
Making Use of Advances in Answer-Set Programming for Abstract

Argumentation Systems

?

Wolfgang Dvořák, Sarah Alice Gaggl, Johannes Wallner, and Stefan Woltran

Institute of Information Systems, Database and Artificial Intelligence Group,
Vienna University of Technology, Favoritenstrae 9-11, 1040 Wien, Austria

EMail: {dvorak, gaggl, wallner, woltran}@dbai.tuwien.ac.at

Abstract. Dung’s famous abstract argumentation frameworks represent the core formalism for many
problems and applications in the field of argumentation which significantly evolved within the last
decade. Recent work in the field has thus focused on implementations for these frameworks, whereby
one of the main approaches is to use Answer-Set Programming (ASP). While some of the argumenta-
tion semantics can be nicely expressed within the ASP language, others required rather cumbersome
encoding techniques. Recent advances in ASP systems, in particular, the metasp optimization front-
end for the ASP-package gringo/claspD provides direct commands to filter answer sets satisfying
certain subset-minimality (or -maximality) constraints. This allows for much simpler encodings com-
pared to the ones in standard ASP language. In this paper, we experimentally compare the original
encodings (for the argumentation semantics based on preferred, semi-stable, and respectively, stage
extensions) with new metasp encodings. Moreover, we provide novel encodings for the recently in-
troduced resolution-based grounded semantics. Our experimental results indicate that the metasp ap-
proach works well in those cases where the complexity of the encoded problem is adequately mirrored
within the metasp approach.

Keywords: Abstract Argumentation, Answer-Set Programming, Metasp

1 Introduction

In Artificial Intelligence (AI), the area of argumentation (the survey by Bench-Capon and Dunne [3] gives
an excellent overview) has become one of the central issues during the last decade. Although there are now
several branches within this area, there is a certain agreement that Dung’s famous abstract argumentation
frameworks (AFs) [7] still represent the core formalism for many of the problems and applications in the
field. In a nutshell, AFs formalize statements together with a relation denoting rebuttals between them,
such that the semantics gives a handle to solve the inherent conflicts between statements by selecting
admissible subsets of them, but without taking the concrete contents of the statements into account. Several
semantical principles how to select those subsets have already been proposed by Dung [7] but numerous
other proposals have been made over the last years. In this paper we shall focus on the preferred [7], semi-
stable [4], stage [17], and the resolution-based grounded semantics [1]. Each of these semantics is based on
some kind of ✓-maximality (resp. -minimality) and thus is well amenable for the novel metasp concepts
which we describe below.

Let us first talk about the general context of the paper, which is the realization of abstract argumen-
tation within the paradigm of Answer-Set Programming (see [16] for an overview). We follow here the
ASPARTIX1 approach [11], where a single program is used to encode a particular argumentation seman-
tics, while the instance of an argumentation framework is given as an input database. For problems located
on the second level of the polynomial hierarchy (i.e. for preferred, stage, and semi-stable semantics) ASP
encodings turned out to be quite complicated and hardly accessible for non-experts in ASP (we will sketch
here the encoding for the stage semantics in some detail, since it has not been presented in [11]). This
is due to the fact that tests for subset-maximality have to be done “by hand” in ASP requiring a certain
saturation technique. However, recent advances in ASP solvers, in particular, the metasp optimization

? Supported by the Vienna Science and Technology Fund (WWTF) under grant ICT08-028.
1 See http://rull.dbai.tuwien.ac.at:8080/ASPARTIX for a web front-end of ASPARTIX.

ar
X

iv
:1

10
8.

49
42

v1
 [

cs
.A

I]
 2

4
A

ug
 2

01
1

http://rull.dbai.tuwien.ac.at:8080/ASPARTIX

front-end for the ASP-system gringo/claspD allows for much simpler encodings for such tests. More
precisely, metasp allows to use the traditional #minimize statement (which in its standard variant mini-
mizes wrt. cardinality or weights, but not wrt. subset inclusion) also for selection among answer sets which
are minimal (or maximal) wrt. subset inclusion in certain predicates. Details about metasp can be found
in [13].

Our first main contribution will be the practical comparison between handcrafted encodings (i.e. encod-
ings in the standard ASP language without the new semantics for the #minimize statement) and the much
simpler metasp encodings for argumentation semantics. The experiments show that the metasp encod-
ings do not necessarily result in longer runtimes. In fact, the metasp encodings for the semantics located
on the second level of the polynomial hierarchy outperform the handcrafted saturation-based encodings.
We thus can give additional evidence to the observations in [13], where such a speed-up was reported for
encodings in a completely different application area.

Our second contribution is the presentation of ASP encodings for the resolution-based grounded se-
mantics [1]. To the best of our knowledge, no implementation for this quite interesting semantics has been
released so far. In this paper, we present a rather involved handcrafted encoding (basically following the
NP-algorithm presented in [1]) but also two much simpler encodings (using metasp) which rely on the
original definition of the semantics.

Our results indicate that metasp is a very useful tool for problems known to be hard for the second-
level, but one might loose performance in case metasp is used for “easier” problems just for the sake of
comfortability. Nonetheless, we believe that the concept of the advanced #minimize statement is vital for
ASP, since it allows for rapid prototyping of second-level encodings without being an ASP guru.

The remainder of the paper is organized as follows: Section 2 provides the necessary background. Sec-
tion 3 then contains the ASP encodings for the semantics we are interested in here. We first discuss the
handcrafted saturation-based encoding for stage semantics (the ones for preferred and semi-stable are simi-
lar and already published). Then, in Section 3.2 we provide the novel metasp encodings for all considered
semantics. Afterwards, in Section 3.3 we finally present an alternative encoding for the resolution-based
grounded semantics which better mirrors the complexity of this semantics. Section 4 then presents our
experimental evaluation. We conclude the paper with a brief summary and discussion for future research
directions.

2 Background

2.1 Abstract Argumentation

In this section we introduce (abstract) argumentation frameworks [7] and recall the semantics we study
in this paper (see also [1,2]). Moreover, we highlight complexity results for typical decision problems
associated to such frameworks.

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where A is a set of arguments and
R ✓ A ⇥ A is the attack relation. The pair (a, b) 2 R means that a attacks b. An argument a 2 A is
defended by a set S ✓ A if, for each b 2 A such that (b, a) 2 R, there exists a c 2 S such that (c, b) 2 R.

Example 1. Consider the AF F = (A,R) with A = {a, b, c, d, e, f} and R = {(a, b), (b, d), (c, b), (c, d),
(c, e), (d, c), (d, e), (e, f)}, and the graph representation of F :

a b

c

d

e f

Semantics for argumentation frameworks are given via a function � which assigns to each AF F = (A,R)
a set �(F) ✓ 2A of extensions. We shall consider here for � the functions stb, adm , com , prf , grd ,
grd

⇤, stg , and sem which stand for stable, admissible, complete, preferred, grounded, resolution-based
grounded, stage, and semi-stable semantics respectively. Towards the definition of these semantics we have
to introduce two more formal concepts.

Definition 2. Given an AF F = (A,R). The characteristic function FF : 2A) 2A of F is defined as
FF (S) = {x 2 A | x is defended by S}. Moreover, for a set S ✓ A, we denote the set of arguments
attacked by S as S�

R = {x | 9y 2 S such that (y, x) 2 R}, and define the range of S as S+
R = S [S�

R .

Definition 3. Let F = (A,R) be an AF. A set S ✓ A is conflict-free (in F), if there are no a, b 2 S, such
that (a, b) 2 R. cf (F) denotes the collection of conflict-free sets of F . For a conflict-free set S 2 cf (F), it
holds that

– S 2 stb(F), if S+
R = A;

– S 2 adm(F), if S ✓ FF (S);
– S 2 com(F), if S = FF (S);
– S 2 grd(F), if S 2 com(F) and there is no T 2 com(F) with T ⇢ S;
– S 2 prf (F), if S 2 adm(F) and there is no T 2 adm(F) with T � S;
– S 2 sem(F), if S 2 adm(F) and there is no T 2 adm(F) with T+

R � S+
R ;

– S 2 stg(F), if there is no T 2 cf (F) in F , such that T+
R � S+

R .

We recall that for each AF F , the grounded semantics yields a unique extension, the grounded extension,
which is the least fix-point of the characteristic function FF .

Example 2. Consider the AF F from Example 1. We have {a, d, f} and {a, c, f} as the stable extensions
and thus stb(F) = stg(F) = sem(F) = {{a, d, f}, {a, c, f}}. The admissible sets of F are {}, {a}, {c},
{a, c}, {a, d}, {c, f}, {a, c, f}, {a, d, f} and therefore prf (F) = {{a, c, f},{a, d, f}}. Finally we have
com(F) = {{a}, {a, c, f}, {a, d, f}}, with {a} being the grounded extension.

On the base of these semantics one can define the family of resolution-based semantics [1], with the
resolution-based grounded semantics being the most popular instance.

Definition 4. A resolution � ⇢ R of an F = (A,R) contains exactly one of the attacks (a, b), (b, a) if
{(a, b), (b, a)} ✓ R, a 6= b, and no further attacks. A set S ✓ A is a resolution-based grounded extension
of F if (i) there exists a resolution � such that S = grd((A,R \�));2 and (ii) there is no resolution �0 such
that grd((A,R \ �0)) ⇢ S.

Example 3. Recall the AF F = (A,F) from Example 1. There is one mutual attack and thus we have two
resolutions �1 = {(c, d)} and �2 = {(d, c)}. Definition 4 gives us two candidates, namely grd((A,R \
�1)) = {a, d, f} and grd((A,R \ �2)) = {a, c, f}; as they are not in ⇢-relation they are the resolution-
based grounded extensions of F .

We now turn to the complexity of reasoning in AFs. To this end, we define the following decision problems
for the semantics � introduced in Definitions 3 and 4:

– Credulous Acceptance Cred�: Given AF F = (A,R) and an argument a 2 A. Is a contained in some
S 2 �(F)?

– Skeptical Acceptance Skept�: Given AF F = (A,R) and an argument a 2 A. Is a contained in each
S 2 �(F)?

– Verification of an extension Ver�: Given AF F = (A,R) and a set of arguments S ✓ A. Is S 2 �(F)?

We assume the reader has knowledge about standard complexity classes like P and NP and recall that ⌃P
2

is the class of decision problems that can be decided in polynomial time using a nondeterministic Turing
machine with access to an NP-oracle. The class ⇧P

2 is defined as the complementary class of ⌃P
2 , i.e.

⇧P
2 = co⌃P

2 .
In Table 1 we summarize complexity results relevant for our work [1,6,8,9,10].

2 Abusing notation slightly, we use grd(F) for denoting the unique grounded extension of F .

prf sem stg grd⇤

Cred� NP-c ⌃P
2 -c ⌃P

2 -c NP-c

Skept� ⇧P
2 -c ⇧P

2 -c ⇧P
2 -c coNP-c

Ver� coNP-c coNP-c coNP-c in P

Table 1. Complexity of abstract argumentation (C-c denotes completeness for class C)

2.2 Answer-Set Programming

We first give a brief overview of the syntax and semantics of disjunctive logic programs under the answer-
sets semantics [14]; for further background, see [15].

We fix a countable set U of (domain) elements, also called constants; and suppose a total order < over
the domain elements. An atom is an expression p(t1, . . . , tn), where p is a predicate of arity n � 0 and
each ti is either a variable or an element from U . An atom is ground if it is free of variables. BU denotes
the set of all ground atoms over U .

A (disjunctive) rule r is of the form

a1 _ · · · _ an b1, . . . , bk, not bk+1, . . . , not bm,

with n � 0, m � k � 0, n + m > 0, where a1, . . . , an, b1, . . . , bm are atoms, and “not ” stands for
default negation. The head of r is the set H(r) = {a1, . . . , an} and the body of r is B(r) = {b1, . . . , bk,
not bk+1, . . . , not bm}. Furthermore, B+(r) = {b1, . . . , bk} and B�(r) = {bk+1, . . . , bm}. A rule r is
normal if n 1 and a constraint if n = 0. A rule r is safe if each variable in r occurs in B+(r). A rule
r is ground if no variable occurs in r. A fact is a ground rule without disjunction and empty body. An
(input) database is a set of facts. A program is a finite set of disjunctive rules. For a program ⇡ and an input
database D, we often write ⇡(D) instead of D [⇡. If each rule in a program is normal (resp. ground),
we call the program normal (resp. ground). Besides disjunctive and normal program, we consider here the
class of optimization programs, i.e. normal programs which additionally contain #minimize statements

#minimize[l1 = w1@J1, . . . , lk = wk@Jk], (1)

where li is a literal, wi an integer weight and Ji an integer priority level.
For any program ⇡, let U⇡ be the set of all constants appearing in ⇡. Gr(⇡) is the set of rules r�

obtained by applying, to each rule r 2 ⇡, all possible substitutions � from the variables in r to elements
of U⇡ . An interpretation I ✓ BU satisfies a ground rule r iff H(r) \ I 6= ; whenever B+(r) ✓ I
and B�(r) \ I = ;. I satisfies a ground program ⇡, if each r 2 ⇡ is satisfied by I . A non-ground
rule r (resp., a program ⇡) is satisfied by an interpretation I iff I satisfies all groundings of r (resp.,
Gr(⇡)). I ✓ BU is an answer set of ⇡ iff it is a subset-minimal set satisfying the Gelfond-Lifschitz reduct
⇡I = {H(r) B+(r) | I \ B�(r) = ;, r 2 Gr(⇡)}. For a program ⇡, we denote the set of its answer
sets by AS(⇡).

For semantics of optimization programs, we interpret the #minimize statement wrt. subset-inclusion:
For any sets X and Y of atoms, we have Y ✓w

J X , if for any weighted literal l = w@J occurring in
(1), Y |= l implies X |= l. Then, M is a collection of relations of the form ✓w

J for priority levels J and
weights w. A standard answer set (i.e. not taking the minimize statements into account) Y of ⇡ dominates
a standard answer set X of ⇡ wrt. M if there are a priority level J and a weight w such that X ✓w

J Y does
not hold for ✓w

J 2 M , while Y ✓w0

J 0 X holds for all ✓w0

J 02 M where J 0 � J . Finally a standard answer
set X is an answer set of an optimization program ⇡ wrt. M if there is no standard answer set Y of ⇡ that
dominates X wrt. M .

Credulous and skeptical reasoning in terms of programs is defined as follows. Given a program ⇡ and
a set of ground atoms A. Then, we write ⇡ |=c A (credulous reasoning), if A is contained in some answer
set of ⇡; we write ⇡ |=s A (skeptical reasoning), if A is contained in each answer set of ⇡.

We briefly recall some complexity results for disjunctive logic programs. In fact, since we will deal
with fixed programs we focus on results for data complexity. Depending on the concrete definition of |=,

e normal programs disjunctive program optimization programs

|=c NP ⌃P
2 ⌃P

2

|=s coNP ⇧P
2 ⇧P

2

Table 2. Data Complexity for logic programs (all results are completeness results).

we give the complexity results in Table 2 (cf. [5] and the references therein). We note here, that even
normal programs together with the optimization technique have a worst case complexity of ⌃P

2 (resp. ⇧P
2).

Inspecting Table 1 one can see which kind of encoding is appropriate for an argumentation semantics.

3 Encodings of AF Semantics

In this section we first show how to represent AFs in ASP and we discuss three programs which we need
later on in this section3. Then, in Subsection 3.1 we exemplify on the stage semantics the saturation tech-
nique for encodings which solve associated problems which are on the second level of the polynomial
hierarchy. In Subsection 3.2 we will make use of the newly developed metasp optimization technique.
In Subsection 3.3 we give an alternative encoding based on the algorithm of Baroni et al. in [1], which
respects the lower complexity of resolution-based grounded semantics.

All our programs are fixed which means that the only translation required, is to give an AF F as input
database F̂ to the program ⇡� for a semantics �. In fact, for an AF F = (A,R), we define F̂ as

F̂ = { arg(a) | a 2 A} [{defeat(a, b) | (a, b) 2 R }.

In what follows, we use unary predicates in/1 and out/1 to perform a guess for a set S ✓ A, where in(a)
represents that a 2 S. The following notion of correspondence is relevant for our purposes.

Definition 5. Let S ✓ 2U be a collection of sets of domain elements and let I ✓ 2BU be a collection of sets
of ground atoms. We say that S and I correspond to each other, in symbols S ⇠= I, iff (i) for each S 2 S ,
there exists an I 2 I, such that {a | in(a) 2 I} = S; (ii) for each I 2 I, it holds that {a | in(a) 2 I} 2 S;
and (iii) |S| = |I|.

Consider an AF F . The following program fragment guesses, when augmented by F̂ , any subset S ✓ A
and then checks whether the guess is conflict-free in F :

⇡
cf

= { in(X) not out(X), arg(X);

out(X) not in(X), arg(X);

 in(X), in(Y), defeat(X,Y) }.

Proposition 1. For any AF F , cf (F) ⇠= AS(⇡
cf

(F̂)).

Sometimes we have to avoid the use of negation. This might either be the case for the saturation technique
or if a simple program can be solved without a Guess&Check approach. Then, encodings typically rely on
a form of loops where all domain elements are visited and it is checked whether a desired property holds
for all elements visited so far. We will use this technique in our saturation-based encoding in the upcoming
subsection, but also for computing the grounded extension in Subsection 3.2. For this purpose the program
⇡<, which is taken from [11], is used to encode the infimum, successor and supremum of an order < over
the domain elements in the predicates inf/1, succ/2 and sup/1 respectively. The order over the domain
elements is usually provided by common ASP solvers.

3 We make use of some program modules already defined in [11].

Finally, the following module computes for a guessed subset S ✓ A the range S+
R (see Def. 2) of S in

an AF (A,R).

⇡
range

= {in range(X) in(X);

in range(X) in(Y), defeat(Y,X);

not in range(X) arg(X),not in range(X)}.

3.1 Saturation Encodings

In this subsection we make use of the saturation technique introduced by Eiter and Gottlob in [12]. In [11],
this technique was already used to encode the preferred and semi-stable semantics. Here we give the en-
codings for the stage semantics, which is similar to the one of semi-stable semantics, to exemplify the use
of the saturation technique.

In fact, for an AF F = (A,R) and S 2 cf (F) we need to check whether no T 2 cf (F) with S+
R ⇢ T+

R
exists. Therefore we have to guess an arbitrary set T and saturate in case (i) T is not conflict-free, and (ii)
S+
R 6⇢ T+

R . Together with ⇡
cf

this is done with the following module, where in/1 holds the current guess for
S and inN/1 holds the current guess for T . More specifically, rule fail inN(X), inN(Y), defeat(X,Y)
checks for (i) and the remaining two rules with fail in the head fire in case S+

R = T+
R (indicated by predicate

eqplus/0 described below), or there exists an a 2 S+
R such that a /2 T+

R (here we use predicate in range/1
from above and predicate not in rangeN/1 which we also present below). As is easily checked one of
these two conditions holds exactly if (ii) holds.

⇡
satstage

= { inN(X) _ outN(X) arg(X);

fail inN(X), inN(Y), defeat(X,Y);

fail eqplus;

fail in range(X), not in rangeN(X);

inN(X) fail, arg(X);

outN(X) fail, arg(X);

 not fail }.
For the definition of predicates not in rangeN/1 and eqplus/0 we make use of the aforementioned loop
technique and predicates from program ⇡<.

⇡
rangeN

= { undefeated upto(X,Y) inf(Y), outN(X), outN(Y);

undefeated upto(X,Y) inf(Y), outN(X),not defeat(Y,X);

undefeated upto(X,Y) succ(Z, Y), undefeated upto(X,Z), outN(Y);

undefeated upto(X,Y) succ(Z, Y), undefeated upto(X,Z),

not defeat(Y,X);

not in rangeN(X) sup(Y), outN(X), undefeated upto(X,Y);

in rangeN(X) inN(X);

in rangeN(X) outN(X), inN(Y), defeat(Y,X) }.

⇡+
eq

= { eqp upto(X) inf(X), in range(X), in rangeN(X);

eqp upto(X) inf(X), not in range(X), not in rangeN(X);

eqp upto(X) succ(Z,X), in range(X), in rangeN(X), eqp upto(Z);

eqp upto(X) succ(Y,X), not in range(X), not in rangeN(X), eqp upto(Y);

eqplus sup(X), eqp upto(X) };

Proposition 2. For any AF F , stg(F) ⇠= AS(⇡
stg

(F̂)), where ⇡
stg

= ⇡
cf

[⇡< [⇡
range

[⇡
rangeN

[
⇡+
eq

[⇡
satstage

.

3.2 Meta ASP Encodings

The following encodings for preferred, semi-stable and stage semantics are written using the #minimize[·]
statement when evaluated with the subset minimization semantics provided by metasp. For our encodings
we do not need prioritization and weights, therefore these are omitted (i.e. set to default) in the minimization
statements. The fact optimize(1,1,incl) is added to the meta ASP encodings, to indicate that we
use subset inclusion for the optimization technique using priority and weight 1.

We now look at the encodings for the preferred, semi-stable and stage semantics using this minimization
technique. First we need one auxiliary module for admissible extensions.

⇡
adm

= ⇡
cf

[{defeated(X) in(Y), defeat(Y,X);

 in(X), defeat(Y,X),not defeated(Y)}.

Now the modules for preferred, semi-stable and stage semantics are easy to encode using the minimization
statement of metasp. For the preferred semantics we take the module ⇡

adm

and minimize the out/1
predicate. This in turn gives us the subset-maximal admissible extensions, which captures the definition of
preferred semantics. The encodings for the semi-stable and stage semantics are similar. Here we minimize
the predicate not in range/1 from the ⇡

range

module.

⇡
prf metasp

= ⇡
adm

[{#minimize[out]}.
⇡
sem metasp

= ⇡
adm

[⇡
range

[{#minimize[not in range]}.
⇡
stg metasp

= ⇡
cf

[⇡
range

[{#minimize[not in range]}.

The following results follow now quite directly.

Proposition 3. For any AF F , we have

1. prf (F) ⇠= AS(⇡
prf metasp

(F̂)),
2. sem(F) ⇠= AS(⇡

sem metasp

(F̂)), and
3. stg(F) ⇠= AS(⇡

stg metasp

(F̂)).

Next we give two different encodings for computing resolution-based grounded extensions. Both encodings
use subset minimization for the resolution part, i.e. the resulting extension is subset minimal with respect to
all possible resolutions. The first one computes the grounded extension for the guessed resolution explicitly
(adapting the encoding from [11]; instead of the defeat predicate we use defeat minus beta, since we need
the grounded extensions of a restricted defeat relation). In fact, the ⇡

res

module which we give next guesses
this restricted defeat relation {R \ �} for a resolution �.

⇡
res

= { defeat minus beta(X,Y) defeat(X,Y),not defeat minus beta(Y,X),

X 6= Y ;

defeat minus beta(X,Y) defeat(X,Y),not defeat(Y,X);

defeat minus beta(X,X) defeat(X,X)}.

The second encoding uses the metasp subset minimization additionally to get the grounded extension
from the complete extensions of the current resolution (recall that the grounded extension is in fact the
unique subset-minimal complete extension). We again use the restricted defeat relation.

⇡
com

= ⇡
adm

[{ undefended(X) defeat minus beta(Y,X),not defeated(Y);

 out(X),not undefended(X) }.

Now we can give the two encodings for resolution-based grounded semantics.

⇡
grd

⇤
metasp

= ⇡
grd

[⇡
res

[{#minimize[in]}
⇡0
grd

⇤
metasp

= ⇡
com

[⇡
res

[{#minimize[in]}.

Proposition 4. For any AF F and ⇡ 2 {⇡
grd

⇤
metasp

,⇡0
grd

⇤
metasp

}, grd⇤(F) corresponds to AS(⇡(F̂))
in the sense of Definition 5, but without property (iii).

3.3 Alternative Encodings for Resolution-based Grounded Semantics

So far, we have shown two encodings for the resolution-based grounded semantics via optimization pro-
grams, i.e. we made use of the #minimize statement under the subset-inclusion semantics. From the com-
plexity point of view this is not adequate, since we expressed a problem on the NP-layer (see Table 1) via an
encoding which implicitly makes use of disjunction (see Table 2 for the actual complexity of optimization
programs). Hence, we provide here an alternative encoding for the resolution-based grounded semantics
based on the verification algorithm proposed by Baroni et al. in [1]. This encoding is just a normal program
and thus located at the right level of complexity.

We need some further notation. For an AF F = (A,R) and a set S ✓ A we define F |S = ((A \
S), R \ (S ⇥ S)) as the sub-framework of F wrt S; furthermore we also use F � S as a shorthand for
F |A\S . By SCCs(F), we denote the set of strongly connected components of an AF F = (A,R) which
identify the vertices of a maximal strongly connected4 subgraphs of F ; SCCs(F) is thus a partition of
A. A partial order �F over SCCs(F) = {C1, . . . , Cn}, denoted as (Ci �F Cj) for i 6= j, is defined, if
9x 2 Ci, y 2 Cj such that there is a directed path from x to y in F .

Definition 6. A C 2 SCCs(F) is minimal relevant (in an AF F) iff C is a minimal element of �F and
F |C satisfies the following:

(a) the attack relation R(F |C) of F is irreflexive, i.e. (x, x) 62 R(F |C) for all arguments x;
(b) R(F |C) is symmetric, i.e. (x, y) 2 R(F |C), (y, x) 2 R(F |C);
(c) the undirected graph obtained by replacing each (directed) pair {(x, y), (y, x)} in F |C with a single

undirected edge {x, y} is acyclic.

The set of minimal relevant SCCs in F is denoted by MR(F).

Proposition 5 ([1]). Given an AF F = (A,R) such that (F � S+
R) 6= (;, ;) and MR(F � S+

R) 6= ;,
where S = grd(F), a set U ✓ A of arguments is resolution-based grounded in F , i.e. U 2 grd

⇤(F) iff the
following conditions hold:

(i) U \ S+
R = S;

(ii) (T \⇧F) 2 stb(F |⇧F), where T = U \ S+
R , and ⇧F =

S
V 2MR(F�S+

R) V ;

(iii) (T \⇧C
F) 2 grd

⇤(F |⇧C
F
� (S+

R [(T \⇧F)
�
R)), where T and ⇧F are as in (ii) and ⇧C

F = A \⇧F .

To illustrate the conditions of Proposition 5, let us have a look at our example.

4 A directed graph is called strongly connected if there is a directed path from each vertex in the graph to every other
vertex of the graph.

Example 4. Consider the AF F of Example 1. Let us check whether U = {a, d, f} is resolution-based
grounded in F , i.e. whether U 2 grd

⇤(F). S = {a} is the grounded extension of F and S+
R = {a, b}, hence

the first Condition (i) is satisfied. We obtain T = {d, f} and ⇧F = {c, d}. We observe that T \⇧F = {d}
is a stable extension of the AF F |⇧F ; that satisfies Condition (ii). Now we need to check Condition (iii);
we first identify the necessary sets: ⇧C

F = {a, b, e, f}, T \⇧C
F = {f} and (T \⇧F)

�
R = {c, e}. It remains

to check {f} 2 grd

⇤({f}, ;) which is easy to see. Hence, U 2 grd

⇤(F).

The following encoding is based on the Guess&Check procedure which was also used for the encodings
in [11]. After guessing all conflict-free sets with the program ⇡

cf

, we check whether the conditions of
Definition 6 and Proposition 5 hold. Therefore the program ⇡

arg set

makes a copy of the actual arguments,
defeats and the guessed set to the predicates arg set/2, defeatN/3 and inU/2. The first variable in these
three predicates serves as an identifier for the iteration of the algorithm (this is necessary to handle the
recursive nature of Proposition 5). In all following predicates we will use the first variable of each predicate
like this. As in some previous encodings in this paper, we use the program ⇡< to obtain an order over the
arguments, and we start our computation with the infimum represented by the predicate inf/1.

⇡
arg set

= { arg set(N,X) arg(X), inf(N);

inU(N,X) in(X), inf(N);

defeatN(N,Y,X) arg set(N,X), arg set(N,Y), defeat(Y,X) }.

We use here the program ⇡
defendedN

(which is a slight variant of the program ⇡
defended

) together with the
program ⇡

groundN

where we perform a fixed-point computation of the predicate defendedN/2, but now
we use an additional argument N for the iteration step where predicates arg set/2, defeatN/3 and inS/2
replace arg /1, defeat/2 and in/1. In ⇡

groundN

we then obtain the predicate inS(N,X) which identifies
argument X to be in the grounded extension of the iteration N .

⇡
groundN

= ⇡
cf

[⇡< [⇡
arg set

[⇡
defendedN

[{ inS(N,X) defendedN(N,X) }.

The next module ⇡
F minus range

computes the arguments in (F � S+
R), represented by the predicate

notInSplusN/2, via predicates in SplusN/2 and u cap Splus/2 (for S+
R and U\S+

R). The two constraints
check condition (i) of Proposition 5.

⇡
F minus range

= { in SplusN(N,X) inS(N,X);

in SplusN(N,X) inS(N,Y), defeatN(N,Y,X);

u cap Splus(N,X) inU(N,X), in SplusN(N,X);

 u cap Splus(N,X),not inS(N,X);

 not u cap Splus(N,X), inS(N,X);

notInSplusN(N,X) arg set(N,X),not in SplusN(N,X) }.

The module ⇡
MR

computes ⇧F =
S

V 2MR(F�S+
R) V , where mr(N,X) denotes that an argument is con-

tained in a set V 2 MR. Therefore we need to check all three conditions of Definition 6. The first two
rules compute the predicate reach(N,X, Y) if there is a path between the arguments X,Y 2 (F � S+

R).
With this predicate we will identify the SCCs. The third rule computes self defeat/2 for all arguments
violating Condition (a). Next we need to check Condition (b). With nsym/2 we obtain those arguments
which do not have a symmetric attack to any other argument from the same component. Condition (c) is
a bit more tricky. With predicate reachnotvia/4 we say that there is a path from X to Y not going over
argument V in the framework (F � S+

R). With this predicate at hand we can check for cycles with cyc/4.
Then, to complete Condition (c) we derive bad/2 for all arguments which are connected to a cycle (or a
self-defeating argument). In the predicate pos mr/2, we put all the three conditions together and say that
an argument x is possibly in a set V 2 MR if (i) x 2 (F � S+

R), (ii) x is neither connected to a cycle
nor self-defeating, and (iii) for all y it holds that (x, y) 2 (F � S+

R) , (y, x) 2 (F � S+
R). Finally we

only need to check if the SCC obtained with pos mr/2 is a minimal element of �F . Hence we get with
notminimal/2 all arguments not fulfilling this, and in the last rule we obtain with mr/2 the arguments
contained in a minimal relevant SCC.

⇡
MR

={ reach(N,X, Y) notInSplusN(N,X), notInSplusN(N,Y), defeatN(N,X, Y);

reach(N,X, Y) notInSplusN(N,X), defeatN(N,X,Z), reach(N,Z, Y),

X! = Y ;

self defeat(N,X) notInSplusN(N,X), defeatN(N,X,X);

nsym(N,X) notInSplusN(N,X), notInSplusN(N,Y), defeatN(N,X, Y),

not defeatN(N,Y,X), reach(N,X, Y), reach(N,Y,X), X! = Y ;

nsym(N,Y) notInSplusN(N,X), notInSplusN(N,Y), defeatN(N,X, Y),

not defeatN(N,Y,X), reach(N,X, Y), reach(N,Y,X), X! = Y ;

reachnotvia(N,X, V, Y) defeatN(N,X, Y), notInSplusN(N,V),

reach(N,X, Y), reach(N,Y,X), X! = V, Y ! = V ;

reachnotvia(N,X, V, Y) reachnotvia(N,X, V, Z), reach(N,X, Y),

reachnotvia(N,Z, V, Y), reach(N,Y,X),

Z! = V,X! = V, Y ! = V ;

cyc(N,X, Y, Z) defeatN(N,X, Y), defeatN(N,Y,X),

defeatN(N,Y, Z), defeatN(N,Z, Y),

reachnotvia(N,X, Y, Z), X! = Y, Y ! = Z,X! = Z;

bad(N,Y) cyc(N,X,U, V), reach(N,X, Y), reach(N,Y,X);

bad(N,Y) self defeat(N,X), reach(N,X, Y), reach(N,Y,X);

pos mr(N,X) notInSplusN(N,X),not bad(N,X),not self defeat(N,X),

not nsym(N,X);

notminimal(N,Z) reach(N,X, Y), reach(N,Y,X),

reach(N,X,Z),not reach(N,Z,X);

mr(N,X) pos mr(N,X),not notminimal(N,X) }.

We now turn to Condition (ii) of Proposition 5, where the first rule in ⇡
stableN

computes the set T = U\S+
R .

Then we check whether T = ; and MR(F � S+
R) = ; via predicates emptyT/1 and not exists mr/1. If

this is so, we terminate the iteration in the last module ⇡
iterate

. The first constraint eliminates those guesses
where MR(F � S+

R) = ; but T 6= ;, because the algorithm is only defined for AFs fulfilling this. Finally
we derive the arguments which are defeated by the set T in the MR denoted by defeated/2, and with the
last constraint we eliminate those guesses where there is an argument not contained in T and not defeated
by T in MR and hence (T \⇧F) 62 stb(F |⇧F).

⇡
stableN

= { t(N,X) inU(N,X),not inS(N,X);

nemptyT(N) t(N,X);

emptyT(N) not nemptyT(N), arg set(N,X);

existsMR(N) mr(N,X), notInSplusN(N,X);

not exists mr(N) not existsMR(N), notInSplusN(N,X);

true(N) emptyT(N),not existsMR(N);

 not exists mr(N), nemptyT(N);

defeated(N,X) mr(N,X),mr(N,Y), t(N,Y), defeatN(N,Y,X);

 not t(N,X),not defeated(N,X),mr(N,X) }.

With the last module ⇡
iterate

we perform Step (iii) of Proposition 5. The predicate t mrOplus/2 computes
the set (T \⇧F)

�
R and with the second rule we start the next iteration for the framework (F |⇧C

F
� (S+

R [
(T \⇧F)

�
R)) and the set (T \⇧C

F).

⇡
iterate

= { t mrOplus(N,Y) t(N,X),mr(N,X), defeatN(N,X, Y);

arg set(M,X) notInSplusN(N,X),not mr(N,X),

not t mrOplus(N,X), succ(N,M),not true(N);

inU(M,X) t(N,X),not mr(N,X), succ(N,M),not true(N) }.

Finally we put everything together and obtain the program ⇡
grd

⇤ .

⇡
grd

⇤ = ⇡
groundN

[⇡
F minus range

[⇡
MR

[⇡
stableN

[⇡
iterate

.

Proposition 6. For any AF F , grd⇤(F) ⇠= AS(⇡
grd

⇤(F̂)).

4 Experimental Evaluation

In this section we present our results of the performance evaluation. We compared the time needed for
computing all extensions for the semantics described earlier using both the handcraft saturation-based and
the alternative metasp encodings.

The tests were executed on an openSUSE based machine with eight Intel Xeon processors (2.33 GHz)
and 49 GB memory. For computing the answer sets, we used gringo (version 3.0.3) for grounding and
the solver claspD (version 1.1.1). The latter being the variant for disjunctive answer-set programs.

We randomly generated AFs (i.e. graphs) ranging from 20 to 110 arguments. We used two parametrized
methods for generating the attack relation.The first generates arbitrary AFs and inserts for any pair (a, b)
the attack from a to b with a given probability p. The other method generates AFs with a n ⇥ m grid-
structure. We consider two different neighborhoods, one connecting arguments vertically and horizontally
and one that additionally connects the arguments diagonally. Such a connection is a mutual attack with a
given probability p and in only one direction otherwise. The probability p was chosen between 0.1 and 0.4.

Overall 14388 tests were executed, with a timeout of five minutes for each execution. Timed out in-
stances are considered as solved in 300 seconds. The time consumption was measured using the Linux
time command. For all the tests we let the solver generate all answer sets, but only outputting the number
of models. To minimize external influences on the test runs, we alternated the different encodings during
the tests.

Figures 1 - 3 depict the results for the preferred, semi-stable and stage semantics respectively. The
figures show the average computation time for both the handcraft and the metasp encoding for a certain
number of arguments. We distinguish here between arbitrary, i.e. completely random AFs and grid struc-
tured ones. One can see that the metasp encodings have a better performance, compared to the handcraft
encodings. In particular, for the stage semantics the performance difference between the handcraft and
the metasp variant is noticeable. Recall that the average computation time includes the timeouts, which
strongly influence the diagrams.

For the resolution-based grounded semantics Figure 4 shows again the average computation time
needed for a certain number of arguments. Let us first consider the case of arbitrary AFs. The handcraft
encoding struggled with AFs of size 40 or larger. Many of those instances could not be solved due to mem-
ory faults. This is indicated by the missing data points. Both metasp encodings performed better overall,
but still many timeouts were encountered. If we look more closely at the structured AFs then we see that
⇡0
grd

⇤
metasp

performs better overall than the other metasp variant. Interestingly, computing the grounded
part with a handcraft encoding without a Guess&Check part did not result in a lower computation time on
average. The handcraft encoding performed better than ⇡

grd

⇤
metasp

on grids.

20 40 60 80 100

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

tim
e
 (

se
c)

! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! !
!

!

!

πprf_metasp arbitrary
πprf_metasp grid
πprf arbitrary
πprf grid

Fig. 1. Average computation time for preferred semantics.

20 40 60 80 100

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

tim
e
 (

se
c)

! ! ! ! ! ! !
!

!

!

! ! ! ! ! !
!

!

!

!

!

!

πsem_metasp arbitrary
πsem_metasp grid
πsem arbitrary
πsem grid

Fig. 2. Average computation time for semi-stable semantics.

20 40 60 80 100

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

tim
e
 (

se
c)

! ! ! ! !
!

!

!

!

!

! ! !
!

!

!

!

!

!

!

!

!

πstg_metasp arbitrary
πstg_metasp grid
πstg arbitrary
πstg grid

Fig. 3. Average computation time for stage semantics.

20 30 40 50 60

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

tim
e
 (

se
c)

!

!

!
! !

! Metasp arbitrary πgrd*_metasp

Metasp grid πgrd*_metasp

Metasp arbitrary π'grd*_metasp

Metasp grid π'grd*_metasp

Handcrafted arbitrary πgrd*

Handcrafted grid πgrd*

Fig. 4. Average computation time for resolution-based grounded semantics

5 Conclusion

In this paper, we inspected various ASP encodings for four prominent semantics in the area of abstract
argumentation. (1) For the preferred and the semi-stable semantics, we compared existing saturation-based
encodings [11] (here we called them handcrafted encodings) with novel alternative encodings which are
based on the recently developed metasp approach [13], where subset minimization can be directly spec-
ified (and a front-end, i.e. a meta-interpreter) compiles such statements back into the core ASP language.
(2) For the stage semantics, we presented here both a handcrafted and a metasp encoding. Finally, (3)
for the resolution-based grounded semantics we provided three encodings, two of them using the metasp
techniques.

Although the metasp encodings are much simpler to design (since saturation techniques are delegated
to the meta-interpreter), they perform surprisingly well when compared with the handcraft encodings which
are directly given to the ASP solver. This shows the practical relevance of the metasp technique also in
the area of abstract argumentation. Future work has to focus on further experiments which hopefully will
strengthen our observations.

References

1. P. Baroni, P. E. Dunne, and M. Giacomin. On the resolution-based family of abstract argumentation semantics and
its grounded instance. Artif. Intell., 175(3-4):791–813, 2011.

2. P. Baroni and M. Giacomin. Semantics of abstract argument systems. In I. Rahwan and G. Simari, editors,
Argumentation in Artificial Intelligence, pages 25–44. Springer, 2009.

3. T. J. M. Bench-Capon and P. E. Dunne. Argumentation in artificial intelligence. Artif. Intell., 171(10-15):619–641,
2007.

4. M. Caminada. Semi-stable semantics. In Proc. COMMA 2006, pages 121–130, 2006.
5. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logic programming. ACM

Computing Surveys, 33(3):374–425, 2001.
6. Y. Dimopoulos and A. Torres. Graph theoretical structures in logic programs and default theories. Theor. Comput.

Sci., 170(1-2):209–244, 1996.
7. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic pro-

gramming and n-person games. Artif. Intell., 77(2):321–358, 1995.
8. P. E. Dunne and T. J. M. Bench-Capon. Coherence in finite argument systems. Artif. Intell., 141(1/2):187–203,

2002.
9. P. E. Dunne and M. Caminada. Computational complexity of semi-stable semantics in abstract argumentation

frameworks. In Proc. JELIA 2008, pages 153–165, 2008.
10. W. Dvořák and S. Woltran. Complexity of semi-stable and stage semantics in argumentation frameworks. Inf.

Process. Lett., 110(11):425–430, 2010.
11. U. Egly, S. A. Gaggl, and S. Woltran. Answer-set programming encodings for argumentation frameworks. Argu-

ment and Computation, 1(2):147–177, 2010.
12. T. Eiter and G. Gottlob. On the computational cost of disjunctive logic programming: Propositional case. Ann.

Math. Artif. Intell., 15(3-4):289–323, 1995.
13. M. Gebser, R. Kaminski, and T. Schaub. Complex optimization in answer set programming. Theory and Practice

of Logic Programming 11(4-5): 821–839 (2011).
14. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New Generation

Comput., 9(3/4):365–386, 1991.
15. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The dlv system for knowledge

representation and reasoning. ACM Trans. Comput. Log., 7(3):499–562, 2006.
16. F. Toni and M. Sergot. Argumentation and answer set programming. In M. Balduccini and T.C. Son, editors,

Gelfond Festschrift, volume 6565 of LNAI, pages 164–180. Springer, 2011.
17. B. Verheij. Two approaches to dialectical argumentation: admissible sets and argumentation stages. In Proc.

NAIC’96, pages 357–368, 1996.

	Making Use of Advances in Answer-Set Programming for Abstract Argumentation Systems

