Concurrency Theory

Lecture 7: Abstraction from Internal Activities

Stephan Mennicke Knowledge-Based Systems Group

June 6, 2023

Recap: CCS

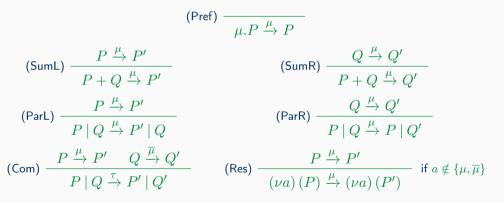
 $\mathcal{N} = \{a, b, c, \ldots\} \dots \text{set of names } (\tau \notin \mathcal{N})$ $\overline{\mathcal{N}} = \{\overline{\alpha} \mid \alpha \in \mathcal{N}\} \dots \text{set of conames}$ $Act = \mathcal{N} \cup \overline{\mathcal{N}} \cup \{\tau\} \text{ (note, there is no } \overline{\tau} \text{ and for } \alpha \in Act \setminus \{\tau\}, \ \overline{\overline{\alpha}} = \alpha)$ The set of (CCS) processes Pr is defined by $P \quad ::= \quad \mathbf{0} \mid \mu . P \mid P + P \mid P \mid P \mid (\nu a)(P) \mid K$

where $\mu \in Act$, $a \in \mathcal{N}$, and $K \in \mathcal{K}$.

Define the language CCS parameterized over Act, \mathcal{K} , and $\mathcal{T}_{\mathcal{K}} \subseteq \mathcal{K} \times Act \times Pr$. $CCS(Act, \mathcal{K}, \mathcal{T}_{\mathcal{K}})$

Recap: SOS of CCS

 $\mathsf{CCS}(Act, \mathcal{K}, \mathcal{T}_{\mathcal{K}})$ specifies an LTS $(Pr, Act, \to \cup \mathcal{T}_{\mathcal{K}})$ where $\to \subseteq (Pr \setminus \mathcal{K}) \times Act \times Pr$ is the smallest relation satisfying the following rules:



Concurrency Theory - Internal Actions

An Example

Let $P = (\nu a) (b.\overline{a} | a.c)$ and consider processes $Q_1 = b.\tau.c$ and $Q_2 = b.c$. Referring to τ as a silent – unobservable or internal – action, let bisimilarity appear as insufficient.

In analogy, consider the programs

print(5)

 ${\sf and}$

if true then print(5) else skip

Resolution: weak LTSs, weak transitions, weak bisimilarity

Concurrency Theory – Internal Actions

Abstraction from Internal Activities

Definition 1 (Weak Transitions)

- Relation \implies is the reflexive and transitive closure of $\stackrel{\tau}{\rightarrow}$.
- For all $\mu \in Act$, relation $\stackrel{\mu}{\Rightarrow}$ is the composition of the relations \implies , $\stackrel{\mu}{\rightarrow}$, and \implies ; meaning $P \stackrel{\mu}{\Rightarrow} P'$ holds if there are P_1 and P_2 such that $P \implies P_1 \stackrel{\mu}{\rightarrow} P_2 \implies P'$.

Definition 2 An LTS is *image-finite under weak transitions* if $\stackrel{\mu}{\Rightarrow}$ is image-finite.

Consider CCS with every constant having only finitely many transitions. Is the resulting LTS image-finite under weak transitions?

Weak Bisimulation

Weak bisimilarity is defined in terms of weak transitions. The bisimilarity we already know (\Leftrightarrow) is called *strong bisimilarity*, in analogy.

Definition 3 (Weak Bisimilarity) A process relation \mathcal{R} is a *weak bisimulation* if, whenever $P \mathcal{R} Q$, we have

- 1. for all P' and $l \in Act \setminus \{\tau\}$ with $P \stackrel{l}{\Rightarrow} P'$, there is Q' such that $Q \stackrel{l}{\Rightarrow} Q'$ and $P' \mathcal{R} Q'$:
- 2. for all P' with $P \xrightarrow{\tau} P'$, there is Q' such that $Q \Longrightarrow Q'$ and $P' \mathcal{R} Q'$:
- 3. the converse of 1 and 2 on actions from Q.

The union of all weak bisimulations is called *weak bisimilarity* (\cong_w) .

Weak Bisimulation: Alternative Definitions

Define

$$\stackrel{\hat{\mu}}{\Longrightarrow} := \begin{cases} \stackrel{\mu}{\Longrightarrow} & \text{if } \mu \neq \tau \\ \implies & \text{otherwise.} \end{cases}$$

Lemma 4

A process relation \mathcal{R} is a weak bisimulation if, and only if, if $P \mathcal{R} Q$ implies

- 1. whenever $P \stackrel{\hat{\mu}}{\Rightarrow} P'$, there is Q' such that $Q \stackrel{\hat{\mu}}{\Rightarrow} Q'$ and $P' \mathcal{R} Q'$;
- 2. the converse on actions from Q.

Lemma 5 A process relation \mathcal{R} is a weak bisimulation if, and only if, if $P \mathcal{R} Q$ implies

- 1. whenever $P \xrightarrow{\mu} P'$, there is Q' such that $Q \xrightarrow{\hat{\mu}} Q'$ and $P' \mathcal{R} Q'$;
- 2. the converse on actions from Q.

Definition 6 We say that $n \in \mathbb{N}$ is the *weight of* $P \Longrightarrow P'$ if there are P_1, \ldots, P_n with $P_n = P'$ and $P \xrightarrow{\tau} P_1 \xrightarrow{\tau} \ldots \xrightarrow{\tau} P_n$.

Weak Bisimilarity & Congruence

Lemma 7

 ${\bf x}_w$ is preserved by the operators of parallel composition, restriction, and prefixing.

 ${ \leftrightarrows _w}$ is not preserved by the choice operator.

Definition 8 (Rooted Weak Bisimilarity) Two processes P and Q are *rooted weakly bisimilar*, denoted $P \approx_r Q$, if for all $\mu \in Act$, (1) for all P' with $P \xrightarrow{\mu} P'$ there is Q' such that $Q \xrightarrow{\mu} Q'$ and $P' \approx_w Q'$; (2) the converse on actions from Q.

Lemma 9 $\Leftrightarrow \subsetneq \Leftrightarrow_r \subsetneq \Leftrightarrow_w$.

Theorem 10 \Leftrightarrow_r is a congruence for CCS.

Concurrency Theory – Internal Actions

Definition 11 (Divergent Process) A process P diverges, written $P \Uparrow$, if it has an ω -trace under τ . That is, divergence is the largest predicate \Uparrow on processes such that $P \Uparrow$ implies $P \xrightarrow{\tau} P'$ and $P' \in \Uparrow$.

An LTS is divergence-free of no process of the LTS diverges.

Outlook

- Alternative approach to behavioral equivalence: testing
- Alternative model: Carl Adam Petri and his Nets
- What is decidable about Petri nets?
- Enhancing CCS: the π -calculus

