
Concurrency Theory

Lecture 2: Towards Bisimulation

Stephan Mennicke
Knowledge-Based Systems Group

April 5, 2023



Review

• Functions vs. processes
• LTSs for specification of process behaviors

Now: P1 vs. Q1

P1 P2
1e

P3

req-coffee

coffee

P4

req-tea

tea

Q1

Q2

1e

Q3

1e

Q4

req-tea

tea

Q5
req-coffee

coffee

Concurrency Theory – Towards Bisimulation 2



Equality 1.0: Graph Theory – Isomorphisms?

We use edge-labeled directed graphs to depict LTSs anyway.

Definition 1 (Process Isomorphism)
Let T = (Pr ,Act ,−→) be an LTS. A bijective function f : Pr → Pr is called an
isomorphism if p a−→ q if, and only if, f(p) a−→ f(q). Process P ∈ Pr is isomorphic to
process Q ∈ Pr , denoted by P ∼= Q, if there is an isomorphism f such that f(P ) = Q.

Remarks:

• single LTS T assumed; alternative: relation between two LTSs

• define equalities (equivalences, resp.) on process levels;

• call a relation R ⊆ Pr × Pr a process relation;

Concurrency Theory – Towards Bisimulation 3



Equality 1.0: Graph Isomorphisms in Action

P1 P2
a

P3

b

P4

c

Q1 Q2
a

Q3

c

Q4

b

R1

R2

a

R3

a

R4
b

R5c

Neither P1 nor Q1 are isomorphic to R1. How do we prove it?

Concurrency Theory – Towards Bisimulation 4



Equality 1.0: Proof Methods for ∼=

Definition 2 (Isomorphism between LTSs)
Let T = (Pr1,Act ,−→1) and U = (Pr2,Act ,−→2) be LTSs. T is isomorphic to U if
there is a bijective function f : Pr1 → Pr2, such that p a−→1 q if, and only if,
f(p)

a−→2 f(q).

Theorem 3

Two processes P and Q are isomorphic if, and only if, their induced LTSs are (i. e., if
T (P ) and T (Q) are isomorphic).

• To prove that P ∼= Q, it suffices to give an isomorphism.

• To disprove the relation, the existence of one must be excluded.

Concurrency Theory – Towards Bisimulation 5



Equality 1.0: Graph Isomorphisms in Action (1/2)

P1 P2
a

P3

b

P4

c

Q1 Q2
a

Q3

c

Q4

b

R1

R2

a

R3

a

R4
b

R5c

We show that P1 ̸∼= R1. Consider T (P1) with 4 states and T (R1) having 5 states.
There cannot by a bijection between these two LTSs. By Theorem 3, P1 ̸∼= R1.

Concurrency Theory – Towards Bisimulation 6



Equality 1.0: Issues with ∼= as Process Equality

Sequential Process Equality Issue

P1 P2

a

b

̸∼= Q0 Q1a
Q2

b

a

Not Compositional w. r. t. External Nondeterminism

To be seen later. . .

Conclusion

Process isomorphism (∼=) is too strong.

Concurrency Theory – Towards Bisimulation 7



Equality 2.0: Automata Theory to the Rescue, Again?

Owing to the resemblence of LTSs to Nondeterministic Finite Automata (NFA), we may
adopt NFA’s language equivalence for processes.

To check whether P and Q are equivalent, consider T (P ) and T (Q) as NFAs A(P )

and A(Q) as follows:

• Initial state of A(P ) is P and that of A(Q) is Q;
• All states are final states;

This translation does not generally work. Why?

In the finite-state case, the words accepted by A(P ) are called the traces of P . P and
Q are trace equivalent if they have the same traces.

We use this resemblence but need to get rid of the finite-state assumption.

Concurrency Theory – Towards Bisimulation 8



Equality 2.0: Trace Equivalence

As for automata, the labeled transition relation can be generalized to words/traces:

• P
ε
=⇒ P where ε is the empty word;

• if P σ
=⇒ P ′ and P ′ a−→ P ′′, then P

σa
==⇒ P ′′.

Notations like P
σ
=⇒ and P ̸ σ=⇒ can also be generalized.

Definition 4 (Trace Equivalence)
Let T = (Pr ,Act ,−→) be an LTS and P ∈ Pr . The set of traces of P , denoted by
Tr(P ), is defined as the set {σ ∈ Act∗ | ∃P ′ ∈ Pr : P

σ
=⇒ P ′}. P and Q are trace

equivalent, denoted P ≡Tr Q, if, and only if, Tr(P ) = Tr(Q).

P1 P2

a

b

≡Tr Q0 Q1a
Q2

b

aConcurrency Theory – Towards Bisimulation 9



Equality 2.0: Trace Equivalence in Action

P1 P2
a

P3

b

P4

c

Q1 Q2
a

Q3

c

Q4

b

R1

R2

a

R3

a

R4
b

R5c

How to prove or disprove trace equivalence? What is the complexity of doing so?

Concurrency Theory – Towards Bisimulation 10



Equality 2.0: Trace Equivalence is Pspace-complete (1/2)

Of course, we consider the finite-state case only: For finite-state processes P and Q,
check whether P ≡Tr Q holds.

Membership in Pspace is immediate from the following observation:

• Tr(P ) is a regular language;

• for languages L1,L2, L1 = L2 ⇐⇒ L1 ⊆ L2 and L2 ⊆ L1 and
L1 ⊆ L2 ⇐⇒ L1 ∩ L2 = ∅.

• Take A(P ) and A(Q);

• construct the complement of A(Q) (yields exponential blow-up);

• to keep up with Pspace, compute the complement of A(Q) on-demand.

Concurrency Theory – Towards Bisimulation 11



Equality 2.0: Trace Equivalence is Pspace-complete (2/2)

Hardness by reduction from language equivalence of NFAs:

• Turn an NFA A = (Q, q0, F, δ) into an LTS; (how do we do that?)

• Do the same for NFA B;

• Now A and B accept the same language if, and only if, their respective processes
(represented inside the translated LTSs) are trace equivalent.

Concurrency Theory – Towards Bisimulation 12



Equality 2.0: Issues with Trace Equivalence

Deadlocks

P1 P2a
P3

b
≡Tr Q1 Q2a

Q3
b

Q4

a

What if a means insert money and b is for receive product?

We say that Q4 is a blocked process or a deadlock.

Concurrency Theory – Towards Bisimulation 13



Formalizing Deadlocks

First Attempt

A process P is a deadlock if for all a ∈ Act , P ̸ a−→.

We aim for process relations that preserve traces as well as deadlocks. But how?

Completed Traces Approach

A completed trace is a trace that may end in a deadlock.

Concurrency Theory – Towards Bisimulation 14



Equality 2.1: Completed Trace Equivalence

Definition 5 (Completed Trace Equivalence)
A trace σ ∈ Tr(P ) is a completed trace of P if there is a P ′ such that P σ

=⇒ P ′ and P ′

is a deadlock. The set of all completed traces is denoted by CTr(P ). Processes P and
Q are completed trace equivalent, denoted P ≡CTr Q, if (1) P ≡Tr Q and (2)
CTr(P ) = CTr(Q).

Theorem 6
≡CTr ⊆ ≡Tr.

Proof.
Immediate consequence of the definition of ≡CTr.

Concurrency Theory – Towards Bisimulation 15



Equality 2.1: Completed Traces in Action

P1 P2a
P3

b
≡Tr

̸≡CTr

Q1 Q2a
Q3

b

Q4

a

P1 P2
a

P3

b

P4

c

Q1 Q2
a

Q3

c

Q4

b

R1

R2

a

R3

a

R4
b

R5
c

Concurrency Theory – Towards Bisimulation 16



On Good Process Relations

Trace Preservation: traces formalize the sequential (observable) runs of a system. If
two systems differ in their observable runs, they also interact differently
with their environment.

Deadlock-Sensitiveness: we want to distinguish processes that have different
deadlocks since deadlocks are those processes with which no environment
may interact.

Compositional Reasoning: in order to formalize this point properly, we need some
more tools first (lecture 4 on CCS).

A good process relation ≡ preserves traces, is deadlock-sensitive, and admits
compositional reasoning.

The first two items imply that ≡ ⊆ ≡CTr must hold. Is ≡CTr a good process relation?

Concurrency Theory – Towards Bisimulation 17



Bisimilarity – A Good Process Relation

Definition 7 (Bisimilarity)
A process relation R is a bisimulation if, whenever P R Q,

• for all P ′ ∈ Pr and a ∈ Act , P a−→ P ′ implies there is a Q′ ∈ Pr such that
Q

a−→ Q′ and P ′ RQ′; and

• for all Q′ ∈ Pr and a ∈ Act , Q a−→ Q′ implies there is a P ′ ∈ Pr such that
P

a−→ P ′ and P ′ RQ′.

Processes P and Q are bisimilar, written P - Q, if there is a bisimulation R such that
P R Q. Process relation - is also called bisimilarity.

Theorem 8
- is a good process relation. For now, - ⊆ ≡CTr.

Concurrency Theory – Towards Bisimulation 18



Bisimilarity in Action

P1 P2a
P3

b
≡Tr

̸≡CTr

̸-

Q1 Q2a
Q3

b

Q4

a

P1 P2
a

P3

b

P4

c

Q1 Q2
a

Q3

c

Q4

b

R1

R2

a

R3

a

R4
b

R5
c

Concurrency Theory – Towards Bisimulation 19



Bisimilarity – Some Useful Results

Theorem 9
- is an equivalence relation.

Theorem 10
- is the largest bisimulation.

Theorem 11
A process relation R is a bisimulation up to - if, whenever P R Q, we have for all
a ∈ Act :

1. P
a−→ P ′ implies there is a Q′ ∈ Pr such that Q a−→ Q′ and P ′ - R - Q′, and

2. Q
a−→ Q′ implies there is a P ′ ∈ Pr such that P a−→ P ′ and P ′ - R - Q′.

If R is a bisimulation up to -, then R ⊆-.

Concurrency Theory – Towards Bisimulation 20



Summary

• (Completed) trace equivalence;

• Bisimilarity as a good equivalence

P1 P2
1e

P3

req-coffee

coffee

P4

req-tea

tea

Q1

Q2

1e

Q3

1e

Q4

req-tea

tea

Q5
req-coffee

coffee

Concurrency Theory – Towards Bisimulation 21



Outlook

• A lot of examples

• The bisimulation proof method (coinduction)

• More on coinduction

• Fixpoints and bisimulation games

Concurrency Theory – Towards Bisimulation 22


