -reducts are from C.

• For two structures A,B ∈ CX the structure A ⊎X B is defined as the
pairwise identification of the constants X in A ⊎B.

x1

x2

x3

⊎{x1,x2,x3}

x1

x2

x3

=

Result 2 (proof idea)

Generalize the equivalence relation ∼:

• Let C = JΦK and let X be a set of new constant symbols, ∣X ∣ = n.

• Let CX be the class of τ ∪X -structures whose τ -reducts are from C.

• For two structures A,B ∈ CX the structure A ⊎X B is defined as the
pairwise identification of the constants X in A ⊎B.

x1

x2

x3

⊎{x1,x2,x3}

x1

x2

x3

=

x1

x2

x3

Result 2 (proof idea)

Generalize the equivalence relation ∼:

• Let C = JΦK and let X be a set of new constant symbols, ∣X ∣ = n.

• Let CX be the class of τ ∪X -structures whose τ -reducts are from C.

• For two structures A,B ∈ CX the structure A ⊎X B is defined as the
pairwise identification of the constants X in A ⊎B.

• Consider equivalence relation ∼Cn on CX with A ∼Cn B if and only if

∀D ∈ CX ∶ A ⊎X D ∈ CX ⇔ B ⊎X D ∈ CX .

Result 2 (proof idea)

Generalize the equivalence relation ∼:

• Let C = JΦK and let X be a set of new constant symbols, ∣X ∣ = n.

• Let CX be the class of τ ∪X -structures whose τ -reducts are from C.

• For two structures A,B ∈ CX the structure A ⊎X B is defined as the
pairwise identification of the constants X in A ⊎B.

• Consider equivalence relation ∼Cn on CX with A ∼Cn B if and only if

∀D ∈ CX ∶ A ⊎X D ∈ CX ⇔ B ⊎X D ∈ CX .

Use of the following theorem:

Theorem (Bodirsky, Hils, Martin)
Let C be closed under inverse homomorphisms and disjoint unions. Then there
exists an ω-categorical structure B such that CSP(B) = C if and only if ∼Cn has
finitely many equivalence classes for each n ∈ N.

