
Computational
Logic ∴ Group

Hannes Strass (based on slides by Bernardo Cuenca Grau, Ian Horrocks, Przemysław Wałȩga)
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Description Logics – Syntax and Semantics I
Lecture 4, 11th Nov 2024 // Foundations of Knowledge Representation, WS 2024/25

https://iccl.inf.tu-dresden.de/web/Foundations_of_Knowledge_Representation_(WS2024)

Motivation

Undecidable
Non-Elementary decidable

. . .
ExpTime
PSpace
NP
P

FOL sat
. . .
. . .

Datalog sat
. . .

PL sat
Horn PL sat

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 2 of 25 Computational
Logic ∴ Group

Motivation
Many KR applications do not require the full power of FOL
What can we leave out?
• Key reasoning problems should become decidable
• Sufficient expressive power to model application domain

Description Logics are a family of FOL fragments that meet theserequirements for many applications:
• Underlying formalisms of modern ontology languages
• Widely used in bio-medical information systems
• Core component of the Semantic Web

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 3 of 25 Computational
Logic ∴ Group

Motivation
Many KR applications do not require the full power of FOL
What can we leave out?
• Key reasoning problems should become decidable
• Sufficient expressive power to model application domain
Description Logics are a family of FOL fragments that meet theserequirements for many applications:
• Underlying formalisms of modern ontology languages
• Widely used in bio-medical information systems
• Core component of the Semantic Web

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 3 of 25 Computational
Logic ∴ Group

Motivation
Recall our arthritis example:
• A juvenile disease affects only children or teenagers
• Children and teenagers are not adults
• A person is either a child, a teenager, or an adult
• Juvenile arthritis is a kind of arthritis and a juvenile disease
• Every kind of arthritis damages some joint

The important types of objects are given by unary FOL predicates:
juvenile disease, child, teenager, adult, . . .

The types of relationships are given by binary FOL predicates:
affects, damages, . . .

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 4 of 25 Computational
Logic ∴ Group

Motivation
Recall our arthritis example:
• A juvenile disease affects only children or teenagers
• Children and teenagers are not adults
• A person is either a child, a teenager, or an adult
• Juvenile arthritis is a kind of arthritis and a juvenile disease
• Every kind of arthritis damages some joint
The important types of objects are given by unary FOL predicates:

juvenile disease, child, teenager, adult, . . .

The types of relationships are given by binary FOL predicates:
affects, damages, . . .

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 4 of 25 Computational
Logic ∴ Group

Motivation
Recall our arthritis example:
• A juvenile disease affects only children or teenagers
• Children and teenagers are not adults
• A person is either a child, a teenager, or an adult
• Juvenile arthritis is a kind of arthritis and a juvenile disease
• Every kind of arthritis damages some joint
The important types of objects are given by unary FOL predicates:

juvenile disease, child, teenager, adult, . . .
The types of relationships are given by binary FOL predicates:

affects, damages, . . .

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 4 of 25 Computational
Logic ∴ Group

Motivation
The vocabulary of a Description Logic is composed of
• Unary FOL predicates

Arthritis, Child, . . .
• Binary FOL predicates

Affects, Damages, . . .
• FOL constants

JohnSmith, MaryJones, JRA, . . .

We are already restricting the expressive power of FOL
• No function symbols (of positive arity)
• No predicates of arity greater than 2

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 5 of 25 Computational
Logic ∴ Group

Motivation
The vocabulary of a Description Logic is composed of
• Unary FOL predicates

Arthritis, Child, . . .
• Binary FOL predicates

Affects, Damages, . . .
• FOL constants

JohnSmith, MaryJones, JRA, . . .
We are already restricting the expressive power of FOL
• No function symbols (of positive arity)
• No predicates of arity greater than 2

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 5 of 25 Computational
Logic ∴ Group

Motivation
Let us take a closer look at the FOL formulas for our example:

∀x.(JuvDis(x) → ∀y.(Affects(x, y) → Child(y)∨ Teen(y)))
∀x.(Child(x)∨ Teen(x) → ¬Adult(x))

∀x.(Person(x) → Child(x)∨ Teen(x)∨ Adult(x))
∀x.(JuvArthritis(x) → Arthritis(x)∧ JuvDis(x))

∀x.(Arthritis(x) → ∃y.(Damages(x, y)∧ Joint(y)))
We can find several regularities in these formulas:
• There is an outermost universal quantifier on a single variable x
• The formulas can be split into two parts by the implication symbol

Each part is a formula with one free variable
• Atomic formulas involving a binary predicate occur only quantified in asyntactically restricted way.

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 6 of 25 Computational
Logic ∴ Group

Complexity
Undecidable

Non-Elementary decidable
. . .

NExpTime
ExpTime
PSpace
NP
P

FOL-3 sat
. . .
. . .

FOL-2 sat
Datalog sat

. . .
PL sat

Horn PL sat
Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 7 of 25 Computational

Logic ∴ Group

Motivation
Consider as an example one of our formulas:

∀x.((Child(x)∨ Teen(x)) → ¬Adult(x))

Let us look at all its sub-formulas at each side of the implication
Child(x) Set of all children
Teen(x) Set of all teenagers

Child(x)∨ Teen(x) Set of all objects that are children or teenagers
Adult(x) Set of all adults

¬Adult(x) Set of all non-adults
Important observations concerning formulas with one free variable:

• Some are atomic (e.g., Child(x))do not contain other formulas as subformulas• Others are complex (e.g., Child(x)∨ Teen(x))

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 8 of 25 Computational
Logic ∴ Group

Motivation
Consider as an example one of our formulas:

∀x.((Child(x)∨ Teen(x)) → ¬Adult(x))
Let us look at all its sub-formulas at each side of the implication

Child(x) Set of all children
Teen(x) Set of all teenagers

Child(x)∨ Teen(x) Set of all objects that are children or teenagers
Adult(x) Set of all adults

¬Adult(x) Set of all non-adults

Important observations concerning formulas with one free variable:

• Some are atomic (e.g., Child(x))do not contain other formulas as subformulas• Others are complex (e.g., Child(x)∨ Teen(x))

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 8 of 25 Computational
Logic ∴ Group

Motivation
Consider as an example one of our formulas:

∀x.((Child(x)∨ Teen(x)) → ¬Adult(x))
Let us look at all its sub-formulas at each side of the implication

Child(x) Set of all children
Teen(x) Set of all teenagers

Child(x)∨ Teen(x) Set of all objects that are children or teenagers
Adult(x) Set of all adults

¬Adult(x) Set of all non-adults
Important observations concerning formulas with one free variable:
• Some are atomic (e.g., Child(x))

do not contain other formulas as subformulas• Others are complex (e.g., Child(x)∨ Teen(x))

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 8 of 25 Computational
Logic ∴ Group

Motivation
Consider as an example one of our formulas:

∀x.((Child(x)∨ Teen(x)) → ¬Adult(x))
Let us look at all its sub-formulas at each side of the implication

Child(x) Set of all children
Teen(x) Set of all teenagers

Child(x)∨ Teen(x) Set of all objects that are children or teenagers
Adult(x) Set of all adults

¬Adult(x) Set of all non-adults
Important observations concerning formulas with one free variable:
• Some are atomic (e.g., Child(x))do not contain other formulas as subformulas

• Others are complex (e.g., Child(x)∨ Teen(x))

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 8 of 25 Computational
Logic ∴ Group

Motivation
Consider as an example one of our formulas:

∀x.((Child(x)∨ Teen(x)) → ¬Adult(x))
Let us look at all its sub-formulas at each side of the implication

Child(x) Set of all children
Teen(x) Set of all teenagers

Child(x)∨ Teen(x) Set of all objects that are children or teenagers
Adult(x) Set of all adults

¬Adult(x) Set of all non-adults
Important observations concerning formulas with one free variable:
• Some are atomic (e.g., Child(x))do not contain other formulas as subformulas• Others are complex (e.g., Child(x)∨ Teen(x))

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 8 of 25 Computational
Logic ∴ Group

Basic Definitions
Idea: Define operators for constructing complex formulas with one freevariable out of simple building blocks
Atomic Concept: Represents an atomic formula with one free variable

Child ⇝ Child(x)

Complex concepts (part 1):

• Concept Union (⊔): applies to two concepts
Child ⊔ Teen ⇝ Child(x)∨ Teen(x)

• Concept Intersection (⊓): applies to two concepts
Arthritis⊓ JuvDis ⇝ Arthritis(x)∧ JuvDis(x)

• Concept Negation (¬): applies to one concept
¬Adult ⇝ ¬Adult(x)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 9 of 25 Computational
Logic ∴ Group

Basic Definitions
Idea: Define operators for constructing complex formulas with one freevariable out of simple building blocks
Atomic Concept: Represents an atomic formula with one free variable

Child ⇝ Child(x)
Complex concepts (part 1):• Concept Union (⊔): applies to two concepts

Child ⊔ Teen ⇝ Child(x)∨ Teen(x)

• Concept Intersection (⊓): applies to two concepts
Arthritis⊓ JuvDis ⇝ Arthritis(x)∧ JuvDis(x)

• Concept Negation (¬): applies to one concept
¬Adult ⇝ ¬Adult(x)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 9 of 25 Computational
Logic ∴ Group

Basic Definitions
Idea: Define operators for constructing complex formulas with one freevariable out of simple building blocks
Atomic Concept: Represents an atomic formula with one free variable

Child ⇝ Child(x)
Complex concepts (part 1):• Concept Union (⊔): applies to two concepts

Child ⊔ Teen ⇝ Child(x)∨ Teen(x)
• Concept Intersection (⊓): applies to two concepts

Arthritis⊓ JuvDis ⇝ Arthritis(x)∧ JuvDis(x)

• Concept Negation (¬): applies to one concept
¬Adult ⇝ ¬Adult(x)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 9 of 25 Computational
Logic ∴ Group

Basic Definitions
Idea: Define operators for constructing complex formulas with one freevariable out of simple building blocks
Atomic Concept: Represents an atomic formula with one free variable

Child ⇝ Child(x)
Complex concepts (part 1):• Concept Union (⊔): applies to two concepts

Child ⊔ Teen ⇝ Child(x)∨ Teen(x)
• Concept Intersection (⊓): applies to two concepts

Arthritis⊓ JuvDis ⇝ Arthritis(x)∧ JuvDis(x)
• Concept Negation (¬): applies to one concept

¬Adult ⇝ ¬Adult(x)
Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 9 of 25 Computational

Logic ∴ Group

Motivation
Consider examples with binary predicates:

∀x.(Arthritis(x) → ∃y.(Damages(x, y)∧ Joint(y)))
∀x.(JuvDis(x) → ∀y.(Affects(x, y) → (Child(y)∨ Teen(y))))

• We have a concept and a binary predicate (called a role) mentioning theconcept’s free variable
• The role and the concept are connected via conjunction (existentialquantification) or implication (universal quantification)
• Nested sub-concepts use a fresh (existentially/universally quantified)variable, and are connected to the surrounding concept by exactly onerole atom (often called a guard)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 10 of 25 Computational
Logic ∴ Group

Motivation
Consider examples with binary predicates:

∀x.(Arthritis(x) → ∃y.(Damages(x, y)∧ Joint(y)))
∀x.(JuvDis(x) → ∀y.(Affects(x, y) → (Child(y)∨ Teen(y))))

• We have a concept and a binary predicate (called a role) mentioning theconcept’s free variable

• The role and the concept are connected via conjunction (existentialquantification) or implication (universal quantification)
• Nested sub-concepts use a fresh (existentially/universally quantified)variable, and are connected to the surrounding concept by exactly onerole atom (often called a guard)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 10 of 25 Computational
Logic ∴ Group

Motivation
Consider examples with binary predicates:

∀x.(Arthritis(x) → ∃y.(Damages(x, y)∧ Joint(y)))
∀x.(JuvDis(x) → ∀y.(Affects(x, y) → (Child(y)∨ Teen(y))))

• We have a concept and a binary predicate (called a role) mentioning theconcept’s free variable
• The role and the concept are connected via conjunction (existentialquantification) or implication (universal quantification)

• Nested sub-concepts use a fresh (existentially/universally quantified)variable, and are connected to the surrounding concept by exactly onerole atom (often called a guard)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 10 of 25 Computational
Logic ∴ Group

Motivation
Consider examples with binary predicates:

∀x.(Arthritis(x) → ∃y.(Damages(x, y)∧ Joint(y)))
∀x.(JuvDis(x) → ∀y.(Affects(x, y) → (Child(y)∨ Teen(y))))

• We have a concept and a binary predicate (called a role) mentioning theconcept’s free variable
• The role and the concept are connected via conjunction (existentialquantification) or implication (universal quantification)
• Nested sub-concepts use a fresh (existentially/universally quantified)variable, and are connected to the surrounding concept by exactly onerole atom (often called a guard)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 10 of 25 Computational
Logic ∴ Group

Basic Definitions
Atomic Role: Represents an atom with two free variables

Affects ⇝ Affects(x, y)

Complex concepts (part 2): apply to an atomic role and a concept

• Existential Restriction:
∃Damages. Joint ⇝ ∃y.(Damages(x, y)∧ Joint(y))

• Universal Restriction:
∀Affects.(Child ⊔ Teen) ⇝ ∀y.(Affects(x, y) → (Child(y)∨ Teen(y)))

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 11 of 25 Computational
Logic ∴ Group

Basic Definitions
Atomic Role: Represents an atom with two free variables

Affects ⇝ Affects(x, y)
Complex concepts (part 2): apply to an atomic role and a concept
• Existential Restriction:

∃Damages. Joint ⇝ ∃y.(Damages(x, y)∧ Joint(y))

• Universal Restriction:
∀Affects.(Child ⊔ Teen) ⇝ ∀y.(Affects(x, y) → (Child(y)∨ Teen(y)))

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 11 of 25 Computational
Logic ∴ Group

Basic Definitions
Atomic Role: Represents an atom with two free variables

Affects ⇝ Affects(x, y)
Complex concepts (part 2): apply to an atomic role and a concept
• Existential Restriction:

∃Damages. Joint ⇝ ∃y.(Damages(x, y)∧ Joint(y))
• Universal Restriction:

∀Affects.(Child ⊔ Teen) ⇝ ∀y.(Affects(x, y) → (Child(y)∨ Teen(y)))

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 11 of 25 Computational
Logic ∴ Group

ALC Concepts
ALC is the basic description logic

ALC concepts are inductively defined from atomic concepts and roles:

• Every atomic concept is a concept• ⊤ and ⊥ are concepts• If C is a concept, then ¬C is a concept• If C and D are concepts, then so are C ⊓D and C ⊔D• If C a concept and R a role, ∀R.C and ∃R.C are concepts.

Concepts describe sets of objects with certain common features:
Woman⊓ ∃hasChild.(∃hasChild.Person) Women with a grandchild

Disease⊓ ∀Affects.Child Diseases affecting only children
Person⊓ ¬∃owns.DetHouse People not owning a detached house

Man⊓ ∃hasChild.⊤ ⊓ ∀hasChild.Man Fathers having only sons
⇝ Very useful idea for Knowledge Representation

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 12 of 25 Computational
Logic ∴ Group

ALC Concepts
ALC is the basic description logic
ALC concepts are inductively defined from atomic concepts and roles:• Every atomic concept is a concept

• ⊤ and ⊥ are concepts• If C is a concept, then ¬C is a concept• If C and D are concepts, then so are C ⊓D and C ⊔D• If C a concept and R a role, ∀R.C and ∃R.C are concepts.
Concepts describe sets of objects with certain common features:
Woman⊓ ∃hasChild.(∃hasChild.Person) Women with a grandchild

Disease⊓ ∀Affects.Child Diseases affecting only children
Person⊓ ¬∃owns.DetHouse People not owning a detached house

Man⊓ ∃hasChild.⊤ ⊓ ∀hasChild.Man Fathers having only sons
⇝ Very useful idea for Knowledge Representation

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 12 of 25 Computational
Logic ∴ Group

ALC Concepts
ALC is the basic description logic
ALC concepts are inductively defined from atomic concepts and roles:• Every atomic concept is a concept• ⊤ and ⊥ are concepts

• If C is a concept, then ¬C is a concept• If C and D are concepts, then so are C ⊓D and C ⊔D• If C a concept and R a role, ∀R.C and ∃R.C are concepts.
Concepts describe sets of objects with certain common features:
Woman⊓ ∃hasChild.(∃hasChild.Person) Women with a grandchild

Disease⊓ ∀Affects.Child Diseases affecting only children
Person⊓ ¬∃owns.DetHouse People not owning a detached house

Man⊓ ∃hasChild.⊤ ⊓ ∀hasChild.Man Fathers having only sons
⇝ Very useful idea for Knowledge Representation

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 12 of 25 Computational
Logic ∴ Group

ALC Concepts
ALC is the basic description logic
ALC concepts are inductively defined from atomic concepts and roles:• Every atomic concept is a concept• ⊤ and ⊥ are concepts• If C is a concept, then ¬C is a concept

• If C and D are concepts, then so are C ⊓D and C ⊔D• If C a concept and R a role, ∀R.C and ∃R.C are concepts.
Concepts describe sets of objects with certain common features:
Woman⊓ ∃hasChild.(∃hasChild.Person) Women with a grandchild

Disease⊓ ∀Affects.Child Diseases affecting only children
Person⊓ ¬∃owns.DetHouse People not owning a detached house

Man⊓ ∃hasChild.⊤ ⊓ ∀hasChild.Man Fathers having only sons
⇝ Very useful idea for Knowledge Representation

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 12 of 25 Computational
Logic ∴ Group

ALC Concepts
ALC is the basic description logic
ALC concepts are inductively defined from atomic concepts and roles:• Every atomic concept is a concept• ⊤ and ⊥ are concepts• If C is a concept, then ¬C is a concept• If C and D are concepts, then so are C ⊓D and C ⊔D

• If C a concept and R a role, ∀R.C and ∃R.C are concepts.
Concepts describe sets of objects with certain common features:
Woman⊓ ∃hasChild.(∃hasChild.Person) Women with a grandchild

Disease⊓ ∀Affects.Child Diseases affecting only children
Person⊓ ¬∃owns.DetHouse People not owning a detached house

Man⊓ ∃hasChild.⊤ ⊓ ∀hasChild.Man Fathers having only sons
⇝ Very useful idea for Knowledge Representation

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 12 of 25 Computational
Logic ∴ Group

ALC Concepts
ALC is the basic description logic
ALC concepts are inductively defined from atomic concepts and roles:• Every atomic concept is a concept• ⊤ and ⊥ are concepts• If C is a concept, then ¬C is a concept• If C and D are concepts, then so are C ⊓D and C ⊔D• If C a concept and R a role, ∀R.C and ∃R.C are concepts.

Concepts describe sets of objects with certain common features:
Woman⊓ ∃hasChild.(∃hasChild.Person) Women with a grandchild

Disease⊓ ∀Affects.Child Diseases affecting only children
Person⊓ ¬∃owns.DetHouse People not owning a detached house

Man⊓ ∃hasChild.⊤ ⊓ ∀hasChild.Man Fathers having only sons
⇝ Very useful idea for Knowledge Representation

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 12 of 25 Computational
Logic ∴ Group

ALC Concepts
ALC is the basic description logic
ALC concepts are inductively defined from atomic concepts and roles:• Every atomic concept is a concept• ⊤ and ⊥ are concepts• If C is a concept, then ¬C is a concept• If C and D are concepts, then so are C ⊓D and C ⊔D• If C a concept and R a role, ∀R.C and ∃R.C are concepts.
Concepts describe sets of objects with certain common features:
Woman⊓ ∃hasChild.(∃hasChild.Person) Women with a grandchild

Disease⊓ ∀Affects.Child Diseases affecting only children
Person⊓ ¬∃owns.DetHouse People not owning a detached house

Man⊓ ∃hasChild.⊤ ⊓ ∀hasChild.Man Fathers having only sons
⇝ Very useful idea for Knowledge Representation

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 12 of 25 Computational
Logic ∴ Group

General Concept Inclusion Axioms
Recall our example formulas:

∀x.(JuvDis(x) → ∀y.(Affects(x, y) → Child(y)∨ Teen(y)))
∀x.(Child(x)∨ Teen(x) → ¬Adult(x))

∀x.(Person(x) → Child(x)∨ Teen(x)∨ Adult(x))
∀x.(JuvArthritis(x) → Arthritis(x)∧ JuvDis(x))

∀x.(Arthritis(x) → ∃y.(Damages(x, y)∧ Joint(y))

They are of the following form, with αC(x) and αD(x) corresponding to ALCconcepts C and D:
∀x.(αC(x) → αD(x))

Such sentences are ALC General Concept Inclusion Axioms (GCIs)
C ⊑ D

where C and D are ALC-concepts

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 13 of 25 Computational
Logic ∴ Group

General Concept Inclusion Axioms
Recall our example formulas:

∀x.(JuvDis(x) → ∀y.(Affects(x, y) → Child(y)∨ Teen(y)))
∀x.(Child(x)∨ Teen(x) → ¬Adult(x))

∀x.(Person(x) → Child(x)∨ Teen(x)∨ Adult(x))
∀x.(JuvArthritis(x) → Arthritis(x)∧ JuvDis(x))

∀x.(Arthritis(x) → ∃y.(Damages(x, y)∧ Joint(y))
They are of the following form, with αC(x) and αD(x) corresponding to ALCconcepts C and D:

∀x.(αC(x) → αD(x))
Such sentences are ALC General Concept Inclusion Axioms (GCIs)

C ⊑ D

where C and D are ALC-concepts
Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 13 of 25 Computational

Logic ∴ Group

General Concept Inclusion Axioms

∀x.(JuvDis(x) →
∀y.(Affects(x, y) → Child(y)∨ Teen(y))) ⇝

JuvDis ⊑ ∀Affects.(Child ⊔ Teen)

∀x.(Child(x)∨ Teen(x) → ¬Adult(x)) ⇝

Child ⊔ Teen ⊑ ¬Adult

∀x.(Person(x) → Child(x)∨ Teen(x)∨ Adult(x)) ⇝

Person ⊑ Child ⊔ Teen⊔ Adult

∀x.(JuvArth(x) → Arth(x)∧ JuvDis(x)) ⇝

JuvArth ⊑ Arth⊓ JuvDis

∀x.(Arth(x) → ∃y.(Damages(x, y)∧ Joint(y))) ⇝

Arth ⊑ ∃Damages. Joint
Note that we often use C ≡ D as an abbreviation for a symmetrical pair ofGCIs C ⊑ D and D ⊑ C, e.g.:

Arth⊓ JuvDis ⊑ JuvArth

JuvArth ⊑ Arth⊓ JuvDis

}
⇝ JuvArth ≡ Arth⊓ JuvDis

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 14 of 25 Computational
Logic ∴ Group

General Concept Inclusion Axioms

∀x.(JuvDis(x) →
∀y.(Affects(x, y) → Child(y)∨ Teen(y))) ⇝ JuvDis ⊑ ∀Affects.(Child ⊔ Teen)

∀x.(Child(x)∨ Teen(x) → ¬Adult(x)) ⇝

Child ⊔ Teen ⊑ ¬Adult

∀x.(Person(x) → Child(x)∨ Teen(x)∨ Adult(x)) ⇝

Person ⊑ Child ⊔ Teen⊔ Adult

∀x.(JuvArth(x) → Arth(x)∧ JuvDis(x)) ⇝

JuvArth ⊑ Arth⊓ JuvDis

∀x.(Arth(x) → ∃y.(Damages(x, y)∧ Joint(y))) ⇝

Arth ⊑ ∃Damages. Joint
Note that we often use C ≡ D as an abbreviation for a symmetrical pair ofGCIs C ⊑ D and D ⊑ C, e.g.:

Arth⊓ JuvDis ⊑ JuvArth

JuvArth ⊑ Arth⊓ JuvDis

}
⇝ JuvArth ≡ Arth⊓ JuvDis

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 14 of 25 Computational
Logic ∴ Group

General Concept Inclusion Axioms

∀x.(JuvDis(x) →
∀y.(Affects(x, y) → Child(y)∨ Teen(y))) ⇝ JuvDis ⊑ ∀Affects.(Child ⊔ Teen)

∀x.(Child(x)∨ Teen(x) → ¬Adult(x)) ⇝ Child ⊔ Teen ⊑ ¬Adult
∀x.(Person(x) → Child(x)∨ Teen(x)∨ Adult(x)) ⇝

Person ⊑ Child ⊔ Teen⊔ Adult

∀x.(JuvArth(x) → Arth(x)∧ JuvDis(x)) ⇝

JuvArth ⊑ Arth⊓ JuvDis

∀x.(Arth(x) → ∃y.(Damages(x, y)∧ Joint(y))) ⇝

Arth ⊑ ∃Damages. Joint
Note that we often use C ≡ D as an abbreviation for a symmetrical pair ofGCIs C ⊑ D and D ⊑ C, e.g.:

Arth⊓ JuvDis ⊑ JuvArth

JuvArth ⊑ Arth⊓ JuvDis

}
⇝ JuvArth ≡ Arth⊓ JuvDis

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 14 of 25 Computational
Logic ∴ Group

General Concept Inclusion Axioms

∀x.(JuvDis(x) →
∀y.(Affects(x, y) → Child(y)∨ Teen(y))) ⇝ JuvDis ⊑ ∀Affects.(Child ⊔ Teen)

∀x.(Child(x)∨ Teen(x) → ¬Adult(x)) ⇝ Child ⊔ Teen ⊑ ¬Adult
∀x.(Person(x) → Child(x)∨ Teen(x)∨ Adult(x)) ⇝ Person ⊑ Child ⊔ Teen⊔ Adult

∀x.(JuvArth(x) → Arth(x)∧ JuvDis(x)) ⇝

JuvArth ⊑ Arth⊓ JuvDis

∀x.(Arth(x) → ∃y.(Damages(x, y)∧ Joint(y))) ⇝

Arth ⊑ ∃Damages. Joint
Note that we often use C ≡ D as an abbreviation for a symmetrical pair ofGCIs C ⊑ D and D ⊑ C, e.g.:

Arth⊓ JuvDis ⊑ JuvArth

JuvArth ⊑ Arth⊓ JuvDis

}
⇝ JuvArth ≡ Arth⊓ JuvDis

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 14 of 25 Computational
Logic ∴ Group

General Concept Inclusion Axioms

∀x.(JuvDis(x) →
∀y.(Affects(x, y) → Child(y)∨ Teen(y))) ⇝ JuvDis ⊑ ∀Affects.(Child ⊔ Teen)

∀x.(Child(x)∨ Teen(x) → ¬Adult(x)) ⇝ Child ⊔ Teen ⊑ ¬Adult
∀x.(Person(x) → Child(x)∨ Teen(x)∨ Adult(x)) ⇝ Person ⊑ Child ⊔ Teen⊔ Adult

∀x.(JuvArth(x) → Arth(x)∧ JuvDis(x)) ⇝ JuvArth ⊑ Arth⊓ JuvDis

∀x.(Arth(x) → ∃y.(Damages(x, y)∧ Joint(y))) ⇝

Arth ⊑ ∃Damages. Joint
Note that we often use C ≡ D as an abbreviation for a symmetrical pair ofGCIs C ⊑ D and D ⊑ C, e.g.:

Arth⊓ JuvDis ⊑ JuvArth

JuvArth ⊑ Arth⊓ JuvDis

}
⇝ JuvArth ≡ Arth⊓ JuvDis

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 14 of 25 Computational
Logic ∴ Group

General Concept Inclusion Axioms

∀x.(JuvDis(x) →
∀y.(Affects(x, y) → Child(y)∨ Teen(y))) ⇝ JuvDis ⊑ ∀Affects.(Child ⊔ Teen)

∀x.(Child(x)∨ Teen(x) → ¬Adult(x)) ⇝ Child ⊔ Teen ⊑ ¬Adult
∀x.(Person(x) → Child(x)∨ Teen(x)∨ Adult(x)) ⇝ Person ⊑ Child ⊔ Teen⊔ Adult

∀x.(JuvArth(x) → Arth(x)∧ JuvDis(x)) ⇝ JuvArth ⊑ Arth⊓ JuvDis

∀x.(Arth(x) → ∃y.(Damages(x, y)∧ Joint(y))) ⇝ Arth ⊑ ∃Damages. Joint

Note that we often use C ≡ D as an abbreviation for a symmetrical pair ofGCIs C ⊑ D and D ⊑ C, e.g.:
Arth⊓ JuvDis ⊑ JuvArth

JuvArth ⊑ Arth⊓ JuvDis

}
⇝ JuvArth ≡ Arth⊓ JuvDis

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 14 of 25 Computational
Logic ∴ Group

General Concept Inclusion Axioms

∀x.(JuvDis(x) →
∀y.(Affects(x, y) → Child(y)∨ Teen(y))) ⇝ JuvDis ⊑ ∀Affects.(Child ⊔ Teen)

∀x.(Child(x)∨ Teen(x) → ¬Adult(x)) ⇝ Child ⊔ Teen ⊑ ¬Adult
∀x.(Person(x) → Child(x)∨ Teen(x)∨ Adult(x)) ⇝ Person ⊑ Child ⊔ Teen⊔ Adult

∀x.(JuvArth(x) → Arth(x)∧ JuvDis(x)) ⇝ JuvArth ⊑ Arth⊓ JuvDis

∀x.(Arth(x) → ∃y.(Damages(x, y)∧ Joint(y))) ⇝ Arth ⊑ ∃Damages. Joint
Note that we often use C ≡ D as an abbreviation for a symmetrical pair ofGCIs C ⊑ D and D ⊑ C, e.g.:

Arth⊓ JuvDis ⊑ JuvArth

JuvArth ⊑ Arth⊓ JuvDis

}
⇝ JuvArth ≡ Arth⊓ JuvDis

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 14 of 25 Computational
Logic ∴ Group

Terminological Statements
GCIs allow us to represent a surprising variety of terminological statements:
• Sub-type statements

∀x.(JuvArth(x) → Arth(x)) ⇝ JuvArth ⊑ Arth

• Full definitions:
∀x.(JuvArth(x) ↔ Arth(x) ∧ JuvDis(x)) ⇝ JuvArth ≡ Arth⊓ JuvDis

• Disjointness statements:
∀x.(Child(x) → ¬Adult(x)) ⇝ Child ⊑ ¬Adult

• Covering statements:
∀x.(Person(x) → Adult(x) ∨ Child(x)) ⇝ Person ⊑ Adult ⊔ Child

• Type (domain and range) restrictions:
∀x.(∀y.(Affects(x, y) → Arth(x) ∧ Person(y))) ⇝ ∃Affects.⊤ ⊑ Arth

⊤ ⊑ ∀Affects.Person

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 15 of 25 Computational
Logic ∴ Group

Terminological Statements
GCIs allow us to represent a surprising variety of terminological statements:
• Sub-type statements

∀x.(JuvArth(x) → Arth(x)) ⇝ JuvArth ⊑ Arth

• Full definitions:
∀x.(JuvArth(x) ↔ Arth(x) ∧ JuvDis(x)) ⇝ JuvArth ≡ Arth⊓ JuvDis

• Disjointness statements:
∀x.(Child(x) → ¬Adult(x)) ⇝ Child ⊑ ¬Adult

• Covering statements:
∀x.(Person(x) → Adult(x) ∨ Child(x)) ⇝ Person ⊑ Adult ⊔ Child

• Type (domain and range) restrictions:
∀x.(∀y.(Affects(x, y) → Arth(x) ∧ Person(y))) ⇝ ∃Affects.⊤ ⊑ Arth

⊤ ⊑ ∀Affects.Person

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 15 of 25 Computational
Logic ∴ Group

Terminological Statements
GCIs allow us to represent a surprising variety of terminological statements:
• Sub-type statements

∀x.(JuvArth(x) → Arth(x)) ⇝ JuvArth ⊑ Arth

• Full definitions:
∀x.(JuvArth(x) ↔ Arth(x) ∧ JuvDis(x)) ⇝ JuvArth ≡ Arth⊓ JuvDis

• Disjointness statements:
∀x.(Child(x) → ¬Adult(x)) ⇝ Child ⊑ ¬Adult

• Covering statements:
∀x.(Person(x) → Adult(x) ∨ Child(x)) ⇝ Person ⊑ Adult ⊔ Child

• Type (domain and range) restrictions:
∀x.(∀y.(Affects(x, y) → Arth(x) ∧ Person(y))) ⇝ ∃Affects.⊤ ⊑ Arth

⊤ ⊑ ∀Affects.Person

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 15 of 25 Computational
Logic ∴ Group

Terminological Statements
GCIs allow us to represent a surprising variety of terminological statements:
• Sub-type statements

∀x.(JuvArth(x) → Arth(x)) ⇝ JuvArth ⊑ Arth

• Full definitions:
∀x.(JuvArth(x) ↔ Arth(x) ∧ JuvDis(x)) ⇝ JuvArth ≡ Arth⊓ JuvDis

• Disjointness statements:
∀x.(Child(x) → ¬Adult(x)) ⇝ Child ⊑ ¬Adult

• Covering statements:
∀x.(Person(x) → Adult(x) ∨ Child(x)) ⇝ Person ⊑ Adult ⊔ Child

• Type (domain and range) restrictions:
∀x.(∀y.(Affects(x, y) → Arth(x) ∧ Person(y))) ⇝ ∃Affects.⊤ ⊑ Arth

⊤ ⊑ ∀Affects.Person

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 15 of 25 Computational
Logic ∴ Group

Terminological Statements
GCIs allow us to represent a surprising variety of terminological statements:
• Sub-type statements

∀x.(JuvArth(x) → Arth(x)) ⇝ JuvArth ⊑ Arth

• Full definitions:
∀x.(JuvArth(x) ↔ Arth(x) ∧ JuvDis(x)) ⇝ JuvArth ≡ Arth⊓ JuvDis

• Disjointness statements:
∀x.(Child(x) → ¬Adult(x)) ⇝ Child ⊑ ¬Adult

• Covering statements:
∀x.(Person(x) → Adult(x) ∨ Child(x)) ⇝ Person ⊑ Adult ⊔ Child

• Type (domain and range) restrictions:
∀x.(∀y.(Affects(x, y) → Arth(x) ∧ Person(y))) ⇝ ∃Affects.⊤ ⊑ Arth

⊤ ⊑ ∀Affects.Person
Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 15 of 25 Computational

Logic ∴ Group

Concept Inclusion Axioms & Definitions
Why call C ⊑ D a concept inclusion axiom?
• Intuitively, every object belonging to C should belong also to D

• States that C is more specific than D
Why call it a general concept inclusion axiom?

• It may be interesting to consider restricted forms of inclusion• E.g., axioms where the l.h.s. is atomic are sometimes called definitions:

– A concept definition specifies necessary and sufficient conditions forinstances, e.g.:
JuvArth ≡ Arth⊓ JuvDis

– A primitive concept definition specifies only necessary conditions forinstances, e.g.:
Arth ⊑ ∃Damages. Joint

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 16 of 25 Computational
Logic ∴ Group

Concept Inclusion Axioms & Definitions
Why call C ⊑ D a concept inclusion axiom?
• Intuitively, every object belonging to C should belong also to D
• States that C is more specific than D

Why call it a general concept inclusion axiom?

• It may be interesting to consider restricted forms of inclusion• E.g., axioms where the l.h.s. is atomic are sometimes called definitions:

– A concept definition specifies necessary and sufficient conditions forinstances, e.g.:
JuvArth ≡ Arth⊓ JuvDis

– A primitive concept definition specifies only necessary conditions forinstances, e.g.:
Arth ⊑ ∃Damages. Joint

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 16 of 25 Computational
Logic ∴ Group

Concept Inclusion Axioms & Definitions
Why call C ⊑ D a concept inclusion axiom?
• Intuitively, every object belonging to C should belong also to D
• States that C is more specific than D
Why call it a general concept inclusion axiom?
• It may be interesting to consider restricted forms of inclusion

• E.g., axioms where the l.h.s. is atomic are sometimes called definitions:

– A concept definition specifies necessary and sufficient conditions forinstances, e.g.:
JuvArth ≡ Arth⊓ JuvDis

– A primitive concept definition specifies only necessary conditions forinstances, e.g.:
Arth ⊑ ∃Damages. Joint

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 16 of 25 Computational
Logic ∴ Group

Concept Inclusion Axioms & Definitions
Why call C ⊑ D a concept inclusion axiom?
• Intuitively, every object belonging to C should belong also to D
• States that C is more specific than D
Why call it a general concept inclusion axiom?
• It may be interesting to consider restricted forms of inclusion• E.g., axioms where the l.h.s. is atomic are sometimes called definitions:

– A concept definition specifies necessary and sufficient conditions forinstances, e.g.:
JuvArth ≡ Arth⊓ JuvDis

– A primitive concept definition specifies only necessary conditions forinstances, e.g.:
Arth ⊑ ∃Damages. Joint

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 16 of 25 Computational
Logic ∴ Group

Concept Inclusion Axioms & Definitions
Why call C ⊑ D a concept inclusion axiom?
• Intuitively, every object belonging to C should belong also to D
• States that C is more specific than D
Why call it a general concept inclusion axiom?
• It may be interesting to consider restricted forms of inclusion• E.g., axioms where the l.h.s. is atomic are sometimes called definitions:– A concept definition specifies necessary and sufficient conditions forinstances, e.g.:

JuvArth ≡ Arth⊓ JuvDis

– A primitive concept definition specifies only necessary conditions forinstances, e.g.:
Arth ⊑ ∃Damages. Joint

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 16 of 25 Computational
Logic ∴ Group

Concept Inclusion Axioms & Definitions
Why call C ⊑ D a concept inclusion axiom?
• Intuitively, every object belonging to C should belong also to D
• States that C is more specific than D
Why call it a general concept inclusion axiom?
• It may be interesting to consider restricted forms of inclusion• E.g., axioms where the l.h.s. is atomic are sometimes called definitions:– A concept definition specifies necessary and sufficient conditions forinstances, e.g.:

JuvArth ≡ Arth⊓ JuvDis

– A primitive concept definition specifies only necessary conditions forinstances, e.g.:
Arth ⊑ ∃Damages. Joint

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 16 of 25 Computational
Logic ∴ Group

Data Assertions
In description logics, we can also represent data:

Child(JohnSmith) John Smith is a child
JuvenileArthritis(JRA) JRA is a juvenile arthritis

Affects(JRA,MaryJones) Mary Jones is affected by JRA
Usually data assertions correspond to FOL ground atoms.

Often written like this: JohnSmith :Child, (JRA,MaryJones) :Affects
In ALC, we have two types of data assertions, for a,b individuals:

C(a) ⇝ C is an ALC concept
R(a,b) ⇝ R is an atomic role

Examples of data assertions in ALC:
∃hasChild.Teacher(John) ⇝ ∃y.(hasChild(John, y)∧ Teacher(y))

HistorySt ⊔ ClassicsSt(John) ⇝ HistorySt(John)∨ ClassicsSt(John)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 17 of 25 Computational
Logic ∴ Group

Data Assertions
In description logics, we can also represent data:

Child(JohnSmith) John Smith is a child
JuvenileArthritis(JRA) JRA is a juvenile arthritis

Affects(JRA,MaryJones) Mary Jones is affected by JRA
Usually data assertions correspond to FOL ground atoms.
Often written like this: JohnSmith :Child, (JRA,MaryJones) :Affects

In ALC, we have two types of data assertions, for a,b individuals:
C(a) ⇝ C is an ALC concept

R(a,b) ⇝ R is an atomic role
Examples of data assertions in ALC:

∃hasChild.Teacher(John) ⇝ ∃y.(hasChild(John, y)∧ Teacher(y))
HistorySt ⊔ ClassicsSt(John) ⇝ HistorySt(John)∨ ClassicsSt(John)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 17 of 25 Computational
Logic ∴ Group

Data Assertions
In description logics, we can also represent data:

Child(JohnSmith) John Smith is a child
JuvenileArthritis(JRA) JRA is a juvenile arthritis

Affects(JRA,MaryJones) Mary Jones is affected by JRA
Usually data assertions correspond to FOL ground atoms.
Often written like this: JohnSmith :Child, (JRA,MaryJones) :Affects
In ALC, we have two types of data assertions, for a,b individuals:

C(a) ⇝ C is an ALC concept
R(a,b) ⇝ R is an atomic role

Examples of data assertions in ALC:
∃hasChild.Teacher(John) ⇝ ∃y.(hasChild(John, y)∧ Teacher(y))

HistorySt ⊔ ClassicsSt(John) ⇝ HistorySt(John)∨ ClassicsSt(John)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 17 of 25 Computational
Logic ∴ Group

Data Assertions
In description logics, we can also represent data:

Child(JohnSmith) John Smith is a child
JuvenileArthritis(JRA) JRA is a juvenile arthritis

Affects(JRA,MaryJones) Mary Jones is affected by JRA
Usually data assertions correspond to FOL ground atoms.
Often written like this: JohnSmith :Child, (JRA,MaryJones) :Affects
In ALC, we have two types of data assertions, for a,b individuals:

C(a) ⇝ C is an ALC concept
R(a,b) ⇝ R is an atomic role

Examples of data assertions in ALC:
∃hasChild.Teacher(John) ⇝ ∃y.(hasChild(John, y)∧ Teacher(y))

HistorySt ⊔ ClassicsSt(John) ⇝ HistorySt(John)∨ ClassicsSt(John)
Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 17 of 25 Computational

Logic ∴ Group

DL Knowledge Base: TBox + ABox
An ALC knowledge base K = (T,A) is composed of:
• A TBox T (Terminological Component):

Finite set of GCIs
• An ABox A (Assertional Component):

Finite set of assertions
TBox:

JuvArthritis ⊑ Arthritis⊓ JuvDisease

Arthritis⊓ JuvDisease ⊑ JuvArthritis

Arthritis ⊑ ∃Damages. Joint
JuvDisease ⊑ ∀Affects.(Child ⊔ Teen)

Child ⊔ Teen ⊑ ¬Adult

ABox:
Child(JohnSmith)
JuvArthritis(JRA)

Affects(JRA,MaryJones)
Child ⊔ Teen(MaryJones)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 18 of 25 Computational
Logic ∴ Group

DL Knowledge Base: TBox + ABox
An ALC knowledge base K = (T,A) is composed of:
• A TBox T (Terminological Component):

Finite set of GCIs

• An ABox A (Assertional Component):
Finite set of assertions

TBox:
JuvArthritis ⊑ Arthritis⊓ JuvDisease

Arthritis⊓ JuvDisease ⊑ JuvArthritis

Arthritis ⊑ ∃Damages. Joint
JuvDisease ⊑ ∀Affects.(Child ⊔ Teen)

Child ⊔ Teen ⊑ ¬Adult

ABox:
Child(JohnSmith)
JuvArthritis(JRA)

Affects(JRA,MaryJones)
Child ⊔ Teen(MaryJones)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 18 of 25 Computational
Logic ∴ Group

DL Knowledge Base: TBox + ABox
An ALC knowledge base K = (T,A) is composed of:
• A TBox T (Terminological Component):

Finite set of GCIs
• An ABox A (Assertional Component):

Finite set of assertions
TBox:

JuvArthritis ⊑ Arthritis⊓ JuvDisease

Arthritis⊓ JuvDisease ⊑ JuvArthritis

Arthritis ⊑ ∃Damages. Joint
JuvDisease ⊑ ∀Affects.(Child ⊔ Teen)

Child ⊔ Teen ⊑ ¬Adult

ABox:
Child(JohnSmith)
JuvArthritis(JRA)

Affects(JRA,MaryJones)
Child ⊔ Teen(MaryJones)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 18 of 25 Computational
Logic ∴ Group

DL Knowledge Base: TBox + ABox
An ALC knowledge base K = (T,A) is composed of:
• A TBox T (Terminological Component):

Finite set of GCIs
• An ABox A (Assertional Component):

Finite set of assertions

TBox:
JuvArthritis ⊑ Arthritis⊓ JuvDisease

Arthritis⊓ JuvDisease ⊑ JuvArthritis

Arthritis ⊑ ∃Damages. Joint
JuvDisease ⊑ ∀Affects.(Child ⊔ Teen)

Child ⊔ Teen ⊑ ¬Adult

ABox:
Child(JohnSmith)
JuvArthritis(JRA)

Affects(JRA,MaryJones)
Child ⊔ Teen(MaryJones)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 18 of 25 Computational
Logic ∴ Group

DL Knowledge Base: TBox + ABox
An ALC knowledge base K = (T,A) is composed of:
• A TBox T (Terminological Component):

Finite set of GCIs
• An ABox A (Assertional Component):

Finite set of assertions
TBox:

JuvArthritis ⊑ Arthritis⊓ JuvDisease

Arthritis⊓ JuvDisease ⊑ JuvArthritis

Arthritis ⊑ ∃Damages. Joint
JuvDisease ⊑ ∀Affects.(Child ⊔ Teen)

Child ⊔ Teen ⊑ ¬Adult

ABox:
Child(JohnSmith)
JuvArthritis(JRA)

Affects(JRA,MaryJones)
Child ⊔ Teen(MaryJones)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 18 of 25 Computational
Logic ∴ Group

DL Knowledge Base: TBox + ABox
An ALC knowledge base K = (T,A) is composed of:
• A TBox T (Terminological Component):

Finite set of GCIs
• An ABox A (Assertional Component):

Finite set of assertions
TBox:

JuvArthritis ⊑ Arthritis⊓ JuvDisease

Arthritis⊓ JuvDisease ⊑ JuvArthritis

Arthritis ⊑ ∃Damages. Joint
JuvDisease ⊑ ∀Affects.(Child ⊔ Teen)

Child ⊔ Teen ⊑ ¬Adult

ABox:
Child(JohnSmith)
JuvArthritis(JRA)

Affects(JRA,MaryJones)
Child ⊔ Teen(MaryJones)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 18 of 25 Computational
Logic ∴ Group

Semantics via FOL Translation
ALC semantics can be defined via translation into FOL:• Concepts translated as formulas with one free variable

πx(A) = A(x) πy(A) = A(y)
πx(¬C) = ¬πx(C) πy(¬C) = ¬πy(C)

πx(C ⊓D) = πx(C)∧ πx(D) πy(C ⊓D) = πy(C)∧ πy(D)
πx(C ⊔D) = πx(C)∨ πx(D) πy(C ⊔D) = πy(C)∨ πy(D)
πx(∃R.C) = ∃y.(R(x, y)∧ πy(C)) πy(∃R.C) = ∃x.(R(y, x)∧ πx(C))
πx(∀R.C) = ∀y.(R(x, y) → πy(C)) πy(∀R.C) = ∀x.(R(y, x) → πx(C))

• GCIs and assertions translated as sentences
π(C ⊑ D) = ∀x.(πx(C) → πx(D))
π(R(a,b)) = R(a,b)
π(C(a)) = πx/a(C)

• TBoxes, ABoxes and KBs are translated in the obvious way.

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 19 of 25 Computational
Logic ∴ Group

Semantics via FOL Translation
ALC semantics can be defined via translation into FOL:• Concepts translated as formulas with one free variable

πx(A) = A(x) πy(A) = A(y)
πx(¬C) = ¬πx(C) πy(¬C) = ¬πy(C)

πx(C ⊓D) = πx(C)∧ πx(D) πy(C ⊓D) = πy(C)∧ πy(D)
πx(C ⊔D) = πx(C)∨ πx(D) πy(C ⊔D) = πy(C)∨ πy(D)
πx(∃R.C) = ∃y.(R(x, y)∧ πy(C)) πy(∃R.C) = ∃x.(R(y, x)∧ πx(C))
πx(∀R.C) = ∀y.(R(x, y) → πy(C)) πy(∀R.C) = ∀x.(R(y, x) → πx(C))

• GCIs and assertions translated as sentences
π(C ⊑ D) = ∀x.(πx(C) → πx(D))
π(R(a,b)) = R(a,b)
π(C(a)) = πx/a(C)

• TBoxes, ABoxes and KBs are translated in the obvious way.

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 19 of 25 Computational
Logic ∴ Group

Semantics via FOL Translation
ALC semantics can be defined via translation into FOL:• Concepts translated as formulas with one free variable

πx(A) = A(x) πy(A) = A(y)
πx(¬C) = ¬πx(C) πy(¬C) = ¬πy(C)

πx(C ⊓D) = πx(C)∧ πx(D) πy(C ⊓D) = πy(C)∧ πy(D)
πx(C ⊔D) = πx(C)∨ πx(D) πy(C ⊔D) = πy(C)∨ πy(D)
πx(∃R.C) = ∃y.(R(x, y)∧ πy(C)) πy(∃R.C) = ∃x.(R(y, x)∧ πx(C))
πx(∀R.C) = ∀y.(R(x, y) → πy(C)) πy(∀R.C) = ∀x.(R(y, x) → πx(C))

• GCIs and assertions translated as sentences
π(C ⊑ D) = ∀x.(πx(C) → πx(D))
π(R(a,b)) = R(a,b)
π(C(a)) = πx/a(C)

• TBoxes, ABoxes and KBs are translated in the obvious way.
Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 19 of 25 Computational

Logic ∴ Group

Semantics via FOL Translation
Note redundancy in concept-forming operators:

⊥ ⇝ ¬⊤
C ⊔D ⇝ ¬(¬C ⊓ ¬D)
∀R.C ⇝ ¬(∃R.¬C)

These equivalences can be proved using FOL semantics:
πx(¬∃R.¬C) = ¬∃y.(R(x, y)∧ ¬πy(C))

≡ ∀y.(¬(R(x, y)∧ ¬πy(C)))
≡ ∀y.(¬R(x, y)∨ πy(C))
≡ ∀y.(R(x, y) → πy(C))
= πx(∀R.C)

We can define the syntax of ALC using (e.g.) only conjunction, negation, andexistential restriction.
Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 20 of 25 Computational

Logic ∴ Group

Direct (Model-Theoretic) Semantics
Direct semantics: An alternative (and convenient) way of specifying semantics
DL interpretation I = ⟨ΔI , ·I⟩ is a FOL interpretation over the DL vocabulary:

• Each individual a interpreted as an object a I ∈ ΔI .• Each atomic concept A interpreted as a set AI ⊆ ΔI .• Each atomic role R interpreted as a binary relation RI ⊆ ΔI × ΔI .

The mapping ·I is extended to ⊤, ⊥ and compound concepts as follows:

⊤I = Δ
I

⊥I = ∅
(¬C)I = Δ

I \ CI

(C ⊓D)I = C
I ∩D

I

(C ⊔D)I = C
I ∪D

I

(∃R.C)I = {u ∈ Δ
I | ∃w ∈ Δ

I s.t. ⟨u,w⟩ ∈ R
I and w ∈ C

I}
(∀R.C)I = {u ∈ Δ

I | ∀w ∈ Δ
I , ⟨u,w⟩ ∈ R

I implies w ∈ C
I}

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 21 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
Direct semantics: An alternative (and convenient) way of specifying semantics
DL interpretation I = ⟨ΔI , ·I⟩ is a FOL interpretation over the DL vocabulary:• Each individual a interpreted as an object a I ∈ ΔI .

• Each atomic concept A interpreted as a set AI ⊆ ΔI .• Each atomic role R interpreted as a binary relation RI ⊆ ΔI × ΔI .The mapping ·I is extended to ⊤, ⊥ and compound concepts as follows:

⊤I = Δ
I

⊥I = ∅
(¬C)I = Δ

I \ CI

(C ⊓D)I = C
I ∩D

I

(C ⊔D)I = C
I ∪D

I

(∃R.C)I = {u ∈ Δ
I | ∃w ∈ Δ

I s.t. ⟨u,w⟩ ∈ R
I and w ∈ C

I}
(∀R.C)I = {u ∈ Δ

I | ∀w ∈ Δ
I , ⟨u,w⟩ ∈ R

I implies w ∈ C
I}

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 21 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
Direct semantics: An alternative (and convenient) way of specifying semantics
DL interpretation I = ⟨ΔI , ·I⟩ is a FOL interpretation over the DL vocabulary:• Each individual a interpreted as an object a I ∈ ΔI .• Each atomic concept A interpreted as a set AI ⊆ ΔI .

• Each atomic role R interpreted as a binary relation RI ⊆ ΔI × ΔI .The mapping ·I is extended to ⊤, ⊥ and compound concepts as follows:

⊤I = Δ
I

⊥I = ∅
(¬C)I = Δ

I \ CI

(C ⊓D)I = C
I ∩D

I

(C ⊔D)I = C
I ∪D

I

(∃R.C)I = {u ∈ Δ
I | ∃w ∈ Δ

I s.t. ⟨u,w⟩ ∈ R
I and w ∈ C

I}
(∀R.C)I = {u ∈ Δ

I | ∀w ∈ Δ
I , ⟨u,w⟩ ∈ R

I implies w ∈ C
I}

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 21 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
Direct semantics: An alternative (and convenient) way of specifying semantics
DL interpretation I = ⟨ΔI , ·I⟩ is a FOL interpretation over the DL vocabulary:• Each individual a interpreted as an object a I ∈ ΔI .• Each atomic concept A interpreted as a set AI ⊆ ΔI .• Each atomic role R interpreted as a binary relation RI ⊆ ΔI × ΔI .

The mapping ·I is extended to ⊤, ⊥ and compound concepts as follows:

⊤I = Δ
I

⊥I = ∅
(¬C)I = Δ

I \ CI

(C ⊓D)I = C
I ∩D

I

(C ⊔D)I = C
I ∪D

I

(∃R.C)I = {u ∈ Δ
I | ∃w ∈ Δ

I s.t. ⟨u,w⟩ ∈ R
I and w ∈ C

I}
(∀R.C)I = {u ∈ Δ

I | ∀w ∈ Δ
I , ⟨u,w⟩ ∈ R

I implies w ∈ C
I}

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 21 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
Direct semantics: An alternative (and convenient) way of specifying semantics
DL interpretation I = ⟨ΔI , ·I⟩ is a FOL interpretation over the DL vocabulary:• Each individual a interpreted as an object a I ∈ ΔI .• Each atomic concept A interpreted as a set AI ⊆ ΔI .• Each atomic role R interpreted as a binary relation RI ⊆ ΔI × ΔI .The mapping ·I is extended to ⊤, ⊥ and compound concepts as follows:

⊤I = Δ
I

⊥I = ∅
(¬C)I = Δ

I \ CI

(C ⊓D)I = C
I ∩D

I

(C ⊔D)I = C
I ∪D

I

(∃R.C)I = {u ∈ Δ
I | ∃w ∈ Δ

I s.t. ⟨u,w⟩ ∈ R
I and w ∈ C

I}
(∀R.C)I = {u ∈ Δ

I | ∀w ∈ Δ
I , ⟨u,w⟩ ∈ R

I implies w ∈ C
I}

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 21 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
Direct semantics: An alternative (and convenient) way of specifying semantics
DL interpretation I = ⟨ΔI , ·I⟩ is a FOL interpretation over the DL vocabulary:• Each individual a interpreted as an object a I ∈ ΔI .• Each atomic concept A interpreted as a set AI ⊆ ΔI .• Each atomic role R interpreted as a binary relation RI ⊆ ΔI × ΔI .The mapping ·I is extended to ⊤, ⊥ and compound concepts as follows:

⊤I = Δ
I

⊥I = ∅
(¬C)I = Δ

I \ CI

(C ⊓D)I = C
I ∩D

I

(C ⊔D)I = C
I ∪D

I

(∃R.C)I = {u ∈ Δ
I | ∃w ∈ Δ

I s.t. ⟨u,w⟩ ∈ R
I and w ∈ C

I}
(∀R.C)I = {u ∈ Δ

I | ∀w ∈ Δ
I , ⟨u,w⟩ ∈ R

I implies w ∈ C
I}

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 21 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
Direct semantics: An alternative (and convenient) way of specifying semantics
DL interpretation I = ⟨ΔI , ·I⟩ is a FOL interpretation over the DL vocabulary:• Each individual a interpreted as an object a I ∈ ΔI .• Each atomic concept A interpreted as a set AI ⊆ ΔI .• Each atomic role R interpreted as a binary relation RI ⊆ ΔI × ΔI .The mapping ·I is extended to ⊤, ⊥ and compound concepts as follows:

⊤I = Δ
I

⊥I = ∅

(¬C)I = Δ
I \ CI

(C ⊓D)I = C
I ∩D

I

(C ⊔D)I = C
I ∪D

I

(∃R.C)I = {u ∈ Δ
I | ∃w ∈ Δ

I s.t. ⟨u,w⟩ ∈ R
I and w ∈ C

I}
(∀R.C)I = {u ∈ Δ

I | ∀w ∈ Δ
I , ⟨u,w⟩ ∈ R

I implies w ∈ C
I}

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 21 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
Direct semantics: An alternative (and convenient) way of specifying semantics
DL interpretation I = ⟨ΔI , ·I⟩ is a FOL interpretation over the DL vocabulary:• Each individual a interpreted as an object a I ∈ ΔI .• Each atomic concept A interpreted as a set AI ⊆ ΔI .• Each atomic role R interpreted as a binary relation RI ⊆ ΔI × ΔI .The mapping ·I is extended to ⊤, ⊥ and compound concepts as follows:

⊤I = Δ
I

⊥I = ∅
(¬C)I = Δ

I \ CI

(C ⊓D)I = C
I ∩D

I

(C ⊔D)I = C
I ∪D

I

(∃R.C)I = {u ∈ Δ
I | ∃w ∈ Δ

I s.t. ⟨u,w⟩ ∈ R
I and w ∈ C

I}
(∀R.C)I = {u ∈ Δ

I | ∀w ∈ Δ
I , ⟨u,w⟩ ∈ R

I implies w ∈ C
I}

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 21 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
Direct semantics: An alternative (and convenient) way of specifying semantics
DL interpretation I = ⟨ΔI , ·I⟩ is a FOL interpretation over the DL vocabulary:• Each individual a interpreted as an object a I ∈ ΔI .• Each atomic concept A interpreted as a set AI ⊆ ΔI .• Each atomic role R interpreted as a binary relation RI ⊆ ΔI × ΔI .The mapping ·I is extended to ⊤, ⊥ and compound concepts as follows:

⊤I = Δ
I

⊥I = ∅
(¬C)I = Δ

I \ CI

(C ⊓D)I = C
I ∩D

I

(C ⊔D)I = C
I ∪D

I

(∃R.C)I = {u ∈ Δ
I | ∃w ∈ Δ

I s.t. ⟨u,w⟩ ∈ R
I and w ∈ C

I}
(∀R.C)I = {u ∈ Δ

I | ∀w ∈ Δ
I , ⟨u,w⟩ ∈ R

I implies w ∈ C
I}

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 21 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
Direct semantics: An alternative (and convenient) way of specifying semantics
DL interpretation I = ⟨ΔI , ·I⟩ is a FOL interpretation over the DL vocabulary:• Each individual a interpreted as an object a I ∈ ΔI .• Each atomic concept A interpreted as a set AI ⊆ ΔI .• Each atomic role R interpreted as a binary relation RI ⊆ ΔI × ΔI .The mapping ·I is extended to ⊤, ⊥ and compound concepts as follows:

⊤I = Δ
I

⊥I = ∅
(¬C)I = Δ

I \ CI

(C ⊓D)I = C
I ∩D

I

(C ⊔D)I = C
I ∪D

I

(∃R.C)I = {u ∈ Δ
I | ∃w ∈ Δ

I s.t. ⟨u,w⟩ ∈ R
I and w ∈ C

I}
(∀R.C)I = {u ∈ Δ

I | ∀w ∈ Δ
I , ⟨u,w⟩ ∈ R

I implies w ∈ C
I}

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 21 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
Direct semantics: An alternative (and convenient) way of specifying semantics
DL interpretation I = ⟨ΔI , ·I⟩ is a FOL interpretation over the DL vocabulary:• Each individual a interpreted as an object a I ∈ ΔI .• Each atomic concept A interpreted as a set AI ⊆ ΔI .• Each atomic role R interpreted as a binary relation RI ⊆ ΔI × ΔI .The mapping ·I is extended to ⊤, ⊥ and compound concepts as follows:

⊤I = Δ
I

⊥I = ∅
(¬C)I = Δ

I \ CI

(C ⊓D)I = C
I ∩D

I

(C ⊔D)I = C
I ∪D

I

(∃R.C)I = {u ∈ Δ
I | ∃w ∈ Δ

I s.t. ⟨u,w⟩ ∈ R
I and w ∈ C

I}

(∀R.C)I = {u ∈ Δ
I | ∀w ∈ Δ

I , ⟨u,w⟩ ∈ R
I implies w ∈ C

I}

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 21 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
Direct semantics: An alternative (and convenient) way of specifying semantics
DL interpretation I = ⟨ΔI , ·I⟩ is a FOL interpretation over the DL vocabulary:• Each individual a interpreted as an object a I ∈ ΔI .• Each atomic concept A interpreted as a set AI ⊆ ΔI .• Each atomic role R interpreted as a binary relation RI ⊆ ΔI × ΔI .The mapping ·I is extended to ⊤, ⊥ and compound concepts as follows:

⊤I = Δ
I

⊥I = ∅
(¬C)I = Δ

I \ CI

(C ⊓D)I = C
I ∩D

I

(C ⊔D)I = C
I ∪D

I

(∃R.C)I = {u ∈ Δ
I | ∃w ∈ Δ

I s.t. ⟨u,w⟩ ∈ R
I and w ∈ C

I}
(∀R.C)I = {u ∈ Δ

I | ∀w ∈ Δ
I , ⟨u,w⟩ ∈ R

I implies w ∈ C
I}

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 21 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
Consider the interpretation I = ⟨ΔI , ·I⟩

Δ
I = {u, v,w}

JuvDis
I = {u}

Child
I = {w}

Teen
I = ∅

Affects
I = {⟨u,w⟩}

We can then interpret any concept as a subset of ΔI :
(JuvDis⊓ Child)I =

∅

(Child ⊔ Teen)I =

{w}

(∃Affects.(Child ⊔ Teen))I =

{u}

(¬Child)I =

{u, v}

(∀Affects.Teen)I =

{v,w}

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 22 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
Consider the interpretation I = ⟨ΔI , ·I⟩

Δ
I = {u, v,w}

JuvDis
I = {u}

Child
I = {w}

Teen
I = ∅

Affects
I = {⟨u,w⟩}

We can then interpret any concept as a subset of ΔI :
(JuvDis⊓ Child)I = ∅
(Child ⊔ Teen)I =

{w}

(∃Affects.(Child ⊔ Teen))I =

{u}

(¬Child)I =

{u, v}

(∀Affects.Teen)I =

{v,w}

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 22 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
Consider the interpretation I = ⟨ΔI , ·I⟩

Δ
I = {u, v,w}

JuvDis
I = {u}

Child
I = {w}

Teen
I = ∅

Affects
I = {⟨u,w⟩}

We can then interpret any concept as a subset of ΔI :
(JuvDis⊓ Child)I = ∅
(Child ⊔ Teen)I = {w}

(∃Affects.(Child ⊔ Teen))I =

{u}

(¬Child)I =

{u, v}

(∀Affects.Teen)I =

{v,w}

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 22 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
Consider the interpretation I = ⟨ΔI , ·I⟩

Δ
I = {u, v,w}

JuvDis
I = {u}

Child
I = {w}

Teen
I = ∅

Affects
I = {⟨u,w⟩}

We can then interpret any concept as a subset of ΔI :
(JuvDis⊓ Child)I = ∅
(Child ⊔ Teen)I = {w}

(∃Affects.(Child ⊔ Teen))I = {u}
(¬Child)I =

{u, v}

(∀Affects.Teen)I =

{v,w}

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 22 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
Consider the interpretation I = ⟨ΔI , ·I⟩

Δ
I = {u, v,w}

JuvDis
I = {u}

Child
I = {w}

Teen
I = ∅

Affects
I = {⟨u,w⟩}

We can then interpret any concept as a subset of ΔI :
(JuvDis⊓ Child)I = ∅
(Child ⊔ Teen)I = {w}

(∃Affects.(Child ⊔ Teen))I = {u}
(¬Child)I = {u, v}

(∀Affects.Teen)I =

{v,w}

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 22 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
Consider the interpretation I = ⟨ΔI , ·I⟩

Δ
I = {u, v,w}

JuvDis
I = {u}

Child
I = {w}

Teen
I = ∅

Affects
I = {⟨u,w⟩}

We can then interpret any concept as a subset of ΔI :
(JuvDis⊓ Child)I = ∅
(Child ⊔ Teen)I = {w}

(∃Affects.(Child ⊔ Teen))I = {u}
(¬Child)I = {u, v}

(∀Affects.Teen)I = {v,w}

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 22 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
We can now determine whether I is a model of . . .• A General Concept Inclusion Axiom C ⊑ D:

I |= (C ⊑ D) iff C
I ⊆ D

I

• An assertion C(a):
I |= C(a) iff a

I ∈ C
I

• An assertion R(a,b):
I |= R(a,b) iff ⟨aI,bI⟩ ∈ R

I

• A TBox T, ABox A, and knowledge base K = (T,A):
I |= T iff I |= τ for each τ ∈ T

I |= A iff I |= α for each α ∈ A

I |= K iff I |= T and I |= A

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 23 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
We can now determine whether I is a model of . . .• A General Concept Inclusion Axiom C ⊑ D:

I |= (C ⊑ D) iff C
I ⊆ D

I

• An assertion C(a):
I |= C(a) iff a

I ∈ C
I

• An assertion R(a,b):
I |= R(a,b) iff ⟨aI,bI⟩ ∈ R

I

• A TBox T, ABox A, and knowledge base K = (T,A):
I |= T iff I |= τ for each τ ∈ T

I |= A iff I |= α for each α ∈ A

I |= K iff I |= T and I |= A

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 23 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
We can now determine whether I is a model of . . .• A General Concept Inclusion Axiom C ⊑ D:

I |= (C ⊑ D) iff C
I ⊆ D

I

• An assertion C(a):
I |= C(a) iff a

I ∈ C
I

• An assertion R(a,b):
I |= R(a,b) iff ⟨aI,bI⟩ ∈ R

I

• A TBox T, ABox A, and knowledge base K = (T,A):
I |= T iff I |= τ for each τ ∈ T

I |= A iff I |= α for each α ∈ A

I |= K iff I |= T and I |= A

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 23 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics
We can now determine whether I is a model of . . .• A General Concept Inclusion Axiom C ⊑ D:

I |= (C ⊑ D) iff C
I ⊆ D

I

• An assertion C(a):
I |= C(a) iff a

I ∈ C
I

• An assertion R(a,b):
I |= R(a,b) iff ⟨aI,bI⟩ ∈ R

I

• A TBox T, ABox A, and knowledge base K = (T,A):
I |= T iff I |= τ for each τ ∈ T

I |= A iff I |= α for each α ∈ A

I |= K iff I |= T and I |= A

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 23 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics: Examples
Consider our previous example interpretation:

Δ
I = {u, v,w} AffectsI = {⟨u,w⟩}
JuvDis

I = {u} ChildI = {w} Teen
I = ∅

I is a model of the following axioms:
JuvDis ⊑ ∃Affects.Child ⇝

{u} ⊆ {u}

Child ⊑ ¬Teen ⇝

{w} ⊆ {u, v,w}

JuvDis ⊑ ∀Affects.Child ⇝

{u} ⊆ {u, v,w}

However I is not a model of the following axioms:
JuvDis ⊑ ∃Affects.(Child ⊓ Teen) ⇝

{u} ̸⊆ ∅

¬Teen ⊑ Child ⇝

{u, v,w} ̸⊆ {w}

∃Affects.⊤ ⊑ Teen ⇝

{u} ̸⊆ ∅

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 24 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics: Examples
Consider our previous example interpretation:

Δ
I = {u, v,w} AffectsI = {⟨u,w⟩}
JuvDis

I = {u} ChildI = {w} Teen
I = ∅

I is a model of the following axioms:
JuvDis ⊑ ∃Affects.Child ⇝

{u} ⊆ {u}

Child ⊑ ¬Teen ⇝

{w} ⊆ {u, v,w}

JuvDis ⊑ ∀Affects.Child ⇝

{u} ⊆ {u, v,w}

However I is not a model of the following axioms:
JuvDis ⊑ ∃Affects.(Child ⊓ Teen) ⇝

{u} ̸⊆ ∅

¬Teen ⊑ Child ⇝

{u, v,w} ̸⊆ {w}

∃Affects.⊤ ⊑ Teen ⇝

{u} ̸⊆ ∅

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 24 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics: Examples
Consider our previous example interpretation:

Δ
I = {u, v,w} AffectsI = {⟨u,w⟩}
JuvDis

I = {u} ChildI = {w} Teen
I = ∅

I is a model of the following axioms:
JuvDis ⊑ ∃Affects.Child ⇝ {u} ⊆ {u}

Child ⊑ ¬Teen ⇝

{w} ⊆ {u, v,w}

JuvDis ⊑ ∀Affects.Child ⇝

{u} ⊆ {u, v,w}

However I is not a model of the following axioms:
JuvDis ⊑ ∃Affects.(Child ⊓ Teen) ⇝

{u} ̸⊆ ∅

¬Teen ⊑ Child ⇝

{u, v,w} ̸⊆ {w}

∃Affects.⊤ ⊑ Teen ⇝

{u} ̸⊆ ∅

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 24 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics: Examples
Consider our previous example interpretation:

Δ
I = {u, v,w} AffectsI = {⟨u,w⟩}
JuvDis

I = {u} ChildI = {w} Teen
I = ∅

I is a model of the following axioms:
JuvDis ⊑ ∃Affects.Child ⇝ {u} ⊆ {u}

Child ⊑ ¬Teen ⇝ {w} ⊆ {u, v,w}
JuvDis ⊑ ∀Affects.Child ⇝

{u} ⊆ {u, v,w}

However I is not a model of the following axioms:
JuvDis ⊑ ∃Affects.(Child ⊓ Teen) ⇝

{u} ̸⊆ ∅

¬Teen ⊑ Child ⇝

{u, v,w} ̸⊆ {w}

∃Affects.⊤ ⊑ Teen ⇝

{u} ̸⊆ ∅

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 24 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics: Examples
Consider our previous example interpretation:

Δ
I = {u, v,w} AffectsI = {⟨u,w⟩}
JuvDis

I = {u} ChildI = {w} Teen
I = ∅

I is a model of the following axioms:
JuvDis ⊑ ∃Affects.Child ⇝ {u} ⊆ {u}

Child ⊑ ¬Teen ⇝ {w} ⊆ {u, v,w}
JuvDis ⊑ ∀Affects.Child ⇝ {u} ⊆ {u, v,w}

However I is not a model of the following axioms:
JuvDis ⊑ ∃Affects.(Child ⊓ Teen) ⇝

{u} ̸⊆ ∅

¬Teen ⊑ Child ⇝

{u, v,w} ̸⊆ {w}

∃Affects.⊤ ⊑ Teen ⇝

{u} ̸⊆ ∅

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 24 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics: Examples
Consider our previous example interpretation:

Δ
I = {u, v,w} AffectsI = {⟨u,w⟩}
JuvDis

I = {u} ChildI = {w} Teen
I = ∅

I is a model of the following axioms:
JuvDis ⊑ ∃Affects.Child ⇝ {u} ⊆ {u}

Child ⊑ ¬Teen ⇝ {w} ⊆ {u, v,w}
JuvDis ⊑ ∀Affects.Child ⇝ {u} ⊆ {u, v,w}

However I is not a model of the following axioms:
JuvDis ⊑ ∃Affects.(Child ⊓ Teen) ⇝

{u} ̸⊆ ∅

¬Teen ⊑ Child ⇝

{u, v,w} ̸⊆ {w}

∃Affects.⊤ ⊑ Teen ⇝

{u} ̸⊆ ∅

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 24 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics: Examples
Consider our previous example interpretation:

Δ
I = {u, v,w} AffectsI = {⟨u,w⟩}
JuvDis

I = {u} ChildI = {w} Teen
I = ∅

I is a model of the following axioms:
JuvDis ⊑ ∃Affects.Child ⇝ {u} ⊆ {u}

Child ⊑ ¬Teen ⇝ {w} ⊆ {u, v,w}
JuvDis ⊑ ∀Affects.Child ⇝ {u} ⊆ {u, v,w}

However I is not a model of the following axioms:
JuvDis ⊑ ∃Affects.(Child ⊓ Teen) ⇝ {u} ̸⊆ ∅

¬Teen ⊑ Child ⇝

{u, v,w} ̸⊆ {w}

∃Affects.⊤ ⊑ Teen ⇝

{u} ̸⊆ ∅

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 24 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics: Examples
Consider our previous example interpretation:

Δ
I = {u, v,w} AffectsI = {⟨u,w⟩}
JuvDis

I = {u} ChildI = {w} Teen
I = ∅

I is a model of the following axioms:
JuvDis ⊑ ∃Affects.Child ⇝ {u} ⊆ {u}

Child ⊑ ¬Teen ⇝ {w} ⊆ {u, v,w}
JuvDis ⊑ ∀Affects.Child ⇝ {u} ⊆ {u, v,w}

However I is not a model of the following axioms:
JuvDis ⊑ ∃Affects.(Child ⊓ Teen) ⇝ {u} ̸⊆ ∅

¬Teen ⊑ Child ⇝ {u, v,w} ̸⊆ {w}
∃Affects.⊤ ⊑ Teen ⇝

{u} ̸⊆ ∅

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 24 of 25 Computational
Logic ∴ Group

Direct (Model-Theoretic) Semantics: Examples
Consider our previous example interpretation:

Δ
I = {u, v,w} AffectsI = {⟨u,w⟩}
JuvDis

I = {u} ChildI = {w} Teen
I = ∅

I is a model of the following axioms:
JuvDis ⊑ ∃Affects.Child ⇝ {u} ⊆ {u}

Child ⊑ ¬Teen ⇝ {w} ⊆ {u, v,w}
JuvDis ⊑ ∀Affects.Child ⇝ {u} ⊆ {u, v,w}

However I is not a model of the following axioms:
JuvDis ⊑ ∃Affects.(Child ⊓ Teen) ⇝ {u} ̸⊆ ∅

¬Teen ⊑ Child ⇝ {u, v,w} ̸⊆ {w}
∃Affects.⊤ ⊑ Teen ⇝ {u} ̸⊆ ∅

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 24 of 25 Computational
Logic ∴ Group

Conclusion

• Description Logics are a family of knowledge representation languages

• They can be seen as syntactic fragments of first-order predicate logic
• Only unary and binary predicate symbols, no function symbols (ofpositive arity)
• Use of quantification is restricted by guards (cf. guarded fragment of FOL)
• ALC is the basic description logic
• Syntax of DLs: concepts (atomic/complex), general concept inclusions
• DL knowledge bases: consist of TBox and ABox
• Semantics of DLs: direct model-theoretic semantics (or translation to FOL)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 25 of 25 Computational
Logic ∴ Group

Conclusion

• Description Logics are a family of knowledge representation languages
• They can be seen as syntactic fragments of first-order predicate logic

• Only unary and binary predicate symbols, no function symbols (ofpositive arity)
• Use of quantification is restricted by guards (cf. guarded fragment of FOL)
• ALC is the basic description logic
• Syntax of DLs: concepts (atomic/complex), general concept inclusions
• DL knowledge bases: consist of TBox and ABox
• Semantics of DLs: direct model-theoretic semantics (or translation to FOL)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 25 of 25 Computational
Logic ∴ Group

Conclusion

• Description Logics are a family of knowledge representation languages
• They can be seen as syntactic fragments of first-order predicate logic
• Only unary and binary predicate symbols, no function symbols (ofpositive arity)

• Use of quantification is restricted by guards (cf. guarded fragment of FOL)
• ALC is the basic description logic
• Syntax of DLs: concepts (atomic/complex), general concept inclusions
• DL knowledge bases: consist of TBox and ABox
• Semantics of DLs: direct model-theoretic semantics (or translation to FOL)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 25 of 25 Computational
Logic ∴ Group

Conclusion

• Description Logics are a family of knowledge representation languages
• They can be seen as syntactic fragments of first-order predicate logic
• Only unary and binary predicate symbols, no function symbols (ofpositive arity)
• Use of quantification is restricted by guards (cf. guarded fragment of FOL)

• ALC is the basic description logic
• Syntax of DLs: concepts (atomic/complex), general concept inclusions
• DL knowledge bases: consist of TBox and ABox
• Semantics of DLs: direct model-theoretic semantics (or translation to FOL)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 25 of 25 Computational
Logic ∴ Group

Conclusion

• Description Logics are a family of knowledge representation languages
• They can be seen as syntactic fragments of first-order predicate logic
• Only unary and binary predicate symbols, no function symbols (ofpositive arity)
• Use of quantification is restricted by guards (cf. guarded fragment of FOL)
• ALC is the basic description logic

• Syntax of DLs: concepts (atomic/complex), general concept inclusions
• DL knowledge bases: consist of TBox and ABox
• Semantics of DLs: direct model-theoretic semantics (or translation to FOL)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 25 of 25 Computational
Logic ∴ Group

Conclusion

• Description Logics are a family of knowledge representation languages
• They can be seen as syntactic fragments of first-order predicate logic
• Only unary and binary predicate symbols, no function symbols (ofpositive arity)
• Use of quantification is restricted by guards (cf. guarded fragment of FOL)
• ALC is the basic description logic
• Syntax of DLs: concepts (atomic/complex), general concept inclusions

• DL knowledge bases: consist of TBox and ABox
• Semantics of DLs: direct model-theoretic semantics (or translation to FOL)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 25 of 25 Computational
Logic ∴ Group

Conclusion

• Description Logics are a family of knowledge representation languages
• They can be seen as syntactic fragments of first-order predicate logic
• Only unary and binary predicate symbols, no function symbols (ofpositive arity)
• Use of quantification is restricted by guards (cf. guarded fragment of FOL)
• ALC is the basic description logic
• Syntax of DLs: concepts (atomic/complex), general concept inclusions
• DL knowledge bases: consist of TBox and ABox

• Semantics of DLs: direct model-theoretic semantics (or translation to FOL)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 25 of 25 Computational
Logic ∴ Group

Conclusion

• Description Logics are a family of knowledge representation languages
• They can be seen as syntactic fragments of first-order predicate logic
• Only unary and binary predicate symbols, no function symbols (ofpositive arity)
• Use of quantification is restricted by guards (cf. guarded fragment of FOL)
• ALC is the basic description logic
• Syntax of DLs: concepts (atomic/complex), general concept inclusions
• DL knowledge bases: consist of TBox and ABox
• Semantics of DLs: direct model-theoretic semantics (or translation to FOL)

Description Logics – Syntax and Semantics I (Lecture 4)Computational Logic Group // Hannes StrassFoundations of Knowledge Representation, WS 2024/25 Slide 25 of 25 Computational
Logic ∴ Group

