Concurrency Theory

Lecture 2: Towards Bisimulation

Stephan Mennicke Knowledge-Based Systems Group

April 5, 2023

Review

- Functions vs. processes
- LTSs for specification of process behaviors
- Now: P_1 vs. Q_1

Equality 1.0: Graph Theory – Isomorphisms?

We use edge-labeled directed graphs to depict LTSs anyway.

Definition 1 (Process Isomorphism) Let $\mathcal{T} = (Pr, Act, \rightarrow)$ be an LTS. A bijective function $f: Pr \rightarrow Pr$ is called an isomorphism if $p \xrightarrow{a} q$ if, and only if, $f(p) \xrightarrow{a} f(q)$. Process $P \in Pr$ is isomorphic to process $Q \in Pr$, denoted by $P \cong Q$, if there is an isomorphism f such that f(P) = Q.

Remarks:

- single LTS ${\mathcal T}$ assumed; alternative: relation between two LTSs
- define equalities (equivalences, resp.) on process levels;
- call a relation $R \subseteq Pr \times Pr$ a process relation;

Equality 1.0: Graph Isomorphisms in Action

Neither P_1 nor Q_1 are isomorphic to R_1 . How do we prove it?

Equality 1.0: Proof Methods for \cong

Definition 2 (Isomorphism between LTSs) Let $\mathcal{T} = (Pr_1, Act, \rightarrow_1)$ and $\mathcal{U} = (Pr_2, Act, \rightarrow_2)$ be LTSs. \mathcal{T} is isomorphic to \mathcal{U} if there is a bijective function $f : Pr_1 \rightarrow Pr_2$, such that $p \xrightarrow{a}_1 q$ if, and only if, $f(p) \xrightarrow{a}_2 f(q)$.

Theorem 3

Two processes P and Q are isomorphic if, and only if, their induced LTSs are (i. e., if T(P) and T(Q) are isomorphic).

- To prove that $P \cong Q$, it suffices to give an isomorphism.
- To disprove the relation, the existence of one must be excluded.

Equality 1.0: Graph Isomorphisms in Action (1/2)

We show that $P_1 \not\cong R_1$. Consider $\mathcal{T}(P_1)$ with 4 states and $\mathcal{T}(R_1)$ having 5 states. There cannot by a bijection between these two LTSs. By Theorem 3, $P_1 \not\cong R_1$.

Equality 1.0: Issues with \cong as Process Equality

Sequential Process Equality Issue

Not Compositional w.r.t. External Nondeterminism

To be seen later...

Conclusion

```
Process isomorphism (\cong) is too strong.
```


Equality 2.0: Automata Theory to the Rescue, Again?

Owing to the resemblence of LTSs to Nondeterministic Finite Automata (NFA), we may adopt NFA's language equivalence for processes.

To check whether P and Q are equivalent, consider $\mathcal{T}(P)$ and $\mathcal{T}(Q)$ as NFAs $\mathcal{A}(P)$ and $\mathcal{A}(Q)$ as follows:

- Initial state of $\mathcal{A}(P)$ is P and that of $\mathcal{A}(Q)$ is Q;
- All states are final states;

This translation does not generally work. Why?

In the finite-state case, the words accepted by $\mathcal{A}(P)$ are called the traces of P. P and Q are trace equivalent if they have the same traces.

We use this resemblence but need to get rid of the finite-state assumption.

Equality 2.0: Trace Equivalence

As for automata, the labeled transition relation can be generalized to words/traces:

- $P \stackrel{\varepsilon}{\Rightarrow} P$ where ε is the empty word;
- if $P \stackrel{\sigma}{\Rightarrow} P'$ and $P' \stackrel{a}{\rightarrow} P''$, then $P \stackrel{\sigma a}{\Longrightarrow} P''$.

Notations like $P \stackrel{\sigma}{\Rightarrow}$ and $P \stackrel{q}{\Rightarrow}$ can also be generalized.

Definition 4 (Trace Equivalence) Let $\mathcal{T} = (Pr, Act, \rightarrow)$ be an LTS and $P \in Pr$. The set of traces of P, denoted by $\operatorname{Tr}(P)$, is defined as the set $\{\sigma \in Act^* \mid \exists P' \in Pr : P \xrightarrow{\sigma} P'\}$. P and Q are trace equivalent, denoted $P \equiv_{\operatorname{Tr}} Q$, if, and only if, $\operatorname{Tr}(P) = \operatorname{Tr}(Q)$.

Equality 2.0: Trace Equivalence in Action

How to prove or disprove trace equivalence? What is the complexity of doing so?

Equality 2.0: Trace Equivalence is Pspace-complete (1/2)

Of course, we consider the finite-state case only: For finite-state processes P and Q, check whether $P\equiv_{\rm Tr} Q$ holds.

Membership in Pspace is immediate from the following observation:

- Tr(P) is a regular language;
- for languages $\mathbb{L}_1, \mathbb{L}_2, \mathbb{L}_1 = \mathbb{L}_2 \iff \mathbb{L}_1 \subseteq \mathbb{L}_2$ and $\mathbb{L}_2 \subseteq \mathbb{L}_1$ and $\mathbb{L}_1 \subseteq \mathbb{L}_2 \iff \mathbb{L}_1 \cap \overline{\mathbb{L}_2} = \emptyset$.
- Take $\mathcal{A}(P)$ and $\mathcal{A}(Q)$;
- construct the complement of $\mathcal{A}(Q)$ (yields exponential blow-up);
- to keep up with Pspace, compute the complement of $\mathcal{A}(Q)$ on-demand.

Equality 2.0: Trace Equivalence is Pspace-complete (2/2)

Hardness by reduction from language equivalence of NFAs:

- Turn an NFA $\mathcal{A} = (\mathcal{Q}, q_0, F, \delta)$ into an LTS; (how do we do that?)
- Do the same for NFA \mathcal{B} ;
- Now \mathcal{A} and \mathcal{B} accept the same language if, and only if, their respective processes (represented inside the translated LTSs) are trace equivalent.

Equality 2.0: Issues with Trace Equivalence

Deadlocks

What if a means *insert money* and b is for *receive product*? We say that Q_4 is a blocked process or a deadlock.

First Attempt

- A process P is a deadlock if for all $a \in Act, P \not\xrightarrow{q}$.
- We aim for process relations that preserve traces as well as deadlocks. But how?
- **Completed Traces Approach**
- A completed trace is a trace that may end in a deadlock.

14

Equality 2.1: Completed Trace Equivalence

Definition 5 (Completed Trace Equivalence)

A trace $\sigma \in \operatorname{Tr}(P)$ is a completed trace of P if there is a P' such that $P \stackrel{\sigma}{\Rightarrow} P'$ and P' is a deadlock. The set of all completed traces is denoted by $\operatorname{CTr}(P)$. Processes P and Q are completed trace equivalent, denoted $P \equiv_{\operatorname{CTr}} Q$, if (1) $P \equiv_{\operatorname{Tr}} Q$ and (2) $\operatorname{CTr}(P) = \operatorname{CTr}(Q)$.

Theorem 6 $\equiv_{CTr} \subseteq \equiv_{Tr}$.

Proof. Immediate consequence of the definition of \equiv_{CTr} .

Equality 2.1: Completed Traces in Action

16

On Good Process Relations

Trace Preservation: traces formalize the sequential (observable) runs of a system. If two systems differ in their observable runs, they also interact differently with their environment.

Deadlock-Sensitiveness: we want to distinguish processes that have different deadlocks since deadlocks are those processes with which no environment may interact.

Compositional Reasoning: in order to formalize this point properly, we need some more tools first (lecture 4 on CCS).

A good process relation \equiv preserves traces, is deadlock-sensitive, and admits compositional reasoning.

The first two items imply that $\equiv \subseteq \equiv_{CTr}$ must hold. Is \equiv_{CTr} a good process relation?

Bisimilarity – A Good Process Relation

Definition 7 (Bisimilarity) A process relation R is a bisimulation if, whenever P R Q,

- for all $P' \in Pr$ and $a \in Act$, $P \xrightarrow{a} P'$ implies there is a $Q' \in Pr$ such that $Q \xrightarrow{a} Q'$ and P' R Q'; and
- for all $Q' \in Pr$ and $a \in Act$, $Q \xrightarrow{a} Q'$ implies there is a $P' \in Pr$ such that $P \xrightarrow{a} P'$ and P' R Q'.

Processes P and Q are bisimilar, written $P \Leftrightarrow Q$, if there is a bisimulation R such that P R Q. Process relation \Leftrightarrow is also called bisimilarity.

Theorem 8 \Leftrightarrow is a good process relation. For now, $\Leftrightarrow \subseteq \equiv_{CTr}$.

Bisimilarity in Action

19

Bisimilarity - Some Useful Results

Theorem 9 ⇔ is an equivalence relation.

Theorem 10 \Leftrightarrow is the largest bisimulation.

Theorem 11 A process relation R is a bisimulation up to \rightleftharpoons if, whenever P R Q, we have for all $a \in Act$:

1. $P \xrightarrow{a} P'$ implies there is a $Q' \in Pr$ such that $Q \xrightarrow{a} Q'$ and $P' \Leftrightarrow R \Leftrightarrow Q'$, and 2. $Q \xrightarrow{a} Q'$ implies there is a $P' \in Pr$ such that $P \xrightarrow{a} P'$ and $P' \Leftrightarrow R \Leftrightarrow Q'$.

If R is a bisimulation up to \Leftrightarrow , then $R \subseteq \Leftrightarrow$.

Concurrency Theory – Towards Bisimulation

20

Summary

- (Completed) trace equivalence;
- Bisimilarity as a good equivalence

Outlook

- A lot of examples
- The bisimulation proof method (coinduction)
- More on coinduction
- Fixpoints and bisimulation games

