
Reintroducing CEL as an OWL 2 EL Reasoner⋆

Julian Mendez and Boontawee Suntisrivaraporn

Theoretical Computer Science, TU Dresden, Germany
{mendez,meng}@tcs.inf.tu-dresden.de

Abstract. The CEL system is known for its scalability of reasoning in
the lightweight DL EL++ which has been proved suitable for several on-
tology applications, most notably from the life science domain. Recently,
the DL EL++ has been adopted as the logical underpinning of the OWL
2 EL profile of the new Web Ontology Language which potentially at-
tracts new folks of CEL’s users. To seamlessly integrate the reasoner to
the OWL user community, we have implemented the OWL API for CEL.
This paper describes the challenges, design decision and architecture of
this implementation. Additionally, we present experimental results which
highlight the scalability of the reasoner, as well as demonstrate a low
overhead of our OWL API implementation.

1 Introduction

The system CEL1 has been a first step toward realizing the dream of a DL system
that offers both sound and complete polynomial-time reasoning and expressive
means that allow its use in real-world applications. Since it first came into exis-
tence in 2005 [BLS05], CEL was the only academic DL system that was capable of
classifying entire Snomed ct. This has subsequently sparked interest in the DL
community to research on optimization techniques specific to biomedical ontolo-
gies (in particular, to Snomed ct), and later enabled tableau-based reasoners
like FaCT

++ and RacerPro to take advantage of simple structures of ontologies of
this kind. Some of the most effective optimizations employed in these systems are
described in [HT05, HMW08]. Besides, the OWL reasoner Pellet, together with
the ontology-specific reasoning system Snorocket [Law08], has also implemented
the polynomial-time reasoning algorithm which helps boost the performance of
reasoning whenever the ontology under consideration is described by a tractable
fragment of OWL.

Recently, the OWL working group (WG) has identified three profiles (i.e.
logical fragments of OWL 2), which are OWL 2 EL, OWL 2 QL, and OWL 2
RL.2 The OWL 2 QL profile includes many of the main features of conceptual
models such as UML class diagrams and ER diagrams. The OWL 2 RL profile
is aimed at applications that require scalable reasoning without sacrificing too

⋆ Funded by the German Research Foundation (DFG) under grant BA 1122/11-1.
1 CEL’s sources are now open and obtainable at http://cel.googlecode.com.
2 http://www.w3.org/TR/owl2-profiles

much expressive power. The OWL 2 EL profile is heavily based on the tractable
Description Logic EL

++, as well as motivated by the evidence of scalability of
reasoning by the CEL reasoner. The standardization of the DL EL

++ as the
OWL 2 EL potentially attracts new folks of CEL’s users. In order to seamlessly
integrate the reasoner to the OWL user community, we have implemented the
OWL API for CEL. Certain considerations and decisions needed to be made due
to the difference in programming languages (between CEL and the OWL API)
and efficiency requirements.

This paper describes the challenges, design decision and architecture of our
implementation. Additionally, we present experiment results, comparing classi-
fication performance of several state-of-the-art DL reasoners. These results not
only emphasize the scalability of the CEL reasoner but also demonstrate a rea-
sonably low overhead of our OWL API implementation.

2 OWL 2 EL Profile vs. EL
++

Recently, the tractability border of the DLs in the EL family has been pushed
even further [BBL08] to effectively include reflexivity and range restrictions on
roles.3 This gives rise to the new DL EL

++ which is more expressive yet tractable.
There are also extensions on EL

++ that are tractable [KRH08a, KRH08b]. The
effort to refine and extend the first Web Ontology Language and to standardize
new DLs — among others including EL

++— has resulted in a specification
proposal of OWL 2 which comprises a number of profiles.

Apart from their syntax format and certain regularity conditions on role in-
clusions (see [HKS06]), the OWL 2 EL profile is equivalent to the DL EL

++

in terms of logical expressivity. This section recaps the syntax and semantics of
the DL and provides correspondence between OWL 2 EL syntactic elements and
those of EL++. In DLs, one typically starts with pairwise disjoint sets of concept
names CN, role names RN and individuals Ind. Concept and role names in DLs
directly correspond to OWL classes and (object) properties, while individuals
in DLs are also individuals in OWL’s lingo. The upper part of Table 1 summa-
rizes correspondence between EL

++ concept constructors and OWL 2 EL class
constructors, as well as those functional syntax elements recognized by CEL.

An EL
++ ontology (consisting of TBox and ABox components) corresponds

to an OWL 2 EL ontology. An ontology is a set of axioms and assertions which
are depicted in the lower part of Table 1. Note that a few axiomatic forms are
simply syntactic sugar, but they are nevertheless both specified by OWL 2 EL
and recognized by CEL for ease of use.

Like most other DLs, the DL EL
++— and thus OWL 2 EL profile — employs

the set-theoretic semantics. For the semantics as well as its syntactic restriction,
we refer the reader to [BBL08, Sun09].

3 A syntactic restriction limiting the interplay between role inclusions and range re-
strictions are needed to ensure decidability and tractability of complete reasoning.

DL syntax CEL native syntax OWL 2 functional style syntax

⊤ top Thing
⊥ bottom Nothing
C1 ⊓ · · · ⊓ Cn (and C1 · · · Cn) IntersectionOf(C1 · · · Cn)
∃r.C (some r C) SomeValuesFrom(r C)

C1 ⊑ C2 (implies C1 C2) SubClassOf(C1 C2)
C1 ≡ C2 (equivalent C1 C2) EquivalentClasses(C1 C2)
C1 ⊓ C2 ⊑ ⊥ (disjoint C1 C2) DisjointClasses(C1 C2)
r1 ⊑ r2 (role-inclusion r1 r2) SubPropertyOf(r1 r2)
r1◦· · ·◦rn ⊑ s (role-inclusion

(compose r1 · · · rn) s)

SubPropertyOf(
PropertyChain(r1 · · · rn) s)

r1 ≡ r2 (role-equivalent r1 r2) EquivalentProperties(r1 r2)
domain(r) ⊑ C (domain r C) PropertyDomain(r C)
range(r) ⊑ C (range r C) PropertyRange(r C)
reflexive(r) (reflexive r) ReflexiveProperty(r)
transitive(r) (transitive r) TransitiveProperty(r)
a1 = a2 (same-individuals a1 a2) SameIndividual(a1 a2)
a1 6= a2 (different-individuals a1 a2) DifferentIndividuals(a1 a2)
C(a) (instance a C) ClassAssertion(C a)
r(a1, a2) (related a1 a2 r) PropertyAssertion(r a1 a2)

Table 1. Correspondence between DL, CEL and OWL 2 EL syntax elements.

3 CEL’s Support for Supplemental Reasoning Services

The classical reasoning services supported by most DL systems are all deductive
reasoning, where implicit knowledge is deduced from that given explicitly. Two
probably most important classical reasoning services at the concept level are
subsumption checking (i.e. whether one concept is more general/specific than
the other) and satisfiability checking (i.e. whether the concept in question can
be interpreted as a non-empty set). At the ontology level, inevitable reasoning
services include consistency checking (i.e. whether the ontology has a model)
and classification (i.e. computation of the concept hierarchy).

Though necessary, these reasoning services alone are not adequate for real-
izing a full-fledged ontology development environment. Supplemental reasoning
services, such as incremental classification, module extraction and axiom pin-
pointing are required. Several reasoning techniques for these supplemental ser-
vices have been proposed in the literature, some of which are generic in the sense
that they can be applied to any DLs while some others are logic specific.

Version 1.0 of CEL implements many of these reasoning techniques and na-
tively supports the following reasoning services:

Partial incremental classification Provided that a well-developed ontology
O, for instance Snomed ct, has been classified. Additional axioms O+ can
be asserted to CEL in such a way that CEL reuses the previous classification
information together with the new axioms in order to produce classification

results w.r.t. O ∪ O+. Usage of this reasoning service include incremental
development of large ontologies and complex subsumption query answering.

Module extraction Given a large ontology O and a signature S (i.e. set of
concept and role names) of interest, CEL can efficiently extract a subset
OS of O that preserves the meaning of symbols in S. This supplemental
reasoning service has not only been proved helpful in ontology import usage
scenarios but can also be exploited as a highly effective optimization of axiom
pinpointing.

Axiom pinpointing Given an ontology and a dubious consequence, may it be
a subsumption relationship or an unsatisfiable concept, axiom pinpointing
can efficiently compute a justification (all justifications) for the consequence.
These justifications can then be used to explain or debug that consequence.

For details of the implemented techniques and promising experimental results
on several life science ontologies, refer to [Sun09].

4 CEL’s Support for the OWL API

The growing use of DL specific tools encouraged us to integrate CEL into the
most recent applications. In particular, the OWL API has been successfully used
in Protégé4. Thus, the OWL API represents a practical tool for connecting with
Java, and therefore to the most modern technologies.

One of the main obstacles we found was the disparity in tools for Lisp and
Java. We first looked for a tool for connecting these two technologies.

Use of jLinker We found that some tools were available for allowing a con-
nection between Java and Lisp. That is the case of jLinker, a library for
Allegro Common Lisp, developed by Franz Inc.5. Originally designed for us-
ing Java from Lisp, this library did not bring us enough simplicity in its use.
In addition, the provided support for data types is insufficient and rather
cumbersome to be used. After a few attempts, we considered the primitive
but effective way of communication via the operating system: a system call
using the standard input and the standard output.

Standard input/output We considered the possibility of using standard input
and standard output communication. The purpose was to take advantage of
the functionality already provided by the operating system, and the fact that
CEL is a compiled program. Even it was theoretically possible to be used in
this way, we discarded this architecture after measuring the times needed by
the operating system for every system call. Even though we did not rely on
the standard input and output for communication, the system call idea was
still employed in our final architecture.
Since we had discarded the possibility of using Lisp objects from Java, we
needed a communication protocol. One of the available standards we had
was DIG 1.0.6

4 Protégé is available at: http://protege.stanford.edu
5 http://www.franz.com/
6 http://dl.kr.org/dig/

Use of DIG 1.0 CEL supports the DIG 1.1 interface which should make this
design option fairly easy to realize. However, the Java part needed a DIG
1.0 writer and parser to communicate with the CEL DIG server. Judging
from the potential overhead of conversion between OWL API7 objects and
bulky DIG XML documents as well as from our unsatisfactory experience
with overly large communication overhead, we have decided to employ S-
expressions instead of DIG.

S-expressions (symbolic expressions) are expressions that represent semi-
structured data in human-readable textual form. They consist of symbols and
lists, and they are used in Lisp as the representation of source code and data.
S-expressions are beneficial in our setting in the sense that they do not require
any transformation on the Lisp side, and remain relatively simple for parsing
by Java. As a result of our decision, CEL was extended with an interface for
following the naming convention of OWL API, and an S-expression parser in
Java was developed.

After considering the previous options, we decided to use a system call from
Java to start a permanent socket connection, and send and receive S-expressions
through the socket. This architecture is explained in detail in the following sec-
tion. We can see in Table 2 an example of how the OWL API maps the expres-
sivity of OWL 2.

5 The Architecture

In the previous section, we discussed the options we have considered, and those
we consider the best ones. In this section, we show how these options were
implemented.

We designed a system based on layers. Each layer communicates to the con-
tiguous ones, but cannot use more information from beyond. The mentioned lay-
ers are the following: the OWL API interface, the OWL CEL translator, and the
connection manager. Besides, there is an independent library, the S-expression
parser, which is used by the connection manager. This integration is summarized
in the diagram of Figure 1.

The different modules with their function are:

OWL API interface. It follows the OWL API interface implementing an
OWLReasoner. Its main function is to filter all the unimplemented functions. Only
those supported and valid requests are forwarded to the next layer. This layer
was especially useful during the development because it can log the functions
required by Protégé.

OWL API / CEL translator. This is composed of two different parts:

– a part that translates every OWL API valid object into a CEL S-expression

– a part that translates a CEL S-expression response into an OWL API object

7 http://owlapi.sourceforge.net/

OWL 2 OWL API

Class OWLClass
ObjectProperty OWLObjectProperty
Individual OWLIndividual

Thing OWLThing
Nothing OWLNothing
IntersectionOf OWLObjectIntersectionOf
SomeValuesFrom OWLObjectSomeRestriction

SubClassOf OWLSubClassAxiom
EquivalentClasses OWLEquivalentClassesAxiom
DisjointClasses OWLDisjointClassesAxiom
SubPropertyOf OWLObjectSubPropertyAxiom
EquivalentProperties OWLEquivalentObjectPropertiesAxiom
PropertyDomain OWLObjectPropertyDomainAxiom
PropertyRange OWLObjectPropertyRangeAxiom
ReflexiveProperty OWLReflexiveObjectPropertyAxiom
TransitiveProperty OWLTransitiveObjectPropertyAxiom
SameIndividual OWLSameIndividualsAxiom
DifferentIndividuals OWLDifferentIndividualsAxiom
ClassAssertion OWLClassAssertionAxiom
PropertyAssertion OWLObjectPropertyAssertionAxiom

Table 2. Mapping between OWL 2 syntactic elements and the OWL API.

b

b b

b b

b b

bOWL

OWL

connection

S-exp

CEL

CEL
translator

OWL
translator

manager
API

interface

CEL

reasonerOWL obj

OWL obj

S-exp

S-exp

stream

stream

Protégé

CEL plug-in

parser

Fig. 1. System architecture.

Besides the translation, this layer manages a small cache in Java. In partic-
ular, this layer keeps a reference to the most recent ontology, and a status flag
to check whether the ontology has changed. Whenever the ontology is updated,
this is cached in this module. In this way, this layer answers queries that can be
responded without the need to ask the CEL process.

Connection manager. This layer manages the connection with the CEL

reasoner. It keeps track of whether a connection has already been established,
and starts a connection when it is necessary. This layer starts the CEL process
only with the first request. In case that for some rare circumstances the CEL

process is stopped, this layer tries to start a new CEL process. This is technically
managed using the connection ports. Port allocation is managed and maintained
by the OS, and Java gets a message from the OS whenever a port is occupied.
In case that no port is available, an exception is thrown signaling that the CEL

process could not be started.
This layer works in the following way:

1. receives a request
2. checks whether there is already an active CEL process
3. if not, copies CEL’s executable files into a temporary directory and tries to

start a new process
4. converts the S-expression into a stream
5. sends this value to the CEL process, and waits reading the console
6. while it is necessary, updates the progress monitor according to the console
7. parses the stream sent by CEL into an S-expression, and returns this value

From the point of view of the other layers, this one is just a simple Java
class. There are not any means to give information about the connection status.
Conversely, nothing on this layer is specific to a particular Description Logic.
Instead, this layer simply sends and receives S-expressions to and from a process,
without interpreting their content.

S-expression parser. For the conversion and parsing of the S-expressions,
we used an ad-hoc module. This module is composed of two different parts:

– a part that converts an S-expression into a string
– a part that parses a string to get an S-expression

Although the conversion from S-expressions to strings is quite straightforward,
some considerations were taken into account to prevent the overhead of con-
catenating strings in Java. On the other hand, the parser for S-expressions was
designed according to the conventions used in Lisp.

In the following, we present some of the alternatives we discarded.
One of our alternative designs was the use of one single instance of the

connection manager for multiple instances of Protégé, and thus ontologies, in
the same Java virtual machine. That is a single instance that would keep track
of all the connected reasoners. This design was discarded because it was not
necessary to have this information in one single object. In particular, socket
allocation and management are centralized by the operating system, and the

sockets provided in the operating system provide enough information to open
new connections.

We also considered caching the results given by the CEL process. We observed
that some queries, for example whether a class is consistent or inconsistent, are
frequently performed by Protégé. We had initially thought that caching this
sort of information would save communication time. However, we have opted to
disable caching because the CEL process already has this information quickly
accessible, and the communication time is virtually negligible.

6 Experiments

This section describes experimental results on classification of large-scale biomed-
ical ontologies, comparing several state-of-the-art DL reasoning systems. The
second part empirically demonstrate that our architecture and implementation
of OWL API is fairly efficient, as classification time with the OWL API over-
heads is not substantially larger than the one in the stand-alone mode.

Ontology test suite

Six realistic large-scale ontologies from the life science domain have been used in
our experiments. These are: the Systematized Nomenclature of Medicine, Clinical
Terms (Snomed ct), two commonly used versions of the Galen Medical Knowl-
edge Base (Galen), the Gene Ontology (Go), the thesaurus of the US National
Cancer Institute (Nci), and the Foundational Model of Anatomy (Fma).8

Since Galen is based on the DL ELHIfR+ and CEL does not support inverse
and functional roles, we actually considered the stripped-down version without
these features. Table 3 summarizes the size and other pertinent characteristics
of all the test-suite ontologies. The number of axioms is broken down into the
following kinds: primitive concept definitions (PCDef), full concept definitions
(CDef), general concept inclusions (GCI), role inclusion axioms (RI). The latter
also includes domain and range restrictions if present.

Evaluation results

The current version of CEL is written in Common Lisp and compiled and built
using Allegro Common Lisp 8.1, and the CEL plug-in for Protégé is written in
Java and compiled using Sun’s Java Development Kit 1.6.0.9

Like most evaluation methods for DL and other reasoning systems, all the
experiments described in this section use ‘CPU time’ as the main performance
indicator. Memory consumption is also discussed whenever appropriate. In order
to confine the execution environment and hence to induce sensible comparison,
the experiments were performed on the same Linux testing server which was

8 The ontologies are at: http://lat.inf.tu-dresden.de/~meng/ontologies/
9 The tools and sources are available at http://cel.googlecode.com.

Ontologies ♯Concepts ♯Roles ♯Axioms

PCDef CDef GCI RI

OGo 20 465 1 19 465 0 0 1

ONci 27 652 70 27 635 0 0 140

OFma 75 139 2 75 139 0 0 2

ONotGalen 2 748 413 2 030 695 408 442

OFullGalen 23 136 950 13 149 9 968 1 951 1 016

OSnomed 379 691 62 340 972 38 719 0 13

Table 3. The test suite of realistic biomedical ontologies.

equipped with two 2.19 GHz AMD Opteron processors and 2 GB of physical
memory.

Since classification is one of the most classical inference services, classifica-
tion time is often used as a performance indicator for DL systems. A number of
state-of-the-art DL reasoners—i.e., FaCT

++10, HermiT11, KAON212 Pellet13, and
RacerPro14 —were considered for performance comparison. These DL reasoners
vary in the sense that they implement different reasoning calculi and are written
in different languages. For HermiT, KAON2 and Pellet, Sun’s Java Runtime En-
vironment (JRE) version 1.6.0 was used with allotted 1.5 GB heap space. Some
reasoners are not equipped with a profiling facility to internally measure CPU
time. To achieve comparable measurement, an external timing utility was used
with all the classifying systems.

All ontologies in the test suite described in the previous section were used as
benchmarks for comparing the performance of the DL reasoners. In the case of

OSnomed, the two complex role inclusions were only passed to CEL and FaCT
++

but not to the other reasoners, as the latter do not support such axioms. Table 4
shows the (two-run average) time taken by the respective reasoners to classify
the biomedical ontologies, where m/o means that the reasoner failed due to
memory exhaustion, and t/o means that the reasoner did not terminate within
the allocated time of 24 hours. Figure 2 depicts a comparison chart of reasoners’
performance based on their classification time, where m/o and t/o are displayed
as full vertical bars.

It can be seen from the chart and the table that CEL is the only DL reasoner
that can classify all six biomedical ontologies in the test suite and outperforms
Pellet, HermiT and KAON2 in all cases. Compared with the other reasoners, CEL

is faster than FaCT
++ and RacerPro w.r.t. all but ONci and OSnomed. It should

be noted that, when it first came into existence in 2005 [BLS05], CEL was the only

10 http://owl.man.ac.uk/factplusplus/
11 http://www.hermit-reasoner.com
12 http://kaon2.semanticweb.org
13 http://clarkparsia.com/pellet/
14 http://www.racer-systems.com

Ontologies OGo ONci OFma ONotGalen OFullGalen OSnomed

CEL 0.98 3.75 9.04 2.83 201 1 258
FaCT++ 20.12 1.72 t/o 3.28 m/o 606
HermiT 16.75 34.92 123 12.35 m/o m/o
KAON2 m/o m/o t/o m/o m/o t/o
Pellet 52.58 36.11 7 753 31.56 m/o m/o
RacerPro 17.11 13.36 629 17.06 t/o 1 155

Table 4. Computation time (second).

Fig. 2. Performance comparison through classification time (second).

academic DL system that was capable of classifying entire Snomed ct. This has
subsequently sparked interest in the DL community to research on optimization
techniques specific to the biomedical ontologies (in particular, to Snomed ct),
and later enabled tableau-based reasoners like FaCT

++ to take advantage of
simple structures of ontologies of this kind. These reasoners employed some of the
optimization techniques described in [HT05, HMW08] that are highly effective

on simpler TBoxes (i.e., without GCIs) like OSnomed. However, when a large

number of GCIs are present as in the case of OFullGalen, these reasoners
fail due to either memory exhaustion or time out. Interestingly, CEL is the only

reasoner that can classify OFullGalen.

According to our preliminary experiments on OWL API, classification time
by the CEL reasoner through OWL API and Protégé are not much larger than
those by the stand-alone CEL reasoner. Considerably more memory consumption
by the former setting was expected since Protégé and our OWL API implemen-
tation need to maintain their own data structures. In particular, Protégé has a
representation of the entire ontology in form of OWL API objects.

7 Concluding Remarks

In this paper, we have described a new extension to the CEL reasoner, an OWL
API implementation and reasoner plug-in for Protégé, which shows CEL’s rea-

soning capabilities to Protégé users. We presented the challenges, design decision
and architecture of this implementation.

The CEL system is known for its scalability of reasoning in DL EL
++. As

shown in the paper, this logic is suitable for several ontology applications, most
notably from the life science domain. The presented extension allows the con-
nection between the OWL API and CEL. In addition, we presented results that
remark the scalability of the reasoner, with a reasonably low overhead of our
OWL API implementation. Since DL EL

++ has been taken as the basis for the
OWL 2 EL profile of the new Web Ontology Language, new users might find
CEL a useful tool. We have implemented the OWL API for CEL to seamlessly
integrate the reasoner to the OWL user community.

References

[BBL08] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL en-
velope further. In Kendall Clark and Peter F. Patel-Schneider, editors, In
Proceedings of the OWLED 2008 DC Workshop on OWL: Experiences and
Directions, 2008.

[BLS05] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. Is tractable
reasoning in extensions of the description logic EL useful in practice? In
Proceedings of the 2005 International Workshop on Methods for Modalities
(M4M-05), 2005.

[HKS06] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible
SROIQ. In Proceedings of the 10th International Conference on Principles
of Knowledge Representation and Reasoning (KR’06), pages 57–67. AAAI
Press, 2006.

[HMW08] V. Haarslev, R. Möller, and S. Wandelt. The revival of structural sub-
sumption in tableau-based description logic reasoners. In Proceedings of
the 2008 International Workshop on Description Logics (DL2008), CEUR-
WS, 2008.

[HT05] I. Horrocks and D. Tsarkov. Optimised classification for taxonomic knowl-
edge bases. In Proceedings of the 2005 International Workshop on Descrip-
tion Logics (DL’05), pages 184–191, 2005.

[KRH08a] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Description logic
rules. In Malik Ghallab, Constantine D. Spyropoulos, Nikos Fakotakis, and
Nikolaos M. Avouris, editors, Proceedings of the 18th European Conference
on Artificial Intelligence, volume 178 of Frontiers in Artificial Intelligence
and Applications, pages 80–84. IOS Press, 2008.

[KRH08b] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Elp: Tractable
rules for owl 2. pages 649–664. 2008.

[Law08] Michael Lawley. Exploiting fast classification of SNOMED CT for query
and integration of health data. In Proceedings of the 3rd Knowledge Repre-
sentation in Medicine Conference (KR-MED’08): Representing and Shar-
ing Knowledge Using SNOMED, Phoenix AZ, USA, 2008.

[Sun09] Boontawee Suntisrivaraporn. Polynomial-Time Reasoning Support for De-
sign and Maintenance of Large-Scale Biomedical Ontologies. PhD thesis,
TU Dresden, Institute for Theoretical Computer Science, Germany, 2009.

