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Current Seminar Plan (Maybe Subject to Change)

Date Topic Presenter

22.04. Modal Logic – Semantics Aidan

29.04. Temporal Reasoning Hamza

27.05. (!) Epistemic Logics Carlos

03.06. NMR Introduction Sepideh

17.06. (!) Default Logic Lucas

24.06. Autoepistemic Logic Abdul

01.07. Dempster Shafer Theory Luke

Note: Register seminar with examination office.
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Outline

We review some key concepts of classical logic:

• Syntax and Semantics of Propositional Logic

• Model Theory vs. Proof Theory

• Soundness and Completeness

• Syntax and Semantics of First-Order Logic
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Motivation

In Knowledge Representation and Reasoning we want to . . .

. . . formally represent a collection of propositions believed by some agent,

and to derive new information from these propositions by applying reasoning
techniques.

Logic allows us to . . .

. . . formally represent information in various logical systems,

and to draw logical inferences from given information.
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Quiz: Logic Basics

Quiz: For each of the following statements, decide whether it holds.

1. In propositional logic (PL), P→ Q is equivalent to P ∨ ¬Q.

2. In PL, if φ is a tautology and I is an interpretation, then φI = true.

3. In PL, if ∆ and Γ are sets of formulas and φ is a formula, then ∆ |= φ implies
∆ ∪ Γ |= φ.

4. In first-order logic, ¬∀x.(P(x) ∨ Q(x)) is equivalent to (∃x.¬P(x)) ∧ (∃x.¬Q(x)).

5. In first-order logic, there is a proof system with a derivation relation ⊢ that
coincides with the entailment relation |=.
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Propositional Logic
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Propositional Logic – Overview

• It is one of the simplest logics

• It can be used to write simple representations of a domain

• There exist reasoning algorithms that exhibit excellent performance in practice

• (Most of) you are already familiar with it.
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Syntax: Propositional Alphabet

1. Propositional variables (PL):
basic statements that can be true or false

2. The symbols ⊤ (“truth”) and ⊥ (“falsehood”)

3. Propositional connectives:
¬ negation (not)
∧ conjunction (and)
∨ disjunction (or)
→ implication (if . . . then)
↔ bi-directional implication (if and only if)

4. Punctuation symbols “(” and “)” can be used to avoid ambiguity
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Semantics: Interpretations

Definition 2.1 (Interpretation):
An interpretation I assigns truth values to propositional variables:

I : PL→ {true, false}

An interpretation for a (set of) formulas X interprets the propositional variables occurring
in X.

Example: An interpretation I for the formula R→ ((Q ∨ R)→ R):

RI = true

QI = false

A formula with n propositional variables has 2n interpretations.
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Semantics of Formulas

The truth value of the propositional variables in a formula α determines the truth value of
α.

R→ ((Q ∨ R)→ R)

R (Q ∨ R)→ R

Q ∨ R

Q R

R

RI = true

QI = false

(Q ∨ R)I = true

((Q ∨ R)→ R)I = true

(R→ ((Q ∨ R)→ R))I = true

Definition 2.2 (Model): We say that I is a model of α iff I makes α true.
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Using Propositional Logic for KR
Propositional Logic provides a simple KR language.

To write down a representation of our domain do the following:

1. Identify the relevant propositions:

Benign The tumour is benign

Metastasis The tumour has metastasis

Stage4 The tumour is in Stage 4

. . .

2. Express our knowledge using a set of formulas (knowledge base):

Benign

Benign↔ ¬Metastasis

Stage4→ Metastasis

. . .
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Reasoning with a Knowledge Base

Knowledge Base K1:

Benign ∧ Stage4

Benign↔ ¬Metastasis

Stage4→ Metastasis

. . .

Knowledge Base K2:

Benign

Benign↔ ¬Metastasis

Stage4→ Metastasis

. . .

We would like to answer the following questions:

1. Do our KBs make sense?
K1 seems contradictory

2. What is the implicit knowledge we can derive from our KBs?
K2 seems to imply the formula ¬Stage4

Sebastian Rudolph, TU Dresden Seminar Logic-Based Knowledge Representation Slide 12 of 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


Model Theory – Reasoning

Definition 2.3 (Semantic Consequence): Let Γ be a set of formulas and α a formula.
We write Γ ⊨ α if and only if every model of Γ is also a model of α.

Definition 2.4 (Tautology): Let α be some formula.
We write ⊨ α if and only if α is true in every interpretation.

Example from K2:
{B, B↔ ¬M, S4→ M} ⊨ ¬S4

• Let I be a model of {B, B↔ ¬M, S4→ M}.

• Then (B)I = true, (M)I = false.

• Since (S4→ M)I = true and (M)I = false, it must hold that (S4)I = false.

• Thus (¬S4)I = true.
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Proof Theory

In proof theory:

• We do not consider the semantical interpretation of logical formulas.

• Rather, we are concerned with a syntactic description of our logical system . . .

• that allows to put our logic on an axiomatic foundations and to

• syntactically derive formulas from a set of axioms and inference rules.

• Some well-known systems include: Hilbert Systems, Natural Deduction and
Tableau Calculi.

Definition 2.5 (Syntactic Consequence): Let Γ be a set of formulas and α a formula.
We write Γ ⊢ α if and only if there is a derivation with conclusion α from Γ.

Definition 2.6 (Theorem): If Γ = ∅, we write ⊢ α and we say that α is a theorem.
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Proof Theory – Hilbert System
Axioms:

Axiom 1. ϕ→ (ψ→ ϕ)
Axiom 2. (ϕ→ (ψ→ χ))→ ((ϕ→ ψ)→ (ϕ→ χ))
Axiom 3. (¬ϕ→ ¬ψ)→ ((¬ϕ→ ψ)→ ϕ)

Inference Rule: (Modus Ponens): From ϕ→ ψ and ϕ, infer ψ.

Example: Show ϕ→ ψ,ψ→ χ ⊢ ϕ→ χ

(ψ→ χ)→ (ϕ→ (ψ→ χ)) Ax1[ϕ/ψ→ χ;ψ/ϕ]

(ϕ→ (ψ→ χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) Ax2

ψ→ χ Premise

ϕ→ (ψ→ χ) MP(1, 3)

(ϕ→ ψ)→ (ϕ→ χ) MP(2, 4)

ϕ→ ψ Premise

ϕ→ χ MP(5, 6)
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Soundness and Completeness

For propositional logic (and other logical systems) we can show that the semantic and
syntactic entailment coincide. That is: the relations “⊨” and “⊢” coincide.

We distinguish both directions:

Theorem 2.7 (Soundness): Γ ⊢ α⇒ Γ ⊨ α

Theorem 2.8 (Completeness): Γ ⊨ α⇒ Γ ⊢ α

[For proofs, see for instance: Dirk van Dalen, Logic and Structure (2008)]
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Monotonicity

What does it mean for a logic to be monotone? Monotonicity is a property of the
consequence relation:

Definition 2.9 (Monotonicity): Let Σ and ∆ be sets of formulas and H be a formula.
If Σ ⊨ H and Σ ⊆ ∆ then ∆ ⊨ H.

Example: Let Σ = {p, q}, H = p,∆ = {p, q, r}. What if ∆ = {p, q,¬p}?

What would we have to do to show that some entailment relation is non-monotonic?
Find an example where:

• Σ ⊨ H

• Σ ⊆ ∆

• But: ∆ ⊭ H
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Limitations of Propositional Logic

Consider the following argument:

All men are mortal

Socrates is a man

∴ Socrates is mortal

The argument seems to be valid.

However, in propositional logic:

p

q

̸∴ r

Sebastian Rudolph, TU Dresden Seminar Logic-Based Knowledge Representation Slide 18 of 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


First-Order Logic
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FOL Syntax: Symbols

A first-order alphabet consists of

• Predicate Symbols, each with a fixed arity

Arthritis Unary Predicate

Affects Binary Predicate

• Function symbols, each with a fixed arity

ssnOf Unary Function Symbol

• Constants: JohnSmith, MaryJones, JRA

• Variables: x, y, z

• Propositional connectives {¬,∨,∧,→,↔}
• Symbols ⊤ and ⊥

• The universal and existential quantifiers: ∀, ∃

Sebastian Rudolph, TU Dresden Seminar Logic-Based Knowledge Representation Slide 20 of 32

https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph


FOL Syntax: Terms

Terms stand for specific objects:

• Variables are terms

• Constants are terms

• The application of a function symbol to terms leads to a term

JohnSmith stands for the person named John Smith

ssnOf (JohnSmith) stands for the ssn number of John Smith

x stands for some object (undetermined)

ssnOf (x) stands for some ssn number (undetermined)
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FOL Syntax: Formulas

An atomic formula (atom) is of the form

P(t1, . . . , tn) P is an n-ary predicate, ti are terms

Examples:

Child(JohnSmith) John Smith is a child

JuvenileArthritis(JRA) JRA is a juvenile arthritis

Affects(JRA, JohnSmith) John Smith is affected by JRA

An atom represents a simple statement:

• similar to atoms in propositional logic,

• but first-order atoms have finer-grained structure.
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FOL Syntax: Formulas
Complex formulas:
• Every atom is a formula

Child(JohnSmith), Affects(x, JohnSmith)

• ⊤ and ⊥ are formulas
• If α is a formula, then ¬α is a formula

¬Affects(JRA, JohnSmith), ¬Child(y)

• If α, β are formulas, (α ◦ β) is a formula for {◦ ∈ ∧,∨,→,↔}

Affects(JRA, y)→ Child(y) ∨ Teenager(y)

• If α a formula and x a variable, (∀x.α), (∃x.α) are formulas

∀y.(Affects(JRA, y))→ Child(y) ∨ Teenager(y))

¬(∃x.∃y(JuvArthritis(x) ∧ Affects(x, y) ∧ Adult(y)))
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FOL Syntax: Formulas

Intuitively, a free variable occurrence in a formula is one that does not appear in the
scope of a quantifier:

Affects(JRA, y)→ Child(y) ∨ Teenager(y)

∃x.
(
JuvArthritis(x) ∧ Affects(x, y) ∧ Adult(y)

)
∃x.
(
JuvArthritis(x)

)
∧ Affects(x, y) ∧ Adult(y)

A variable occurrence is bound if it is not free.

A sentence is a formula with no free variable occurrences.
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Example FOL Sentences

A juvenile disease affects only children or teenagers:

∀x.∀y.((JuvDisease(x) ∧ Affects(x, y))→ Child(y) ∨ Teenager(y))

Children and teenagers are not adults:

∀x.((Child(x) ∨ Teenager(x))→ ¬Adult(x))
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FOL Interpretations
As in PL, the meaning of sentences is given by interpretations.

An interpretation is a pair I = ⟨D, ·I⟩ where:
• D is a non-empty set, called the interpretation domain.

D = {u, v, w, s}

• ·I is the interpretation function and it associates:
– With each constant c an object cI ∈ D.

JohnSmithI = u MaryWilliamsI = v JRAI = w . . .

– With each n-ary function symbol f , a function f I : Dn → D.

ssnOf I = {u 7→ s, . . .}

– With each n-ary predicate symbol P, a relation PI ⊆ Dn.

ChildI = {u, v} AdultI = ∅ AffectsI = {⟨w, u⟩, . . .}
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Evaluation of Terms

Terms are interpreted as elements of the interpretation domain.

We have already seen how to interpret constants

JohnSmithI = u MaryWilliamsI = v JRAI = w . . .

To interpret terms, we need to interpret (free) variables by means of a mapping from
variables to domain elements (an assignment)

Given I and assignment a, we can interpret any term.
Let I be as before and a map x to u:

JohnSmithI,a = u

xI,a = u

(ssnOf (x))I,a = ssnOf I(u) = s
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Evaluation of Formulas
Given I and a, a formula is interpreted as either true or false.

Atomic formulas:

P(ti, . . . , tn)I,a = true iff ⟨tI,ai , . . . , tI,an ⟩ ∈ PI

Examples:

Child(JohnSmith)I,a = true since JohnSmithI,a = u and ChildI = {u, v}

Affects(JRA, x)I,a = true since JRAI,a = w, xI,a = u and AffectsI = {⟨w, u⟩}

Propositional connectives are interpreted as usual:

(¬Child(JohnSmith))I,a = false

(Affects(JRA, x) ∧ Child(JohnSmith))I,a = true

(Child(JohnSmith)→ ¬Child(JohnSmith))I,a = false
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Evaluation of Formulas

Given I and a, a formula is interpreted as either true or false.

Existential quantifiers:
(∃x.Affects(JRA, x))I,a∅ = true

since there exists an assignment a extending a∅ such that Affects(JRA, x)I,a = true

Universal quantifiers:
(∀x.Affects(JRA, x))I,a∅ = false

since it is not true that, for any assignment a extending a∅, Affects(JRA, x)I,a = true.
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Evaluation of Sentences
For interpreting a sentence φ under I, a, the top-level assignment a is irrelevant.

Theorem 2.10: For any sentence φ and assignments a, a′, we have φI,a = φI,a
′

.

Example: Consider the sentence

∀x∀y.((JuvDisease(x) ∧ Affects(x, y))→ (Child(y) ∨ Teenager(y)))

Assume the interpretation I with D = {u, v, w} given as follows:

JuvDiseaseI = {u} ChildI = {w} TeenagerI = ∅ AffectsI = {⟨u, w⟩}

φ without quantifiers must evaluate to true in I for all valuations a : {x, y} → D.
Example for a1 = {x 7→ u, y 7→ v}:

(JuvDisease(x)I,a1 ∧ Affects(x, y)I,a1 )→ (Child(y)I,a1 ∨ Teenager(y)I,a1 )

(true ∧ false)→ (true ∨ false)

true
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Propositional vs. FOL Interpretations

More complicated to give meaning to FOL than to PL formulas:

JuvDisease→ AffectsChild ∨ AffectsTeenager (PL)

∀x.∀y.((JuvDisease(x) ∧ Affects(x, y))→ (Child(y) ∨ Teenager(y))) (FOL)

PL Interpretations

• Assigns truth values to
atoms

• The truth value of complex
formulas determined by
induction

Example formula has 8 possible
interpretations and 7 models

FOL interpretations

• Specify the domain for
quantifiers to quantify over

• Interpret constants,
predicates, functions

• Assign objects to variables

Example formula has ∞ possible
interpretations and ∞ models
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Summary and Outlook

We reviewed syntax and semantics of PL and FOL.

Logical systems can be described from two points of view:

• model theory

• proof theory

For PL, FOL, and many other logics these points of view coincide (soundness and
completeness).

PL, FOL, and many other logics are monotonic.

Open questions:

• How can we define systems other than PL and FOL? (Next session)

• What do non-monotonic logics look like? (In a few weeks)
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