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Current Seminar Plan (Maybe Subject to Change)

Date Topic Presenter
22.04. Modal Logic — Semantics | Aidan
29.04. Temporal Reasoning Hamza
27.05. (!) | Epistemic Logics Carlos
03.06. NMR Introduction Sepideh
17.06. (!) | Default Logic Lucas
24.06. Autoepistemic Logic Abdul
01.07. Dempster Shafer Theory | Luke

Note: Register seminar with examination office.
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Ouitline

We review some key concepts of classical logic:

® Syntax and Semantics of Propositional Logic
* Model Theory vs. Proof Theory
® Soundness and Completeness

e Syntax and Semantics of First-Order Logic
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Motivation

In Knowledge Representation and Reasoning we wantto ...
... formally represent a collection of propositions believed by some agent,

and to derive new information from these propositions by applying reasoning
techniques.

Logic allows us to ...

... formally represent information in various logical systems,

and to draw logical inferences from given information.
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Quiz: Logic Basics

Quiz: For each of the following statements, decide whether it holds.

1. In propositional logic (PL), P — Q is equivalent to P vV =Q.

2. In PL, if ¢ is a tautology and I is an interpretation, then ¢ = true.

3. In PL, if A and I" are sets of formulas and ¢ is a formula, then A ¢ implies
AUT E ¢.

4. In first-order logic, =Vx.(P(x) V Q(x)) is equivalent to (Ax.=P(x)) A (Ax.=O(x)).

5. In first-order logic, there is a proof system with a derivation relation + that
coincides with the entailment relation .
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Propositional Logic
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Propositional Logic — Overview

It is one of the simplest logics

It can be used to write simple representations of a domain
® There exist reasoning algorithms that exhibit excellent performance in practice

(Most of) you are already familiar with it.
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Syntax: Propositional Alphabet

—_

. Propositional variables (PL):
basic statements that can be true or false

N

. The symbols T (“truth”) and L (“falsehood”)

w

Propositional connectives:
- negation (not)
A conjunction (and)
VvV disjunction (or)
— implication (if .. .then)
< bi-directional implication (if and only if)

&

Punctuation symbols “(” and “)” can be used to avoid ambiguity
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Semantics: Interpretations

Definition 2.1 (Interpretation):
An interpretation 7 assigns truth values to propositional variables:

I : PL — {true, false}

An interpretation for a (set of) formulas X interprets the propositional variables occurring
in X.

Example: An interpretation 7 for the formula R — ((Q V R) — R):

R = true

o' = false

A formula with n propositional variables has 2" interpretations.
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Semantics of Formulas

The truth value of the propositional variables in a formula « determines the truth value of

.

R— (QVR) — R

N RY true
R (QVR)—-R of false
N T

V R 1.

OVR R 0 ) rue

Pl (QVR) — R’ true

0O R (R— (QVR) - R) true
Definition 2.2 (Model): We say that 7 is a model of « iff 7 makes « true.
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Using Propositional Logic for KR

Propositional Logic provides a simple KR language.

To write down a representation of our domain do the following:
1. ldentify the relevant propositions:

Benign The tumour is benign
Metastasis The tumour has metastasis
Staged The tumour is in Stage 4

2. Express our knowledge using a set of formulas (knowledge base):

Benign
Benign & —Metastasis

Stage4d — Metastasis
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Reasoning with a Knowledge Base

Knowledge Base K : Knowledge Base K;:
Benign A Stage4 Benign
Benign < —Metastasis Benign < —Metastasis
Stage4 — Metastasis Staged — Metastasis

We would like to answer the following questions:
1. Do our KBs make sense?
K seems contradictory
2. What is the implicit knowledge we can derive from our KBs?
¥, seems to imply the formula —Stage4
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Model Theory — Reasoning

Definition 2.3 (Semantic Consequence): Let I' be a set of formulas and a a formula.
We write T E « if and only if every model of I is also a model of a.

Definition 2.4 (Tautology): Let @ be some formula.
We write £ « if and only if  is true in every interpretation.

Example from K;:
{B,B & —M,S4 — M} £ =54

® |et 7 be a model of {B,B < =M, S4 — M}.

Then (B)! = true, (M)’ = false.

Since (84 — M)’ = true and (M)’ = false, it must hold that (S4)’ = false.
Thus (=S4T = true.
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Proof Theory

In proof theory:

* We do not consider the semantical interpretation of logical formulas.

® Rather, we are concerned with a syntactic description of our logical system ...
e that allows to put our logic on an axiomatic foundations and to

® syntactically derive formulas from a set of axioms and inference rules.

® Some well-known systems include: Hilbert Systems, Natural Deduction and
Tableau Calculi.

Definition 2.5 (Syntactic Consequence): Let I' be a set of formulas and a a formula.
We write I' + « if and only if there is a derivation with conclusion « from T'.

Definition 2.6 (Theorem): If I' = 0, we write + @ and we say that « is a theorem.
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Proof Theory — Hilbert System

Axioms:

Axiom 1. ¢ = (y — ¢)
Axiom 2. (¢ — (¥ — x)) = (¢ = ¥) = (¢ = X))
Axiom 3. (=¢ = W) = ((=¢ = ¥) = @)

Inference Rule: (Modus Ponens): From ¢ — ¢ and ¢, infer y.

Example: Show ¢ — y, ¥ > x +¢ — x

W—-x)—>@—-> W -x)
(@—>W—-x)—> -y - (9> x)
v —=x

> W—-x

(p—>y) > (p—>x)

¢y

¢ —x

Axl[g/v — x;¢/¢]
Ax2

Premise
MP(1,3)
MP(2,4)
Premise
MP(5,6)
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Soundness and Completeness

For propositional logic (and other logical systems) we can show that the semantic and
syntactic entailment coincide. That is: the relations “<” and “+” coincide.

We distinguish both directions:

Theorem 2.7 (Soundness): 'a =T Fa

Theorem 2.8 (Completeness): TcFa =T+«

[For proofs, see for instance: Dirk van Dalen, Logic and Structure (2008)]
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Monotonicity

What does it mean for a logic to be monotone? Monotonicity is a property of the
consequence relation:

Definition 2.9 (Monotonicity): Let X and A be sets of formulas and H be a formula.
IfX e Hand X CAthen AEH.

Example: Let X ={p,q}, H = p,A = {p,q,r}. What if A ={p, q, -p}?

What would we have to do to show that some entailment relation is non-monotonic?
Find an example where:

® YEH
e YCA
e But: Ax H
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Limitations of Propositional Logic

Consider the following argument:

All men are mortal

Socrates is a man

Socrates is mortal

The argument seems to be valid.

However, in propositional logic:

Sebastian Rudolph, TU Dresden Seminar Logic-Based Knowledge Representation

Slide 18 of 32


https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

First-Order Logic
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FOL Syntax: Symbols

A first-order alphabet consists of
® Predicate Symbols, each with a fixed arity

Arthritis  Unary Predicate
Affects Binary Predicate

® Function symbols, each with a fixed arity

ssnOf  Unary Function Symbol

Constants: JohnSmith, MaryJones, JRA
® Variables: x, y, z
® Propositional connectives {—, V, A, =, &}

Symbols T and L
® The universal and existential quantifiers: V, 3
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FOL Syntax: Terms

Terms stand for specific objects:

® Variables are terms

® Constants are terms

® The application of a function symbol to terms leads to a term

JohnSmith  stands for

ssnOf (JohnSmith)  stands for
x stands for

ssnOf(x) stands for

the person named John Smith
the ssn number of John Smith
some object (undetermined)

some ssn number (undetermined)
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FOL Syntax: Formulas

An atomic formula (atom) is of the form

P(t1,...,t,) Pisann-ary predicate, t; are terms

Examples:

Child(JohnSmith) John Smith is a child
JuvenileArthritis(JRA) JRA is a juvenile arthritis
Affects(JRA, JohnSmith) John Smith is affected by JRA

An atom represents a simple statement:
® similar to atoms in propositional logic,
® but first-order atoms have finer-grained structure.
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FOL Syntax: Formulas

Complex formulas:
® Every atom is a formula

Child(JohnSmith), Affects(x, JohnSmith)

e T and L are formulas

If @ is a formula, then =« is a formula

—Affects(JRA, JohnSmith), —Child(y)

If a, B are formulas, (a o B) is a formula for {o € A, V, —, &}

Affects(JRA,y) — Child(y) V Teenager(y)

If @ a formula and x a variable, (Yx.a), (Ix.«) are formulas

Vy.(Affects(JRA,y)) — Child(y) Vv Teenager(y))
=(Ax. Ay(JuvArthritis(x) A Affects(x,y) A Adult(y)))
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FOL Syntax: Formulas

Intuitively, a free variable occurrence in a formula is one that does not appear in the
scope of a quantifier:

Affects(JRA, X) - Child(X) \% Teenager(X)
3x.(JuvArthritis(x) A Affects(x, X) A Adult(X))
Hx.(luvArthritis(x)) A Affects(x, X) A Adult(X)

A variable occurrence is bound if it is not free.

A sentence is a formula with no free variable occurrences.
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Example FOL Sentences

A juvenile disease affects only children or teenagers:
Vx.Vy.((JuvDisease(x) A Affects(x,y)) — Child(y) V Teenager(y))
Children and teenagers are not adults:

Vx.((Child(x) v Teenager(x)) — —Adult(x))
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FOL Interpretations

As in PL, the meaning of sentences is given by interpretations.

An interpretation is a pair 7 = (D, -¥) where:
® D is a non-empty set, called the interpretation domain.

D = {u,v,w, s}

e .7 s the interpretation function and it associates:
— With each constant ¢ an object ¢/ € D.

JohnSmith! =u  MaryWilliams” =v JRA? =
— With each n-ary function symbol f, a function f : D" — D.
ssnOff = {us,...}

— With each n-ary predicate symbol P, a relation P? C D".

Child" = {u,v}) Adult’ =0 Affects’ = {(w,u),...
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Evaluation of Terms

Terms are interpreted as elements of the interpretation domain.

We have already seen how to interpret constants

JohnSmith! = u  MaryWilliams* =v JRAT =w

To interpret terms, we need to interpret (free) variables by means of a mapping from
variables to domain elements (an assignment)

Given I and assignment a, we can interpret any term.
Let 7 be as before and a map x to u:

JohnSmith'® = u
A =y
(ssnOf(x)!? = ssnOff(u) =s
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Evaluation of Formulas
Given I and a, a formula is interpreted as either true or false.

Atomic formulas:

P(ti,...,t,)" % =true iff (%07 eP!

Examples:

Child(JohnSmith)'® = true since JohnSmith’® = u and Child* = {u, v}

Affects(JRA,x)!® = true since JRAZ® =w, =y and Affects’ = {(w, u)}
Propositional connectives are interpreted as usual:
(~Child(JohnSmith))’® = false
(Affects(JRA, x) A Child(JohnSmith))’® = true
(Child(JohnSmith) — —Child(JohnSmith))’® = false
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Evaluation of Formulas

Given I and a, a formula is interpreted as either true or false.

Existential quantifiers:
(Ax.Affects(JRA, x))*® = true

since there exists an assignment a extending ay such that Affects(JRA, x)'@ = true

Universal quantifiers:
(Yx.Affects(JRA, x))* @ = false

since it is not true that, for any assignment a extending ay, Affects(JRA, x)* 2 = true.
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Evaluation of Sentences

For interpreting a sentence ¢ under 7, a, the top-level assignment a is irrelevant.

Theorem 2.10: For any sentence ¢ and assignments a, a’, we have ¢/ = /@’

Example: Consider the sentence
VxVy.((JuvDisease(x) A Affects(x,y)) — (Child(y) V Teenager(y)))
Assume the interpretation 7 with D = {u, v, w} given as follows:
JuvDisease’ = {u} Child? = {w) Teenager’ =0 Affects’ = {(u, w)}

¢ without quantifiers must evaluate to true in 7 for all valuations a : {x,y} — D.
Example for a; = {x = u,y — v}

(JuvDisease(x)" 3" A Affects(x,y)' @) — (Child(y)'® v Teenager(y)*")
(true A false) — (true V false)
true
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Propositional vs. FOL Interpretations

More complicated to give meaning to FOL than to PL formulas:

JuvDisease — AffectsChild v AffectsTeenager  (PL)
Vx.Vy.((JuvDisease(x) N Affects(x,y)) — (Child(y) Vv Teenager(y))) (FOL)

PL Interpretations

® Assigns truth values to
atoms

® The truth value of complex
formulas determined by
induction

Example formula has 8 possible
interpretations and 7 models

Sebastian Rudolph, TU Dresden

FOL interpretations

® Specify the domain for
quantifiers to quantify over

® [nterpret constants,
predicates, functions

® Assign objects to variables

Example formula has co possible
interpretations and co models
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Summary and Outlook

We reviewed syntax and semantics of PL and FOL.

Logical systems can be described from two points of view:
® model theory
® proof theory

For PL, FOL, and many other logics these points of view coincide (soundness and
completeness).

PL, FOL, and many other logics are monotonic.

Open questions:
® How can we define systems other than PL and FOL? (Next session)
® What do non-monotonic logics look like? (In a few weeks)
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