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Abstract—Academia and industry are investigating novel
approaches for processing vast amounts of data coming from
enterprises, the Web, social media and sensor readings in
an area that has come to be known as Big Data. Logic
programming has traditionally focused on complex knowledge
structures/programs. The question arises whether and how it
can be applied in the context of Big Data. In this paper, we
study how the well-founded semantics can be computed over
huge amounts of data using mass parallelization. Specifically,
we propose and evaluate a parallel approach based on the X10
programming language. Our experiments demonstrate that our
approach has the ability to process up to 1 billion facts within
minutes.
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I. INTRODUCTION

The quantity of available data generated by social me-
dia, sensor networks, scientific databases and government
authorities is increasing in an unprecedented pace. Big data
comes with new challenges and opportunities for diverse
scientific, technological and business developments. A sig-
nificant aspect of Big Data is its heterogeneity and the desire
to combine with other information, including databases and
web data, in order to increase utility.

The question arises whether research on areas such as
knowledge representation, rule systems, logic programming
and the Semantic Web can connect to the Big Data wave.
On the one hand, there is a clear application scope, e.g.
deriving higher-level knowledge, assisting decision support
and data cleaning. On the other hand, there are significant
challenges arising from the area’s traditional focus on rich
knowledge structures instead of large amounts of data and
the computational cost of many methods central to the area.

As established by the LarKC project [1], the most promi-
nent approach for enabling reasoning with big data is paral-
lelization by distributing computation among nodes. There
are mainly two proposed approaches in the literature, namely
rule partitioning and data partitioning [2].

Rule partitioning is based on the idea that the computation
of each rule is assigned to a node in the cluster, forming a
pipeline of operations. In this case, the workload for each
rule (and node) depends on the structure and the size of the

given rule set, which could possibly prevent balanced work
distribution and high scalability. An experimental evaluation
reported in [2] shows sub-linear but monotonic speedups.
However, the used rule sets were small, and thus, only a
small number of processors could be utilized.

In data partitioning, data is partitioned among nodes,
allowing more balanced distribution of the computation.
The partitioning must be performed carefully, since an
uneven data distribution can have detrimental effects on
performance. In [3], the authors pointed out the fact that
Semantic Web data follow a highly uneven distribution and,
to balance computation costs, they proposed the divide-
conquer-swap strategy [4] in which data is constantly re-
partitioned. Inference is performed independently on each
partition and the system guarantees eventual completeness
of the process.

WebPIE [5] implements forward reasoning under RDFS
and OWL ter Horst semantics over the MapReduce frame-
work scaling up to 100 billion triples. In [6], authors deal
with parallel materialization of RDFS closure using message
passing interface (MPI). Their implementation is reported to
scale up to 128 cores with input of hundreds of millions of
triples. In [7] authors present an approach for calculating the
RDFS closure on billions of triples completely in-memory
using the Cray XMT shared-memory supercomputer. The
system is shown to be able to scale up to 512 processors
while handling 20 billion triples completely in-memory.
Deslog [8] is a parallel tableau-based description logic

reasoner for ALC. Several optimization techniques were
incorporated into the shared-memory parallel reasoner, thus
leading to good scalability properties for TBox classification.
UUPR (Ulm University Parallel Reasoner) [9] parallelized
a sequential algorithm for SHN ABoxes, parallelizing the
tableau procedure itself, by utilizing concurrent computa-
tion of the nondeterministic choices. Various optimizations
were added to the shared-memory parallel implementation,
speeding up the reasoning process.

Several works based on nonmonotonic reasoning, having
the ability of dealing with incomplete information or incon-
sistencies, have recently been reported. More specifically,
[10] presents an approach for defeasible logic with unary



predicates scaling up to billions of facts and an extension
for predicates of arbitrary arity, under the assumption of
stratification, scaling up to millions of facts [11]. The work
in [12] deals with the computation of stratified semantics of
logic programming that can be applied to billions of facts.

In this paper, we propose a parallel approach for the well-
founded semantics computation using the X10 programming
framework [13]. In particular, we implement highly efficient
parallel join and anti-join operations, and calculate the well-
founded model for the given program. The calculation of a
negative rule as a sequence of join and anti-join operations
was initially described in [12].

Our current paper differs from previous works with the
following contribution: (a) our parallel in-memory imple-
mentation is more efficient compared to an implementation
based on the MapReduce framework as we do not require
storing intermediate results in secondary storage, and (b)
we allow recursion through negation, meaning that the well-
founded model can contain undefined atoms, while avoiding
the Herbrand base materialization which is prohibiting for
the case of Big Data due to the excessive amount of gener-
ated data. Experimental evaluation presents the advantages
of using X10, while showing that our approach can process
1 billion facts within minutes.

Considering the expressiveness of our method, logic pro-
gramming (under Well-Founded Semantics) has orthogonal
functionality compared to description logic based languages.
While logic programs without negation would roughly fall
under OWL 2 RL, negation (with recursion) adds new
functionality not present in description logics, allowing for
reasoning with incomplete and conflicting information.

The rest of the paper is organized as follows. Section II
introduces briefly the X10 programming language, the well-
founded semantics and the alternating fixpoint procedure.
Parallel join and anti-join operations for the well-founded
semantics are described in Section III. Section IV describes a
parallel implementation and the correctness of the approach,
while an experimental evaluation is reported in Section V.
We conclude and discuss future directions in Section VI.

II. PRELIMINARIES

In this section, we describe the basic notions of the X10
programming language, the Well-Founded Semantics and the
Alternating Fixpoint Procedure.

A. X10

X10 [13] is a new multi-paradigm programming language
developed by IBM. It supports the asynchronous partitioned
global address space (APGAS) model and is specifically
designed to increase programmer productivity, while being
amenable to programming shared memory and distributed
memory supercomputers. It uses the concepts of place
and activity as the kernel notions to exploit parallelism
in the available hardware. A place is a logical abstraction

of the underlying heterogeneous processing element in the
hardware, such as cores in a multi-core architecture, GPUs,
or an entire physical machine. Activities are light-weight
threads that run on places. X10 schedules activities on places
to best utilize the available parallelism. The number of places
is constant through the life-time of an X10 program and
is initialized at program startup. Activities on the other
hand can be forked at program execution time. Forking an
activity can be blocking, wherein the parent returns after
the forked activity completes execution, or non-blocking,
wherein the parent returns instantaneously, after forking an
activity. Furthermore, these activities can be forked locally
or on a remote place.

X10 provides a data structure called distributed array
(DistArray) for programming parallel algorithms. One
or more elements in the DistArray can be mapped to
a single place using the concept of points [13], and such
elements can be kept in or operated on memory through
the life of the code. The following three X10 primitives
are critical in understanding the pseudocode given in the
following sections:

- at(p) S: this construct executes statement S at a
specific place p. The current activity is blocked until S
finishes executing on p.

- async S: a child activity is forked by this construct.
The current activity returns immediately (non-blocking)
after forking S.

- finish S: this construct is used to block the current
activity and wait for all activities forked by S to
terminate.

There are a number of advantages using the X10 language,
and in turn the APGAS model, to implement our algorithm:
(1) flexible and efficient scheduling. APGAS, like PGAS,
separates tasks from the underlying concurrency model,
thereby allowing one to implement an efficient schedul-
ing strategy irrespective of the number of tasks forked
using async; (2) APGAS, being derived from both MPI
and OpenMP programming models, extracts parallelism at
both the distributed and single machine hierarchies; (3) the
abstract programming model supports the development of
succinct code which is easier to debug and maintain.

B. Well-Founded Semantics

In this section, we provide the definition of the well-
founded semantics (WFS) as they were defined in [14].

Definition 2.1: [14] A general logic program is a finite
set of general rules, which may have both positive and
negative subgoals. A general rule is written with its head,
or conclusion on the left, and its subgoal (body), if any,
to the right of the symbol “←”, which may be read “if”.
For example, “p(X) ← a(X), not b(X).”, is a rule in which
p(X) is the head, a(X) is a positive subgoal, and b(X) is a
negative subgoal. This rule may be read as “p(X) if a(X) and



not b(X)”. A Horn rule is one with no negative subgoals,
and a Horn logic program is one with only Horn rules.

We use the following conventions: A logical variable starts
with a capital letter while a constant or a predicate starts with
a lowercase letter. Functions are not allowed. A predicate
of arbitrary arity will be referred to as a literal. Constants,
variables and literals are terms. A ground term is a term with
no variables. The Herbrand universe is the set of constants
in a given program. The Herbrand base is the set of ground
terms that are produced by the substitution of variables with
constants in the Herbrand universe. In this paper, we refer to
Horn rules also as definite rules. Likewise, Horn programs
are referred to as definite programs. In addition, each rule
is required to be safe, that is, each variable in a rule must
occur (also) in a positive subgoal.

Definition 2.2: [14] Let a program P, its associated
Herbrand base H and a partial interpretation I be
given. We say A ⊆ H is an unfounded set (of P)
with respect to I if each atom p ∈ A satisfies the
following condition: For each instantiated rule R of P
whose head is p, (at least) one of the following holds:

(1) Some (positive or negative) subgoal q of the body is
false in I,

(2) Some positive subgoal of the body occurs in A.
A literal that makes (1) or (2) above true is called a witness
of unusability for rule R (with respect to I).

Theorem 2.1: [14] The data complexity of the well-
founded semantics for function-free programs is polynomial
time.

C. Alternating Fixpoint Procedure

In this section, we provide the definition of the alternating
fixpoint procedure as it was defined in [15].

Definition 2.3: [15] For a set S of literals we define the
following sets:

pos(S) := {A ∈ S | A is a positive literal },
neg(S) := {A | not A ∈ S}.
Definition 2.4: [15] (Extended Immediate Consequence

Operator)
Let P be a normal logic program. Let I and J be sets of
ground atoms. The set TP,J (I) of immediate consequences
of I w.r.t. P and J is defined as follows:

TP,J (I) := {A | there is A ← B ∈ ground(P) with
pos(B) ⊆ I and neg(B) ∩ J = ∅}.

If P is definite, the set J is not needed and we obtain the
standard immediate consequence operator TP by TP (I) =
TP,∅(I).

For an operator T we define T ↑ 0 := ∅ and T ↑ i :=
T (T ↑ i− 1), for i > 0. lfp(T ) denotes the least fixpoint of
T , i.e. the smallest set S such that T (S) = S.

Definition 2.5: [15] (Alternating Fixpoint Procedure)
Let P be a normal logic program. Let P+ denote the
subprogram consisting of the definite rules of P. Then the

sequence (Ki,Ui)i≥0 with set Ki of true (known) facts and
Ui of possible (unknown) facts is defined by:

K0 := lfp(TP+ ) U0 := lfp(TP,K0
)

i > 0 : Ki := lfp(TP,Ui−1
) Ui := lfp(TP,Ki

)
The computation terminates when the sequence becomes
stationary, i.e., when a fixpoint is reached in the sense that
(Ki,Ui) = (Ki+1,Ui+1). This computation schema is called
the Alternating Fixpoint Procedure (AFP).

We rely on the definition of the well-founded partial
model W∗p of P as given in [14].

Theorem 2.2: [15] (Correctness of AFP)
Let the sequence (Ki,Ui)i≥0 be defined as above. Then
there is a j ≥ 0 such that (Kj ,Uj)=(Kj+1,Uj+1). The
well-founded model W∗p of P can be directly derived from
the fixpoint (Kj ,Uj), i.e.,

W∗p = {L | L is a positive ground literal and L ∈ Kj or
L is a negative ground literal not A and

A ∈ BASE(P) − Uj},
where BASE(P) is the Herbrand base of program P.

III. JOIN AND ANTI-JOIN FOR WFS

In this section we provide a description of the TP,J (I)
computation, which is modeled as a sequence of join and
anti-join operations.

A. Computing TP,J (I)

Consider the following program:

p(X,Y) ← a(X,Z), b(Z,Y), not c(X,Z).

here p(X,Y) is our final goal, a(X,Z) and b(Z,Y) are positive
subgoals, while not c(X,Z) is a negative subgoal. In order
to compute our final goal p(X,Y) we need to ensure that
{a(X,Z), b(Z,Y)} ⊆ I and {c(X,Z)} ∩ J = ∅, namely both
a(X,Z) and b(Z,Y) are in I while none of c(X,Z) is found in
J.

As positive subgoals depend on I we can group them into
a positive goal. A positive goal consists of a new predicate
(say ab) that contains as arguments the union of two sets:
(a) all the arguments of the final goal (X,Y) and (b) all the
common arguments between positive and negative subgoals
(X,Z), namely we need to compute ab(X,Z,Y). The final goal
(p(X,Y)) consists of all values of the positive goal (ab(X,Z,Y))
that do not match the negative subgoal (not c(X,Z)) on their
common arguments (X,Z).

B. Positive goal calculation

Consider the following program:

p(X,Y) ← a(X,Z), b(Z,Y), not c(X,Z).

where
I = {a(1,2), a(1,3), b(2,4), b(3,5)}
J = {c(1,2), c(2,3)}

A single join, calculating the positive goal ab(X,Z,Y), can
be performed as described in Algorithm 1. There, we divided



Algorithm 1 Single join
Hash-Redistribution: // n is the number of places

1: finish async at p ∈ P {
2: Initialize A:array[array[literal]](n),

B:array[array[literal]](n)
3: for all literal ∈ I do
4: if literal.predicate == a then
5: des=hash(literal.Z)
6: A(des).add(literal)
7: else if literal.predicate == b then
8: des=hash(literal.Z)
9: B(des).add(literal)

10: end if
11: end for
12: for i← 0..(n− 1) do
13: Push A(i) to r A(i)(here.id),

B(i) to r B(i)(here.id) at place i
14: end for }

Local Joins:
15: finish async at p ∈ P {
16: Initialize T b:hashmap[Z,Y], AB:array[literal]
17: for all literal ∈ r B(here.id) do
18: Add literal in T b
19: end for
20: for all literal ∈ r A(here.id) do
21: if T b.contains(literal.Z) then
22: AB.add(literal.X, literal.Z,

T b.get(literal.Z).value)
23: end if
24: end for }

our joins into two phases, namely hash-redistribution and
local joins. Note that we use only literals from I and that
we are interested in distinct literals.

As shown in lines 3-11 of Algorithm 1, all literals with
predicate a and b at each place (recall that a place is a
logical abstraction for a processing element and here means
current place in X10) are firstly grouped according to the
hash values of their join keys respectively, so as to reduce
transferred data and re-use computation. The grouped literals
are pushed to the corresponding remote places for joining.
We use the finish operation to guarantee the completion
of the data transfer at each place. For a two-node (n = 2)
system with a hash function based on the modulo of n, we
have the following pairs at each place after redistribution:

place 1 place 2
a(1,3) b(3,5) a(1,2) b(2,4)

Once the grouped literals have been transferred to the
appropriate remote places, the local joins can commence.
Line 15-24 of Algorithm 1 presents the details of this
process. A local HashMap T b is built based on the

received literals with predicate b, and all received literals
with predicate a are looked up over T b to retrieve the
matched literals. Intermediate results are kept in memory
for the latter processing. All these processes take place in
parallel at each place, and we use the finish operation
for synchronization. Thus, after execution, we have:

place 1 keeps ab(1,3,5) in memory
place 2 keeps ab(1,2,4) in memory

For rules with more than one join between positive
subgoals, we do multi-way joins. Consider the following
program:

q(X,Y) ← a(X,Z), b(Z,W), c(W,Y), not d(X,W).

We can compute the positive goal (abc(X,W,Y)) by applying
our approach for the single join twice. First, we need to
join a(X,Z) and b(Z,W) on Z, producing a temporary literal
(say ab(X,W)), and then join ab(X,W) and c(W,Y) on W
producing the positive goal (abc(X,W,Y)). Once abc(X,W,Y)
is calculated, we proceed with calculating the final goal
q(X,Y) by retaining all the values of abc(X,W,Y) that do not
match not d(X,W) on their common arguments (X,W).

C. Final goal calculation

Considering the program mentioned at the beginning of
Section III-B, by calculating the positive goal ab(X,Z,Y) we
obtain the following knowledge:

ab(1,3,5) at place 1 ab(1,2,4) at place 2

In order to calculate the final goal (p(X,Y)) we need to
perform an anti-join between the positive goal (ab(X,Z,Y))
and the negative subgoal (not c(X,Z)). To perform an anti-
join we use only the previously calculated positive goal
(ab(X,Z,Y)) and literals from J.

We perform an anti-join between ab(X,Z,Y) and not c(X,Z)
on their common arguments (X,Z), calculating the final goal
(p(X,Y)), which contains all the results from ab(X,Z,Y) that
are not found in c(X,Z), as described in Algorithm 2.

The process is similar to the one in Algorithm 1. Since
the intermediate results AB have already been redistributed
based on Z, we only need to transfer the literals with
predicate c in J , as shown in lines 3-11 of Algorithm 2. The
redistribution results in the following pairs at each place:

place 1 place 2
c(2,3) c(1,2)

During the phase of local anti-joins we output literals of
the predicate ab only if it is not matched by predicate c on
their common arguments Z and X at each place, and output
p(X,Y) correspondingly (lines 18-21). Finally, we get:

place 1 outputs p(1,5)
place 2 has no output



Algorithm 2 Anti-join
Hash-Redistribution:

1: finish async at p ∈ P {
2: Initialize C:array[array[literal]](n)
3: for all literal ∈ J do
4: if literal.predicate == c then
5: des=hash(literal.Z)
6: C(des).add(literal)
7: end if
8: end for
9: for i← 0..(n− 1) do

10: Push C(i) to r C(i)(here.id) at place i
11: end for }

Local Anti-joins:
12: finish async at p ∈ P {
13: Initialize T c:hashmap[Z,X], C:array[literal]
14: for all literal ∈ r C(here.id) do
15: Add literal in T c
16: end for
17: for all literal ∈ AB do
18: if !T c.contains(literal.Z) then
19: Output p(literal.X, literal.Y)
20: else if literal.X 6= T c.get(literal.Z).value then
21: Output p(literal.X, literal.Y)
22: end if
23: end for }

IV. COMPUTING THE WELL-FOUNDED SEMANTICS

In this section, we provide the algorithm for the calcu-
lation of the well-founded semantics and provide a proof
sketch in order to justify the correctness of our approach.

A. Algorithm description

An implementation of the well-founded semantics fixpoint
is depicted in Algorithm 3. The algorithm takes as input a
program P and calculates the sets of literals Ki and Ui until
fixpoint is reached, namely (Ki−1,Ui−1) = (Ki,Ui) for i ≥ 1.
Each set of literals (Ki and Ui) is calculated by the least
fixpoint of TP,J (I) depicted in Algorithm 4.

The least fixpoint of TP,J (I) (lfp) takes as input two
arguments, a program P and a set of literals J. Practically,
we calculate the least fixpoint of TP,J (I) where P and J are
given as input while I is initially set as empty (I=∅). We
also use a temporary set of inferred literals (new) in order
to eliminate duplicates (new = new − I) prior to adding
newly inferred literals to the set I (I = I ∪ new). Thus,
we start by having I=∅ and stop when no new knowledge
can be inferred (new == ∅). The function T(P, I, J) is the
computation of TP,J (I) as described Section III.

Let us now consider the calculation of the WFS fixpoint.
Initially, we calculate K0 over the positive part of the

Algorithm 3 WFS fixpoint
WFS fixpoint(P): . input: program P

1: K0 = lfp(P+, ∅); . output: set of literals Ki, Ui

2: U0 = lfp(P, K0);
3: i = 0;
4: repeat
5: i++; . next “inference step”
6: Ki = lfp(P, Ui−1);
7: Ui = lfp(P, Ki);
8: until Ki−1 == Ki and Ui−1 == Ui

9: return Ki, Ui;

Algorithm 4 Least fixpoint of TP,J (I)
lfp(P, J): . input: program P, set of literals J

. output: set of literals I (least fixpoint of TP,J (∅))
1: I = ∅;
2: new = ∅;
3: repeat
4: I = I ∪ new;
5: new = T(P, I, J);
6: new = new - I;
7: until new == ∅
8: return I;

program P (P+) and set J= ∅. Then, we proceed with the
calculation of U0 given the already available set K0 (J=K0).
Subsequently, we increase the counter i and calculate the
least fixpoint of Ki (resp. Ui) given Ui−1 (resp. Ki) until
fixpoint is reached. WFS fixpoint is reached when Ki−1 ==
Ki and Ui−1 == Ui, and finally the sets of literals Ki and
Ui are returned.

According to Theorem 2.2, having reached WFS fixpoint
at step i, we can determine which literals are true, undefined
and false as follows: (a) true literals, denoted by Ki, (b)
undefined literals, denoted by Ui − Ki and (c) false literals,
denoted by BASE(P) − Ui.

For the WFS fixpoint algorithm we need to store the sets
of literals Ki and Ui only for the current and the previous
“inference step”, namely if i = k, for k ≥ 1, then we only
need to store Ki−1 and Ui−1 in our knowledge base while
calculating Ki and Ui. Since a fixpoint was not reached for
i = k− 1, any Kj and Uj for j < k− 1 becomes irrelevant
as it will not be used for the remainder of the computation.
Thus, at any time of calculation (step i, for i ≥ 1) we need
to store up to four sets of literals (Ki−1, Ui−1, Ki, Ui).

B. Approach correctness

We need to ensure that our approach is in line with
the definition of the alternating fixpoint procedure (see
Definition 2.5). Thus, we provide the following proof sketch.

Proof sketch. First, we need to ensure that we calculate
TP,J (I) according to Definition 2.4. Consider a given pro-



gram P and given sets of literals I and J.
According to Section III-B, the positive part (pos(B)) of

each rule of the instantiated program P (A←B ∈ ground(P))
is calculated using literals from I (pos(B) ⊆ I), which agrees
with Definition 2.4. The auxiliary predicates used in positive
goal computation do not affect the final result as these
predicates are not part of the given program. In addition, the
fact that the positive goal contains the smallest set of argu-
ments containing arguments of both final goal and negative
subgoals reassures correctness, since no information is lost,
and minimizes communication costs among nodes, as the
overhead coming from redundant arguments is eliminated.

Since the positive goal is equivalent to the computation
of the positive part of a rule, we may proceed with the
negative part. According to Definition 2.4, a final goal of a
rule is computed from a set of positive subgoals that belong
to I (A | there is A ← B ∈ ground(P) with pos(B) ⊆ I),
namely the positive goal of the rule, and a set of negative
subgoals that do not belong to J (neg(B) ∩ J = ∅). Thus,
negative subgoals that could possibly match the positive goal
on their common arguments should not be found in J. This
is modeled by the anti-join as described in Section III-C.

Our next step is to investigate the equivalence of the least
fixpoint calculation. According to the definition of the least
fixpoint, provided in Section II-C, for a given program P
and a set of literals J we start with I = ∅ and gradually
calculate applicable rules until no new literals are inferred,
namely TP,J (I) = I. This is directly modeled by the least
fixpoint (see Algorithm 4), since the computation starts with
an empty set (I = ∅) and TP,J (I) is applied until no new
knowledge is derived.

We have demonstrated that the calculation of the least
fixpoint is in line with the calculation of lfp(TP,J (I)) of
the alternating fixpoint procedure (see Section II-C). The
correctness of Algorithm 3 is ensured by the carefully
assigned sets of literals I and J, given a program P, for
each lfp(TP,J (I)) following the Definition 2.5.

V. EVALUATION

In this section, we present the results of our experimental
evaluation on a commodity cluster. We conduct a quanti-
tative evaluation of our implementation and also compare
them slightly with the MapReduce implementation.

A. Methodology

The evaluation of our approach is based on the Open-
RuleBench [16] benchmark. In [16], the authors propose
a set of benchmarks for analyzing the performance and
scalability of different rule engines. As our approach is
based on large scale nonmonotonic reasoning, we follow the
proposed methodology in [16] while adjusting several pa-
rameters. In [16], loading and inference time are separated,
focusing on inference time. In this paper, we additionally
report writing and total time.

We evaluate our approach considering default negation
by applying the win-not-win test and merge large (anti-)join
tests with datalog recursion and default negation, creating
a new test called transitive closure with negation. Other
metrics in [16], such as indexing, optimizations and cost-
based analysis were performed manually.

B. Platform

We have implemented our experiments using the X10
programming language. We have performed experiments on
a cluster with 16 IBM System x iDataPlex nodes, using a
Gigabit Ethernet interconnect. Each node was equipped with
dual Intel Xeon Westmere 6-core processors (resulting in a
total of 12 cores per physical node), 128GB RAM and a
single 1TB SATA hard drive. The operating system is Linux
kernel version 2.6.32-220 and the software stack consists of
X10 version 2.3 compiling to C++ and gcc version 4.4.6.

C. Evaluation tests

The win-not-win test [16] consists of a single rule, where
move is the base relation:

win(X) ← move(X,Y), not win(Y).

We test the following data distributions: (a) the base facts
form a cycle: {move(1,2), ..., move(i, i+1), ..., move(n-1,n),
move(n,1)}, (b) the data is tree-structured: {move(i, 2*i),
move(i, 2*i+1) | 1 ≤ i ≤ n}. We used four cyclic datasets
and four tree-structured datasets with 125M, 250M, 500M
and 1000M facts.

The transitive closure with negation test consists of the
following rule set, where b is the base relation:

tc(X,Y) ← par(X,Y).
tc(X,Y) ← par(X,Z), tc(Z,Y).
par(X,Y) ← b(X,Y), not q(X,Y).
par(X,Y) ← b(X,Y), b(Y,Z), not q(Y,Z).
q(X,Y) ← b(Z,X), b(X,Y), not q(Z,X).

We test the following data distribution: the base facts
are chain-structured: {b(i, i+k) | 1 ≤ i ≤ n, k < n}. We
used four chain-structured datasets for a constant number of
joins in the initially formed chain (dn/ke − 1) with n =
62.5M, 125M, 250M and 500M, and k = 12.5M, 25M, 50M
and 100M respectively, and four chain-structured datasets
for increasing number of joins in the initially formed chain
(dn/ke − 1) with n = 125M, and k = 41.7M, 25M, 13.9M
and 7.36M.

D. Results

Our experimental results are summarized in Figures 1,
2, 3 and 4. Each figure reports the runtime in seconds for
loading, inference and writing (while total time corresponds
to the time of each stacked column) for a given dataset and
number of nodes. Runtimes are grouped for each dataset,
while the number of nodes is shown explicitly for each
stacked column.
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Figure 1. Win-not-win test for cyclic datasets. Runtime in seconds for
various dataset sizes and numbers of nodes.
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Figure 2. Win-not-win test for tree-structured datasets. Runtime in seconds
for various dataset sizes and numbers of nodes.

Figures 1 and 2 present the runtimes of our system for
the win-not-win test over cyclic and tree-structured datasets
respectively, applied for up to 1 billion facts and 16 nodes.
Our system scales linearly in both cases with respect to
dataset size and number of nodes. For cyclic distribution,
the number of “inference steps” remains constant, following
the same process for increasing inputs. However, for tree-
structured datasets, the number of “inference steps” is gradu-
ally increasing, causing several notwithstanding fluctuations.

Figures 3 and 4 illustrates the scalability properties of
our system for the transitive closure with negation test over
chain-structured datasets for constant and increasing number
of joins in the initially formed chain respectively, when run
for up to 16 nodes. As expected, our approach scales linearly
for constant dn/ke − 1, for dataset size (n) and number
of facts per level (k). Here, the number of “inference steps”
remains constant for increasing datasets, following the same
inference sequence.

Note that the linear scalability for increasing dn/ke − 1,
along with relatively low runtimes, show the superiority of
our in-memory implementation when compared to one based
on MapReduce. More specifically, the number of applied
rules increases polynomially with respect to the length of
chain, leading to polynomial runtimes for MapReduce based
implementations, due to initialization overheads. However,
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the required number of in-memory read and written literals
throughout the computation scales linearly for increasing
chain lengths, allowing our implementation to be indepen-
dent of the number of applied rules, thus leading to linear
runtimes.

VI. CONCLUSION

In this paper we proposed a parallel and highly efficient
approach for the computation of the well-founded semantics
over large amounts of data based on the X10 programming
language. We ran experiments for various rule sets and data
sizes, showing that our approach is performant and can be
applied to billions of facts.

In future work, we plan to study more complex knowl-
edge representation methods including Answer-Set program-
ming [17], RDF/S ontology evolution [18] and repair [19].
We believe that these complex forms of reasoning will
benefit from the high degree of flexibility provided by X10,
leading to a fine-grained resolution of the arising challenges.
In the meantime, we will also employ more efficient and
robust joins [20], [21], [22], [23] in our implementation so
as to achieve even higher performance in the presence of
different workloads.
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