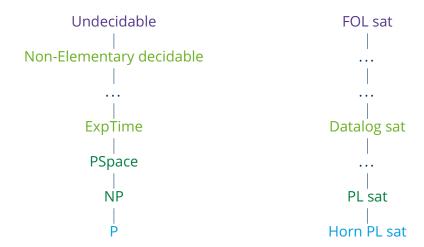


Sebastian Rudolph (based on slides by Bernardo Cuenca Grau, Ian Horrocks, Przemysław Wałęga)
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Description Logics – Syntax and Semantics I

Lecture 4, 27th Oct 2025 // Foundations of Knowledge Representation, WS 2025/26



Many KR applications do not require full power of FOL

What can we leave out?

- Key reasoning problems should become decidable
- Sufficient expressive power to model application domain

Description Logics are a family of FOL fragments that meet these requirements for many applications:

- Underlying formalisms of modern ontology languages
- Widely used in bio-medical information systems
- Core component of the Semantic Web

Recall our arthritis example:

- A juvenile disease affects only children or teenagers
- Children and teenagers are not adults
- A person is either a child, a teenager, or an adult
- Juvenile arthritis is a kind of arthritis and a juvenile disease
- Every kind of arthritis damages some joint

The important types of objects are given by unary FOL predicates: juvenile disease, child, teenager, adult, ...

The types of relationships are given by binary FOL predicates: affects, damages, ...

The vocabulary of a Description Logic is composed of

Unary FOL predicates
 Arthritis, Child, ...

Binary FOL predicates
 Affects, Damages, ...

FOL constants

```
JohnSmith, MaryJones, JRA, ...
```

We are already restricting the expressive power of FOL

- No function symbols (of positive arity)
- No predicates of arity greater than 2

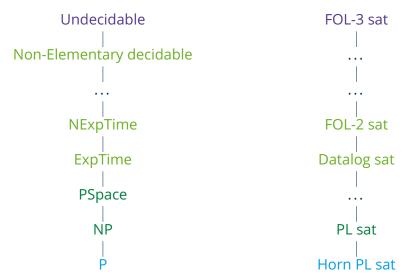
Let us take a closer look at the FOL formulas for our example:

```
\forall x.(JuvDis(x) \rightarrow \forall y.(Affects(x,y) \rightarrow Child(y) \lor Teen(y)))
\forall x.(Child(x) \lor Teen(x) \rightarrow \neg Adult(x))
\forall x.(Person(x) \rightarrow Child(x) \lor Teen(x) \lor Adult(x))
\forall x.(JuvArthritis(x) \rightarrow Arthritis(x) \land JuvDis(x))
\forall x.(Arthritis(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y)))
```

We can find several regularities in these formulas:

- There is an outermost universal quantifier on a single variable x
- The formulas can be split into two parts by the implication symbol
 Each part is a formula with one free variable
- Atomic formulas involving a binary predicate occur only quantified in a syntactically restricted way.

Complexity



Consider as an example one of our formulas:

$$\forall x. (Child(x) \lor Teen(x) \rightarrow \neg Adult(x))$$

Let us look at all its sub-formulas at each side of the implication

Child(x) Set of all children

Teen(x) Set of all teenagers

Child(x) \vee *Teen*(x) Set of all objects that are children or teenagers

Adult(x) Set of all adults

 $\neg Adult(x)$ Set of all objects that are not adults

Important observations concerning formulas with one free variable:

- Some are atomic (e.g., Child(x))
 do not contain other formulas as subformulas
- Others are complex (e.g., Child(x) ∨ Teen(x))

Basic Definitions

Idea: Define operators for constructing complex formulas with one free variable out of simple building blocks

Atomic Concept: Represents an atomic formula with one free variable

Child
$$\rightsquigarrow$$
 Child(x)

Complex concepts (part 1):

Concept Union (□): applies to two concepts

Child
$$\sqcup$$
 Teen \rightsquigarrow Child(x) \vee Teen(x)

Concept Intersection (□): applies to two concepts

Arthritis
$$\sqcap$$
 JuvDis \rightsquigarrow Arthritis(x) \land JuvDis(x)

Concept Negation (¬): applies to one concept

$$\neg Adult \rightsquigarrow \neg Adult(x)$$

Consider examples with binary predicates:

```
\forall x. (Arthritis(x) \rightarrow \exists y. (Damages(x, y) \land Joint(y)) 
\forall x. (JuvDis(x) \rightarrow \forall y. (Affects(x, y) \rightarrow Child(y) \lor Teen(y)))
```

- We have a concept and a binary predicate (called a role) mentioning the concept's free variable
- The role and the concept are connected via conjunction (existential quantification) or implication (universal quantification)
- Nested sub-concepts use a fresh (existentially/universally quantified)
 variable, and are connected to the surrounding concept by exactly one
 role atom (often called a guard)

Basic Definitions

Atomic Role: Represents an atom with two free variables

Affects
$$\rightsquigarrow$$
 Affects(x, y)

Complex concepts (part 2): apply to an atomic role and a concept

Existential Restriction:

$$\exists Damages. Joint \leftrightarrow \exists y. (Damages(x, y) \land Joint(y))$$

Universal Restriction:

$$\forall Affects.(Child \sqcup Teen) \rightsquigarrow \forall y.(Affects(x,y) \rightarrow Child(y) \lor Teen(y))$$

ALC Concepts

ALC is the basic description logic

ALC concepts are inductively defined from atomic concepts and roles:

- Every atomic concept is a concept
- T and ⊥ are concepts
- If C is a concept, then $\neg C$ is a concept
- If C and D are concepts, then so are C □ D and C □ D
- If C a concept and R a role, $\forall R.C$ and $\exists R.C$ are concepts.

Concepts describe sets of objects with certain common features:

Woman $\sqcap \exists hasChild.(\exists hasChild.Person)$ Disease $\sqcap \forall Affects.Child$ Person $\sqcap \neg \exists owns.DetHouse$ Man $\sqcap \exists hasChild. \top \sqcap \forall hasChild.Man$

Women with a grandchild
Diseases affecting only children
People not owning a detached house
Fathers having only sons

→ Very useful idea for Knowledge Representation

Recall our example formulas:

$$\forall x.(JuvDis(x) \rightarrow \forall y.(Affects(x,y) \rightarrow Child(y) \lor Teen(y)))$$
 $\forall x.(Child(x) \lor Teen(x) \rightarrow \neg Adult(x))$
 $\forall x.(Person(x) \rightarrow Child(x) \lor Teen(x) \lor Adult(x))$
 $\forall x.(JuvArthritis(x) \rightarrow Arthritis(x) \land JuvDis(x))$
 $\forall x.(Arthritis(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))$

They are of the following form, with $\alpha_C(x)$ and $\alpha_D(x)$ corresponding to \mathcal{ALC} concepts C and D

$$\forall x.(\alpha_{C}(x) \rightarrow \alpha_{D}(x))$$

Such sentences are \mathcal{ALC} General Concept Inclusion Axioms (GCIs)

$$C \sqsubseteq D$$

where C and D are ALC-concepts


```
\forall x.(JuvDis(x) \rightarrow \\ \forall y.(Affects(x,y) \rightarrow Child(y) \lor Teen(y))) \quad \rightsquigarrow \\ \forall x.(Child(x) \lor Teen(x) \rightarrow \neg Adult(x)) \quad \rightsquigarrow \\ \forall x.(Person(x) \rightarrow Child(x) \lor Teen(x) \lor Adult(x)) \quad \rightsquigarrow \\ \forall x.(JuvArth(x) \rightarrow Arth(x) \land JuvDis(x)) \quad \rightsquigarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \rightsquigarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \rightsquigarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \rightsquigarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x)) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x)) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x)) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x)) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x)) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x)) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x)) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x)) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x)) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x)) \quad \leftrightarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damag
```



```
\forall x.(JuvDis(x) \rightarrow \\ \forall y.(Affects(x,y) \rightarrow Child(y) \lor Teen(y))) \quad \rightsquigarrow \quad JuvDis \sqsubseteq \forall Affects.(Child \sqcup Teen) \\ \forall x.(Child(x) \lor Teen(x) \rightarrow \neg Adult(x)) \quad \rightsquigarrow \\ \forall x.(Person(x) \rightarrow Child(x) \lor Teen(x) \lor Adult(x)) \quad \rightsquigarrow \\ \forall x.(JuvArth(x) \rightarrow Arth(x) \land JuvDis(x)) \quad \rightsquigarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \rightsquigarrow
```



```
\forall x.(JuvDis(x) \rightarrow \\ \forall y.(Affects(x,y) \rightarrow Child(y) \lor Teen(y))) \quad \rightsquigarrow \quad JuvDis \sqsubseteq \forall Affects.(Child \sqcup Teen) \\ \forall x.(Child(x) \lor Teen(x) \rightarrow \neg Adult(x)) \quad \rightsquigarrow \quad Child \sqcup Teen \sqsubseteq \neg Adult \\ \forall x.(Person(x) \rightarrow Child(x) \lor Teen(x) \lor Adult(x)) \quad \rightsquigarrow \\ \forall x.(JuvArth(x) \rightarrow Arth(x) \land JuvDis(x)) \quad \rightsquigarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \rightsquigarrow
```



```
\forall x.(JuvDis(x) \rightarrow \\ \forall y.(Affects(x,y) \rightarrow Child(y) \lor Teen(y))) \quad \rightsquigarrow \quad JuvDis \sqsubseteq \forall Affects.(Child \sqcup Teen) \\ \forall x.(Child(x) \lor Teen(x) \rightarrow \neg Adult(x)) \quad \rightsquigarrow \quad Child \sqcup Teen \sqsubseteq \neg Adult \\ \forall x.(Person(x) \rightarrow Child(x) \lor Teen(x) \lor Adult(x)) \quad \rightsquigarrow \quad Person \sqsubseteq Child \sqcup Teen \sqcup Adult \\ \forall x.(JuvArth(x) \rightarrow Arth(x) \land JuvDis(x)) \quad \rightsquigarrow \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \rightsquigarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \rightsquigarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \rightsquigarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(x))) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \rightarrow Joint(x,y)) \quad \Rightarrow \quad \forall x.(Arth(x) \rightarrow J
```



```
\forall x.(JuvDis(x) \rightarrow \\ \forall y.(Affects(x,y) \rightarrow Child(y) \lor Teen(y))) \quad \rightsquigarrow \quad JuvDis \sqsubseteq \forall Affects.(Child \sqcup Teen) \\ \forall x.(Child(x) \lor Teen(x) \rightarrow \neg Adult(x)) \quad \rightsquigarrow \quad Child \sqcup Teen \sqsubseteq \neg Adult \\ \forall x.(Person(x) \rightarrow Child(x) \lor Teen(x) \lor Adult(x)) \quad \rightsquigarrow \quad Person \sqsubseteq Child \sqcup Teen \sqcup Adult \\ \forall x.(JuvArth(x) \rightarrow Arth(x) \land JuvDis(x)) \quad \rightsquigarrow \quad JuvArth \sqsubseteq Arth \sqcap JuvDis \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \rightsquigarrow \quad Authorized Figure 1.
```



```
\forall x.(JuvDis(x) \rightarrow \\ \forall y.(Affects(x,y) \rightarrow Child(y) \lor Teen(y))) \quad \rightsquigarrow \quad JuvDis \sqsubseteq \forall Affects.(Child \sqcup Teen) \\ \forall x.(Child(x) \lor Teen(x) \rightarrow \neg Adult(x)) \quad \rightsquigarrow \quad Child \sqcup Teen \sqsubseteq \neg Adult \\ \forall x.(Person(x) \rightarrow Child(x) \lor Teen(x) \lor Adult(x)) \quad \rightsquigarrow \quad Person \sqsubseteq Child \sqcup Teen \sqcup Adult \\ \forall x.(JuvArth(x) \rightarrow Arth(x) \land JuvDis(x)) \quad \rightsquigarrow \quad JuvArth \sqsubseteq Arth \sqcap JuvDis \\ \forall x.(Arth(x) \rightarrow \exists y.(Damages(x,y) \land Joint(y))) \quad \rightsquigarrow \quad Arth \sqsubseteq \exists Damages.Joint
```


Terminological Statements

GCIs allow us to represent a surprising variety of terminological statements:

Sub-type statements

$$\forall x.(JuvArth(x) \rightarrow Arth(x)) \rightsquigarrow JuvArth \sqsubseteq Arth$$

Full definitions:

$$\forall x.(JuvArth(x) \leftrightarrow Arth(x) \land JuvDis(x)) \rightsquigarrow JuvArth \equiv Arth \sqcap JuvDis$$

· Disjointness statements:

$$\forall x. (Child(x) \rightarrow \neg Adult(x)) \rightsquigarrow Child \sqsubseteq \neg Adult$$

Covering statements:

$$\forall x. (Person(x) \rightarrow Adult(x) \lor Child(x)) \rightsquigarrow Person \sqsubseteq Adult \sqcup Child$$

Type (domain and range) restrictions:

$$\forall x.(\forall y.(Affects(x,y) \rightarrow Arth(x) \land Person(y))) \rightarrow \exists Affects. \top \sqsubseteq Arth$$

 $\top \sqsubseteq \forall Affects. Person$

Concept Inclusion Axioms & Definitions

Why call $C \sqsubseteq D$ a concept inclusion axiom?

- Intuitively, every object belonging to C should belong also to D
- States that C is more specific than D

Why call it a general concept inclusion axiom?

- It may be interesting to consider restricted forms of inclusion
- E.g., axioms where l.h.s. is atomic are sometimes called definitions
 - A concept definition specifies necessary and sufficient conditions for instances, e.g.:

$$JuvArth \equiv Arth \sqcap JuvDis$$

 A primitive concept definition specifies only necessary conditions for instances, e.g.:

 $Arth \sqsubseteq \exists Damages. Joint$

Data Assertions

In description logics, we can also represent data:

```
Child(JohnSmith) John Smith is a child
```

JuvenileArthritis(JRA) JRA is a juvenile arthritis

Affects(JRA, MaryJones) Mary Jones is affected by JRA

Usually data assertions correspond to FOL ground atoms.

```
Alternative notation: JohnSmith: Child, (JRA, MaryJones): Affects
```

In ALC, we have two types of data assertions, for a, b individuals:

```
C(a) \rightsquigarrow C \text{ is an } ALC \text{ concept}
```

$$R(a,b) \rightsquigarrow R$$
 is an atomic role

Examples of acceptable data assertions in \mathcal{ALC} :

```
\exists hasChild.Teacher(John) \rightsquigarrow \exists y.(hasChild(John,y) \land Teacher(y))
```

 $HistorySt \sqcup ClassicsSt(John) \rightsquigarrow HistorySt(John) \lor ClassicsSt(John)$

DL Knowledge Base: TBox + ABox

An \mathcal{ALC} knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ is composed of:

• A TBox T (Terminological Component):

Finite set of GCIs

An ABox A (Assertional Component):

Finite set of assertions

TBox:

JuvArthritis \sqsubseteq Arthritis \sqcap JuvDisease Arthritis \sqcap JuvDisease \sqsubseteq JuvArthritis Arthritis \sqsubseteq \exists Damages. Joint JuvDisease \sqsubseteq \forall Affects.(Child \sqcup Teen)

Child ⊔ Teen ⊑ ¬Adult

ABox:

Child(JohnSmith)

JuvArthritis(JRA)

Affects(JRA, MaryJones)

Child ⊔ Teen(MaryJones)

Semantics via FOL Translation

 Concepts translated as formulas with one free variable (except ⊤ and ⊥ which are mapped to themselves):

$$\pi_{X}(A) = A(X) \qquad \qquad \pi_{y}(A) = A(y)$$

$$\pi_{X}(\neg C) = \neg \pi_{X}(C) \qquad \qquad \pi_{y}(\neg C) = \neg \pi_{y}(C)$$

$$\pi_{X}(C \sqcap D) = \pi_{X}(C) \land \pi_{X}(D) \qquad \qquad \pi_{y}(C \sqcap D) = \pi_{y}(C) \land \pi_{y}(D)$$

$$\pi_{X}(C \sqcup D) = \pi_{X}(C) \lor \pi_{X}(D) \qquad \qquad \pi_{y}(C \sqcup D) = \pi_{y}(C) \lor \pi_{y}(D)$$

$$\pi_{X}(\exists R.C) = \exists y.(R(x,y) \land \pi_{y}(C)) \qquad \qquad \pi_{y}(\exists R.C) = \exists x.(R(y,x) \land \pi_{X}(C))$$

$$\pi_{X}(\forall R.C) = \forall y.(R(x,y) \to \pi_{y}(C)) \qquad \qquad \pi_{y}(\forall R.C) = \forall x.(R(y,x) \to \pi_{X}(C))$$

GCIs and assertions translated as sentences

$$\pi(C \sqsubseteq D) = \forall x.(\pi_x(C) \to \pi_x(D))$$

 $\pi(R(a,b)) = R(a,b)$
 $\pi(C(a)) = \pi_x(C)[x/a]$

TBoxes, ABoxes and KBs are translated in the obvious way.

Semantics via FOL Translation

Note redundancy in concept-forming operators:

$$\bot \quad \rightsquigarrow \quad \neg \top \\
C \sqcup D \quad \rightsquigarrow \quad \neg (\neg C \sqcap \neg D) \\
\forall R.C \quad \rightsquigarrow \quad \neg (\exists R. \neg C)$$

These equivalences can be proved using FOL semantics:

$$\pi_{X}(\neg \exists R. \neg C) = \neg \exists y.(R(x,y) \land \neg \pi_{y}(C))
\equiv \forall y.(\neg (R(x,y) \land \neg \pi_{y}(C)))
\equiv \forall y.(\neg R(x,y) \lor \pi_{y}(C))
\equiv \forall y.(R(x,y) \to \pi_{y}(C))
= \pi_{X}(\forall R.C)$$

We can define syntax of \mathcal{ALC} using only conjunction and negation operators and the existential role operator, considering all other operators as abbreviations.

Direct semantics: An alternative (and convenient) way of specifying semantics

DL interpretation $\mathfrak{I} = \langle \Delta^{\mathfrak{I}}, \cdot^{\mathfrak{I}} \rangle$ is a FOL interpretation over the DL vocabulary:

- Each individual α interpreted as an object $\alpha^{\mathfrak{I}} \in \Delta^{\mathfrak{I}}$.
- Each atomic concept A interpreted as a set $A^{\mathfrak{I}} \subseteq \Delta^{\mathfrak{I}}$.
- Each atomic role *R* interpreted as a binary relation $R^{\mathfrak{I}} \subseteq \Delta^{\mathfrak{I}} \times \Delta^{\mathfrak{I}}$.

The mapping \cdot^{J} is extended to \top , \bot and compound concepts as follows:

$$T^{J} = \Delta^{J}$$

$$L^{J} = \emptyset$$

$$(\neg C)^{J} = \Delta^{J} \setminus C^{J}$$

$$(C \sqcap D)^{J} = C^{J} \cap D^{J}$$

$$(C \sqcup D)^{J} = C^{J} \cup D^{J}$$

$$(\exists R.C)^{J} = \{u \in \Delta^{J} \mid \exists w \in \Delta^{J} \text{ s.t. } \langle u, w \rangle \in R^{J} \text{ and } w \in C^{J}\}$$

$$(\forall R.C)^{J} = \{u \in \Delta^{J} \mid \forall w \in \Delta^{J}, \langle u, w \rangle \in R^{J} \text{ implies } w \in C^{J}\}$$


```
Consider the interpretation \mathfrak{I}=\langle\Delta^{\mathfrak{I}},\cdot^{\mathfrak{I}}\rangle
\Delta^{\mathfrak{I}}=\{u,v,w\}
JuvDis^{\mathfrak{I}}=\{u\}
Child^{\mathfrak{I}}=\{w\}
Teen^{\mathfrak{I}}=\emptyset
Affects^{\mathfrak{I}}=\{\langle u,w\rangle\}
```

```
(JuvDis \sqcap Child)^{J} = (Child \sqcup Teen)^{J} = (\exists Affects.(Child \sqcup Teen))^{J} = (\neg Child)^{J} = (\forall Affects.Teen)^{J} = (\forall Affects.Teen)^{J} = (\exists Affects.Teen)^{J
```



```
Consider the interpretation \mathfrak{I} = \langle \Delta^{\mathfrak{I}}, \cdot^{\mathfrak{I}} \rangle
                                                                  \Delta^{\mathfrak{I}} = \{u, v, w\}
                                                        JuvDis^{\mathfrak{I}} = \{u\}
                                                           Child^{\mathfrak{I}} = \{w\}
                                                            Teen^{\mathfrak{I}} = \emptyset
                                                        Affects^{\mathfrak{I}} = \{\langle u, w \rangle\}
We can then interpret any concept as a subset of \Delta^{\mathfrak{I}}:
                                                          (luvDis \sqcap Child)^{\mathfrak{I}} = \emptyset
```

```
(Child \sqcup Teen)^{\mathfrak{I}} =
(\exists Affects.(Child \sqcup Teen))^{\mathfrak{I}} =
                             (\neg Child)^{\mathfrak{I}} =
                 (\forall Affects.Teen)^{\mathcal{I}} =
```



```
Consider the interpretation \mathfrak{I} = \langle \Delta^{\mathfrak{I}}, \cdot^{\mathfrak{I}} \rangle
                                                                 \Delta^{\mathfrak{I}} = \{u, v, w\}
                                                        JuvDis^{\mathfrak{I}} = \{u\}
                                                          Child^{\mathfrak{I}} = \{w\}
                                                           Teen^{\mathfrak{I}} = \emptyset
                                                       Affects^{\mathfrak{I}} = \{\langle u, w \rangle\}
We can then interpret any concept as a subset of \Delta^{\mathfrak{I}}:
                                                         (luvDis \sqcap Child)^{\mathfrak{I}} = \emptyset
                                                             (Child \sqcup Teen)^{\mathfrak{I}} = \{w\}
                                          (\exists Affects.(Child \sqcup Teen))^{\mathfrak{I}} =
```


 $(\neg Child)^{\mathfrak{I}} =$

 $(\forall Affects.Teen)^{\mathcal{I}} =$

```
Consider the interpretation \mathfrak{I}=\langle\Delta^{\mathfrak{I}},\mathfrak{I}\rangle
\Delta^{\mathfrak{I}}=\{u,v,w\}
JuvDis^{\mathfrak{I}}=\{u\}
Child^{\mathfrak{I}}=\{w\}
Teen^{\mathfrak{I}}=\emptyset
Affects^{\mathfrak{I}}=\{\langle u,w\rangle\}
```

```
(JuvDis \sqcap Child)^{\Im} = \emptyset
(Child \sqcup Teen)^{\Im} = \{w\}
(\exists Affects.(Child \sqcup Teen))^{\Im} = \{u\}
(\neg Child)^{\Im} = \{v\}
(\forall Affects.Teen)^{\Im} = \{v\}
```



```
Consider the interpretation \mathfrak{I}=\langle\Delta^{\mathfrak{I}},\cdot^{\mathfrak{I}}\rangle
\Delta^{\mathfrak{I}}=\{u,v,w\}
JuvDis^{\mathfrak{I}}=\{u\}
Child^{\mathfrak{I}}=\{w\}
Teen^{\mathfrak{I}}=\emptyset
Affects^{\mathfrak{I}}=\{\langle u,w\rangle\}
```

```
(JuvDis \sqcap Child)^{J} = \emptyset
(Child \sqcup Teen)^{J} = \{w\}
(\exists Affects.(Child \sqcup Teen))^{J} = \{u\}
(\neg Child)^{J} = \{u,v\}
(\forall Affects.Teen)^{J} =
```



```
Consider the interpretation \mathfrak{I}=\langle\Delta^{\mathfrak{I}},\cdot^{\mathfrak{I}}\rangle
\Delta^{\mathfrak{I}}=\{u,v,w\}
JuvDis^{\mathfrak{I}}=\{u\}
Child^{\mathfrak{I}}=\{w\}
Teen^{\mathfrak{I}}=\emptyset
Affects^{\mathfrak{I}}=\{\langle u,w\rangle\}
```

```
(JuvDis \sqcap Child)^{J} = \emptyset
(Child \sqcup Teen)^{J} = \{w\}
(\exists Affects.(Child \sqcup Teen))^{J} = \{u\}
(\neg Child)^{J} = \{u, v\}
(\forall Affects.Teen)^{J} = \{v, w\}
```


We can now determine whether \mathfrak{I} is a model of ...

• A General Concept Inclusion Axiom $C \sqsubseteq D$:

$$\mathfrak{I}\models (C\sqsubseteq D) \quad \text{iff} \quad C^{\mathfrak{I}}\subseteq D^{\mathfrak{I}}$$

• An assertion *C*(*a*):

$$\mathfrak{I}\models C(a)$$
 iff $a^{\mathfrak{I}}\in C^{\mathfrak{I}}$

• An assertion R(a, b):

$$\mathfrak{I}\models R(a,b) \quad \text{iff} \quad \langle a^{\mathfrak{I}},b^{\mathfrak{I}}\rangle\in R^{\mathfrak{I}}$$

• A TBox \mathfrak{T} , ABox \mathcal{A} , and knowledge base:

$$\mathfrak{I} \models \mathfrak{T} \quad \text{iff} \quad \mathfrak{I} \models \alpha \text{ for each } \alpha \in \mathfrak{T}$$

$$\mathfrak{I} \models \mathcal{A} \quad \text{iff} \quad \mathfrak{I} \models \alpha \text{ for each } \alpha \in \mathcal{A}$$

$$\mathfrak{I} \models \mathfrak{K} \quad \text{iff} \quad \mathfrak{I} \models \mathfrak{T} \text{ and } \mathfrak{I} \models \mathcal{A}$$

Consider our previous example interpretation:

$$\Delta^{\mathbb{J}} = \{u, v, w\}$$
 $Affects^{\mathbb{J}} = \{\langle u, w \rangle\}$
 $JuvDis^{\mathbb{J}} = \{u\}$ $Child^{\mathbb{J}} = \{w\}$ $Teen^{\mathbb{J}} = \emptyset$

I is a model of the following axioms:

Consider our previous example interpretation:

$$\Delta^{\mathbb{J}} = \{u, v, w\}$$
 $Affects^{\mathbb{J}} = \{\langle u, w \rangle\}$
 $JuvDis^{\mathbb{J}} = \{u\}$ $Child^{\mathbb{J}} = \{w\}$ $Teen^{\mathbb{J}} = \emptyset$

I is a model of the following axioms:

Consider our previous example interpretation:

$$\Delta^{\mathbb{J}} = \{u, v, w\}$$
 $Affects^{\mathbb{J}} = \{\langle u, w \rangle\}$
 $JuvDis^{\mathbb{J}} = \{u\}$ $Child^{\mathbb{J}} = \{w\}$ $Teen^{\mathbb{J}} = \emptyset$

J is a model of the following axioms:

```
JuvDis \sqsubseteq \exists Affects.Child \quad \rightsquigarrow \quad \{u\} \subseteq \{u\}
Child \sqsubseteq \neg Teen \quad \rightsquigarrow \quad \{w\} \subseteq \{u,v,w\}
JuvDis \sqsubseteq \forall Affects.Child \quad \rightsquigarrow
```


Consider our previous example interpretation:

$$\Delta^{\mathbb{J}} = \{u, v, w\}$$
 $Affects^{\mathbb{J}} = \{\langle u, w \rangle\}$
 $JuvDis^{\mathbb{J}} = \{u\}$ $Child^{\mathbb{J}} = \{w\}$ $Teen^{\mathbb{J}} = \emptyset$

I is a model of the following axioms:

Consider our previous example interpretation:

$$\Delta^{\mathbb{J}} = \{u, v, w\}$$
 $Affects^{\mathbb{J}} = \{\langle u, w \rangle\}$
 $JuvDis^{\mathbb{J}} = \{u\}$ $Child^{\mathbb{J}} = \{w\}$ $Teen^{\mathbb{J}} = \emptyset$

J is a model of the following axioms:

Consider our previous example interpretation:

$$\Delta^{\mathbb{J}} = \{u, v, w\}$$
 $Affects^{\mathbb{J}} = \{\langle u, w \rangle\}$
 $JuvDis^{\mathbb{J}} = \{u\}$ $Child^{\mathbb{J}} = \{w\}$ $Teen^{\mathbb{J}} = \emptyset$

J is a model of the following axioms:

$$JuvDis \sqsubseteq \exists Affects.Child \quad \rightsquigarrow \quad \{u\} \subseteq \{u\}$$

$$Child \sqsubseteq \neg Teen \quad \rightsquigarrow \quad \{w\} \subseteq \{u,v,w\}$$

$$JuvDis \sqsubseteq \forall Affects.Child \quad \rightsquigarrow \quad \{u\} \subseteq \{u,v,w\}$$

$$JuvDis \sqsubseteq \exists Affects.(Child \sqcap Teen) \quad \leadsto \quad \{u\} \nsubseteq \emptyset$$

$$\neg Teen \sqsubseteq Child \quad \leadsto \quad \{u,v,w\} \nsubseteq \{w\}$$

$$\exists Affects. \top \sqsubseteq Teen \quad \leadsto$$

Consider our previous example interpretation:

$$\Delta^{\mathbb{J}} = \{u, v, w\}$$
 $Affects^{\mathbb{J}} = \{\langle u, w \rangle\}$
 $JuvDis^{\mathbb{J}} = \{u\}$ $Child^{\mathbb{J}} = \{w\}$ $Teen^{\mathbb{J}} = \emptyset$

I is a model of the following axioms:

```
JuvDis \sqsubseteq \exists Affects.Child \quad \rightsquigarrow \quad \{u\} \subseteq \{u\}
Child \sqsubseteq \neg Teen \quad \rightsquigarrow \quad \{w\} \subseteq \{u,v,w\}
JuvDis \sqsubseteq \forall Affects.Child \quad \rightsquigarrow \quad \{u\} \subseteq \{u,v,w\}
```

$$JuvDis \sqsubseteq \exists Affects.(Child \sqcap Teen) \quad \leadsto \quad \{u\} \nsubseteq \emptyset$$

$$\neg Teen \sqsubseteq Child \quad \leadsto \quad \{u,v,w\} \nsubseteq \{w\}$$

$$\exists Affects. \top \sqsubseteq Teen \quad \leadsto \quad \{u\} \nsubseteq \emptyset$$

Conclusion

- Description Logics are a family of knowledge representation languages
- They can be seen as syntactic fragments of first-order predicate logic
- Only unary and binary predicate symbols, no function symbols (of positive arity)
- Use of quantification is restricted by guards
- ALC is the basic description logic
- Syntax of DLs: concepts (atomic/complex), general concept inclusions
- DL knowledge bases: consist of TBox and ABox
- Semantics of DLs: direct model-theoretic semantics (or translation to FOL)

