Concurrency Theory

Lecture 2: Towards Bisimulation

Stephan Mennicke
Knowledge-Based Systems Group

April 5, 2023



Review

e Functions vs. processes

e LTSs for specification of process behaviors

Now: P vs. Q1
coffee P;
A]-coffee
P, 1_€, P,
Y—tea
tea Py

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Q@1

reg-tea

9 ——>

1€
tea
coffee
1€

4

3 —> Qs
req-coffee

Concurrency Theory — Towards Bisimulation

'y

International Center
for Computational Logic



Equality 1.0: Graph Theory — Isomorphisms?

We use edge-labeled directed graphs to depict LTSs anyway.

Definition 1 (Process Isomorphism
Let 7 = (Pr, Act,—) be an LTS. A bijective function f : Pr — Pr is called an

isomorphism if p = ¢ if, and only if, f(p) = f(q). Process P € Pr is isomorphic to
process () € Pr, denoted by P = @, if there is an isomorphism f such that f(P) = Q.

Remarks:

e single LTS 7 assumed; alternative: relation between two LTSs
e define equalities (equivalences, resp.) on process levels;
e call a relation R C Pr x Pr a process relation;

EEIII:\;‘ENREII':I!AE International Center
DRESDEN

"y
Concurrency Theory — Towards Bisimulation fv‘ for Computational Logic



Equality 1.0: Graph Isomorphisms in Action

Ry —— Ry
S
Ry
X

Ry —— It

Neither P, nor ()1 are isomorphic to R;. How do we prove it?

I
DRESDEN Concurrency Theory — Towards Bisimulation

International Center
for Computational Logic



Equality 1.0: Proof Methods for =

Definition 2 (Isomorphism between LTSs)
Let 7 = (Pry, Act,—1) and U = (Pro, Act,—2) be LTSs. T is isomorphic to U if

there is a bijective function f : Pri — Pro, such that p % ¢ if, and only if,

f(p) 52 flq).

Theorem 3

Two processes P and () are isomorphic if, and only if, their induced LTSs are (i. e., if
T(P) and T (Q) are isomorphic).

e To prove that P = (@, it suffices to give an isomorphism.

e To disprove the relation, the existence of one must be excluded.

TECHNISCHE International Center

UNIVERSITAT - . 3 : !
DRESDEN Concurrency Theory — Towards Bisimulation A for Compational Logic



Equality 1.0: Graph Isomorphisms in Action (1/2)

We show that P, 22 R;. Consider 7 (P;) with 4 states and 7 (RR;) having 5 states.
There cannot by a bijection between these two LTSs. By Theorem 3, P; % R;.

TECHNISCHE International Center

UNIVERSITAT . . 3 : !
DRESDEN Concurrency Theory — Towards Bisimulation A for Computationol Logie



Equality 1.0: Issues with = as Process Equality

Sequential Process Equality Issue

a
~ A

P Py % QOT’Ql

~_

b

Not Compositional w.r.t. External Nondeterminism
To be seen later. ..
Conclusion

Process isomorphism (=) is too strong.

I
DRESDEN Concurrency Theory — Towards Bisimulation

~ A
Q2
)

International Center
for Computational Logic



Equality 2.0: Automata Theory to the Rescue, Again?

Owing to the resemblence of LTSs to Nondeterministic Finite Automata (NFA), we may

adopt NFA's language equivalence for processes.

To check whether P and () are equivalent, consider 7 (P) and 7 () as NFAs A(P)
and A(Q) as follows:

e Initial state of A(P) is P and that of A(Q) is Q;
o All states are final states;

This translation does not generally work. Why?

In the finite-state case, the words accepted by A(P) are called the traces of P. P and

() are trace equivalent if they have the same traces.

We use this resemblence but need to get rid of the finite-state assumption.

TECHNISCHE International Center

UNIVERSITAT - . 3 : !
DRESDEN Concurrency Theory — Towards Bisimulation A for Computational Logie



Equality 2.0: Trace Equivalence

As for automata, the labeled transition relation can be generalized to words/traces:

e P = P where ¢ is the empty word;

a oa

e ifP= P and PP % P”, then P = P".

Notations like P = and P # can also be generalized.

Definition 4 (Trace Equivalence)
Let 7 = (Pr, Act,—) be an LTS and P € Pr. The set of traces of P, denoted by

Tr(P), is defined as the set {o € Act* | AP’ € Pr: P % P'}. P and Q are trace
equivalent, denoted P =1, @, if, and only if, Tr(P) = Tr(Q).

a b
_—— o ~— A
P Py =Tr Qo —a’ Q1 Q2
TECHNISCHE ~ F——"e International Center

UNIVERSITAT . . 3 : !
DRESDEN Corrurrency Theory — Towards Bisimulation 4 T for Computational Logie



Equality 2.0: Trace Equivalence in Action

Ry

e
PN

R2—>R4

Ry —— I

How to prove or disprove trace equivalence? What is the complexity of doing so?

I
DRESDEN Concurrency Theory — Towards Bisimulation

. International Center
for Computational Logic



Equality 2.0: Trace Equivalence is Pspace-complete (1/2)

Of course, we consider the finite-state case only: For finite-state processes P and (@),
check whether P =1, () holds.

Membership in Pspace is immediate from the following observation:

e Tr(P) is a regular language;

for languages L1, 1Ly, L1 =Ly <= IL; C Ly and Ly, C L and
Li Cly <~— lefQ:Q).

Take A(P) and A(Q);

construct the complement of A(Q) (yields exponential blow-up);

to keep up with Pspace, compute the complement of A(Q) on-demand.

TECHNISCHE International Center 11

UNIVERSITAT . . 3 : !
DRESDEN Concurrency Theory — Towards Bisimulation A for Computational Logie



Equality 2.0: Trace Equivalence is Pspace-complete (2/2)

Hardness by reduction from language equivalence of NFAs:

e Turn an NFA A = (9, qo, F,¢) into an LTS; (how do we do that?)
e Do the same for NFA J;

e Now A and B accept the same language if, and only if, their respective processes
(represented inside the translated LTSs) are trace equivalent.

TECHNISCHE International Center

UNIVERSITAT . . 3 : ! 12
DRESDEN Concurrency Theory — Towards Bisimulation A for Comptational Logic



Equality 2.0: Issues with Trace Equivalence

Deadlocks

v
P P P =Tr Q1

Qa4

a b a

What if a means insert money and b is for receive product?

We say that ()4 is a blocked process or a deadlock.

I
DRESDEN Concurrency Theory — Towards Bisimulation

Q2

@3

International Center
for Computational Logic

13



Formalizing Deadlocks

First Attempt
A process P is a deadlock if for all @ € Act, P 2.

We aim for process relations that preserve traces as well as deadlocks. But how?

Completed Traces Approach

A completed trace is a trace that may end in a deadlock.

TECHNISCHE International Center
UNIVERSITAT . . 3 : '
DRESDEN Concurrency Theory — Towards Bisimulation ecenettationati oolc

14



Equality 2.1: Completed Trace Equivalence

DRESDEN

Definition 5 (Completed Trace Equivalence)
A trace o € Tr(P) is a completed trace of P if there is a P’ such that P = P’ and P’

is a deadlock. The set of all completed traces is denoted by CTr(P). Processes P and
@ are completed trace equivalent, denoted P =ct, @, if (1) P =1, Q and (2)
CTr(P) = CTr(Q).

Theorem 6
=CTr g =Tr-

Proof.

Immediate consequence of the definition of =c,. O

TECHNISCHE International Center
UNIVERSITAT . . 3 : '
Concurrency Theory — Towards Bisimulation A for Computational Logie

15



Equality 2.1: Completed Traces in Action

Q4
?_éCTr V
P ——P ; Py =Tr Q1 7 Q2 - Q3
b
P3 3 RQ —_— R4
V S
P—2>p Q1 —— Qs Ry
Py Q4 Rs —— R;

TECHNISCHE International Center

UNIVERSITAT . . : )
DRESDE Concurrency Theory — Towards Bisimulation ﬁ for Computational Logic

16



On Good Process Relations

Trace Preservation: traces formalize the sequential (observable) runs of a system. If
two systems differ in their observable runs, they also interact differently
with their environment.

Deadlock-Sensitiveness: we want to distinguish processes that have different
deadlocks since deadlocks are those processes with which no environment
may interact.

Compositional Reasoning: in order to formalize this point properly, we need some
more tools first (lecture 4 on CCS).

A good process relation = preserves traces, is deadlock-sensitive, and admits

compositional reasoning.
The first two items imply that = C =1, must hold. Is =cT, a good process relation?

RN e International Center
UNIVERSITAT . . : : ' 1
DRESDEN Concurrency Theory — Towards Bisimulation A for Computational Logie 7



Bisimilarity — A Good Process Relation

Definition 7 (Bisimilarity)
A process relation R is a bisimulation if, whenever P R Q,
e forall P’ € Prand a € Act, P = P’ implies there is a Q' € Pr such that
Q% Q and P’ RQ’; and
o forall Q' € Prand a € Act, Q = Q' implies there is a P’ € Pr such that
P% Pland PPRQ.
Processes P and () are bisimilar, written P < @, if there is a bisimulation R such that

P R Q. Process relation < is also called bisimilarity.

Theorem 8
< s a good process relation. For now, & C =c1,.

TECHNISCHE International Center 18

UNIVERSITAT - . 3 : !
DRESDEN Concurrency Theory — Towards Bisimulation A for Computational Logic



Bisimilarity in Action

pl_a,p2

S
NN

Py Q4 R3—C>R5

EE{(I:\;‘ENR;[':I'PAE ﬂ International Center
DRESDEN Concurrency Theory — Towards Bisimulation for Computational Logic

19



Bisimilarity — Some Useful Results
Theorem 9

< s an equivalence relation.

Theorem 10
< fs the largest bisimulation.

Theorem 11
A process relation R is a bisimulation up to < if, whenever P R (), we have for all

a € Act:

1. P 2% P’ implies there is a Q' € Pr such that Q = Q' and P’ < R < @', and
2. Q% Q' implies there is a P' € Pr such that P % P’ and P' < R < Q'.

If R is a bisimulation up to <, then R C<.

TECHNISCHE International Center
UNIVERSITAT . . 3 : '
DRESDEN Concurrency Theory — Towards Bisimulation cenettationati colc

20



Summary

o (Completed) trace equivalence;

e Bisimilarity as a good equivalence

req-tea
2 —> (4

coffee Ps 1€
tea
req-coffee Q
2 —>1€ P '
! 2 coffee
req-tea
\ 1€
Q3 ——> Qs
tea Py reg-coffee

TECHNISCHE International Center
UNIVERSITAT . . 3 : ' 21
DRESDEN Concurrency Theory — Towards Bisimulation cenettationati colc



Outlook

A lot of examples

The bisimulation proof method (coinduction)

e More on coinduction

Fixpoints and bisimulation games

TECHNISCHE

UNIVERSITAT . .
DRESDEN Concurrency Theory — Towards Bisimulation

i

International Center
for Computational Logic

22



