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Previously . . .
• Monte Carlo Tree Search uses random playouts to evaluate moves and

keeps statistics on which moves led to which payoffs how many times.
• A selection policy balances exploitation and exploration.
• UCT is an effective selection policy that applies UCB1 to trees.
• A playout policy steers playout simulations towards realistic play.
• MCTS and deep reinforcement learning led to expert-level Go programs.

wide, but shallow
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Alpha-Beta Tree Search

narrow, but deep

Type B
Monte Carlo Tree Search
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Motivation: Missing Information
• So far, we have considered games with perfect information:
• In every state, all players know the full history of play so far, i.e. they

know their (joint) position in the game tree.
• However, e.g. in card games, players typically do not know the cards of

opponents.
• This form of incomplete knowledge can be formalised by sets of

indistinguishable nodes in the game tree, typically called information sets.
• In this context, we also add another element to games: chance.
• This is modelled via moves by nature and can be used to formalise

dealing cards or throwing dice.
• We will see that this also allows us to model games with incomplete

information, where e.g. some of the payoffs may be uncertain.
• In principle, however, chance and imperfect information are unrelated

and we could model either without the other.
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Example: The Monty Hall Problem

Games with Missing Information: Modelling (Lecture 6)
Computational Logic Group // Hannes Strass
Algorithmic Game Theory, SS 2024

Slide 6 of 29 Computational
Logic ∴ Group



Example: The Monty Hall Problem

The Monty Hall Problem
A game show participant (Guest) is shown three doors behind which there
are prizes. Behind one door, there is an expensive car, behind each of the
other doors there is a goat. (The participant prefers the car over a goat.) The
Guest is asked to Choose one of the doors. The game show Host (the other
player) now opens one of the remaining doors that has a goat behind it. The
Guest then gets their final move: Stay with the door they initially picked, or
Switch to the other door. What should the participant do?
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The Monty Hall Problem: Game Tree Sketch
Nature
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The Monty Hall Problem: Analysis
• Each of the possible states s1, s2, s3 after Nature’s move has probability 1

3 .
• For each of these states, the ensuing game is symmetric.
• If Guest chooses their door uniformly at random, then:

– With probability 1
3 , their initial guess is correct; thus Switch has a payoff of 0.

– With probability 2
3 , their initial guess is wrong; thus Switch has a payoff of 100.

• Thus in each si, Switch has an expected payoff of 1
3 · 0 + 2

3 · 100.
• The overall payoff of Switch is thus

uGuest(Switch) = 3 · 13 ·
(
1
3 · 0 + 23 · 100

)
= 6623

• Likewise, the overall payoff of Stay is obtained as
uGuest(Stay) = 1

3 · 100 = 3313 .
• Therefore, a rational player should always choose Switch over Stay.
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Extensive-Form Games
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Missing Information: Formalisation
Definition
An extensive-form game consists of the following:
1. A set P = {1, . . . ,n} of at least two players, and possibly Nature.
2. An n + 1-tupleM = (M1, . . . ,Mn,MNature) of sets Mi ofmoves for all players.
3. A set H of histories, sequences of movesmj ∈ M1 ∪ . . . ∪Mn ∪MNature.
4. A subset Z ⊆ H of terminal histories.
5. A partition I1 ∪̇ . . . ∪̇ Ik = H \ Z of non-terminal histories into information

sets such that for all 1 ≤ j ≤ k, all h1,h2 ∈ Ij have the same legal moves.
6. A player function p : {1, . . . , k} → P∪ {Nature} (stating whose turn it is).
7. An n-tuple u = (u1, . . . ,un) of utility functions ui : Z → R.
Starting with the empty history [], in each history h = [m1, . . . ,mk] ∈ H \ Z,
player i = p(h) chooses a movem ∈ Mi, leading to the history [m1, . . . ,mk,m].
Each Ij with p(Ij) = Nature has a probability distribution on possible moves.
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Information Sets: Remarks
Intuition of information sets: The player (whose turn it is) does not have the
information to distinguish between states in the set (but from other sets).
• I = {I1, . . . , Ik} being a partitionmeans that:

– for all 1 ≤ j ≤ k, we have Ij ̸= ∅,
– I1 ∪ . . . ∪ Ik = H \ Z, and
– for all 1 ≤ j, ℓ ≤ k, we have Ij ∩ Iℓ = ∅.

• Thus every h ∈ H \ Z belongs to exactly one information set Ij ∈ I.
• For all 1 ≤ j ≤ k and h ∈ Ij, we denote p(h) := p(Ij).
• I can also be represented by an equivalence relation ∼G, where for any

h1,h2 ∈ H, we have h1 ∼G h2 iff there is a Ij ∈ I such that h1,h2 ∈ Ij.
• We graphically represent ∼G in game trees via dashed edges .
Battleship

The initial placement of ships is private to the players and can be modelled
via information sets. Some information may later be disclosed through hits.
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Information Sets: Example

The Monty Hall Problem

• The (true) initial state is represented by the information set I0 = {[]}.
• The (seemingly) initial state for Guest is given by the information set

I1 = {[Car1] , [Car2] , [Car3]} .
• For each possible (initial) choice of door for Guest, there is one set:

IChoose1 = {[Car1, Choose1] , [Car2, Choose1] , [Car3, Choose1]}
IChoose2 = {[Car1, Choose2] , [Car2, Choose2] , [Car3, Choose2]}
IChoose3 = {[Car1, Choose3] , [Car2, Choose3] , [Car3, Choose3]}

• Some information is disclosed by the host opening a door:
I[Choose1,Open2] = {[Car1, Choose1] , [Car3, Choose1]}
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Perfect Recall
Definition
Let G = (P,M,H, I,p,u) be an extensive-form game.
• For every player i ∈ P and history h ∈ H, define the sequence hi

of pairs (Ij,m) for Ij ∈ I andm ∈ Mi by induction:

[]i := [] and [h;m]i :=
{
[hi; (Ih,m)] if p(h) = i,
hi otherwise.

where for h = [m1, . . . ,mk] we denote [h;m] := [m1, . . . ,mk,m].
• Player i ∈ P has perfect recall in G iff for all Ij ∈ I, for every h,h′ ∈ Ij, it

holds that hi = h′
i .

• G has perfect recall iff every player i ∈ P has perfect recall in G.

• hi extracts all decision points and decisions (of player i) from history h.
• hi = h′

i means that imade the same moves in the same information sets.
• With perfect recall, players remember their trajectory through the game.
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Perfect Recall: Examples (1)
1

1

[]

[L] [R]

L R

This game does not have perfect recall:
• Denote I0 = {[]} and I1 = {[L] , [R]}.
• We have [L] ∈ I1 and [R] ∈ I1, but:

[L]1 = [(I0, L)] ̸= [(I0, R)] = [R]1
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Perfect Recall: Examples (2)
1

2

2

[]

[L] [R]

L R

[L, A] [L, B] [R, A] [R, B]

A B A B

This game does not have perfect recall:
• Denote I0 = {[]}, I1 = {[L]}, I2 = {[R]}, I3 = {[L, A] , [R, A]}, I4 = {[L, B] , [R, B]}.
• Then [L, A]2 = [(I1, A)] ̸= [(I2, A)] = [R, A]2.
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Perfect Recall: Examples (3)

Employer

Candidate1

Candidate2

[]

h1

h2h3

h4

Invite1

Invite2

h5 h6

Reject

RejectInvite2

Invite1

Reject

Reject
Accept Accept

Accept Accept

This game has perfect recall: e.g. h ∈ {h2,h3} implies hCandidate2 = [].
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Strategic Games and Imperfect Information
• Uncertainty induced by simultaneous moves can be modelled in

extensive-form games (that seem to be sequential by definition).
• Main idea: Sequentialise moves, model uncertainty in information sets.
Example: Recall the game penalties. One extensive-form variant is:

Keeper []

Kicker [JumpL] [JumpR]

[JumpL, KickL]
(–1, 1)

[JumpL, KickR]
(1, –1)

[JumpR, KickL]
(1, –1)

[JumpR, KickR]
(–1, 1)
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Chance Nodes (Moves by Nature)

Intuition of chance nodes: Something happens that is controlled by an entity
with no strategic interest in the game’s outcome.

Examples

• In card games, Nature controls the dealer’s shuffling the cards.
• In games involving dice, Nature controls the dice throws.

• Probability distributions model uncertainty about effects of such actions.
• We typically use uniform distributions over possible atomic results.

⇝We need some (more) probability theory to analyse games with chance . . .
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Bayes’ Theorem
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Probabilities
Recall

• A probability space is a finite set E = {e1, . . . , ek} of atomic events.
• A probability distribution is a mapping P : E → [0, 1], where atomic

event ei occurs with probability P(ei) and we have
∑k

i=1 P(ei) = 1.
• An event E ⊆ E has (total) probability P(E) =

∑
e∈E P(e).

• For all events A,B ⊆ E we have the following:
1. 0 ≤ P(A) ≤ 1 with P(∅) = 0 and P(E) = 1.
2. P(A) = 1 – P(A) where A := E \ A is the event complementary to A.
3. P(A∪ B) = P(A) + P(B) – P(A∩ B).

Example

If all events ei ∈ E have the same probability 1
|E| , we have a uniform

distribution.
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Conditional Probabilities
Definition
Let A and B be events with P(B) > 0.
1. The conditional probability for A to occur under the condition of B

occurring is
P(A|B) := P(A∩ B)

P(B)
2. Events A and B are independent iff

P(A∩ B) = P(A) · P(B)

That events A and B are independent is equivalently characterised by each of:
• P(A|B) = P(A)
• P(A|B) = P(A|B)
• P(B|A) = P(B)
• P(B|A) = P(B|A)
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Bayes’ Theorem
Theorem (Bayes)

1. If A and B are two events with P(A) > 0 and P(B) > 0, then
P(A) · P(B|A) = P(B) · P(A|B)

2. If A and B1,B2, . . . ,Bℓ are events with P(A) > 0 and P(Bi) > 0 for all 1 ≤ i ≤ ℓ ,
where

⋃ℓ
i=1 Bi = E is a partition of E, then for every 1 ≤ i ≤ ℓ :

P(Bi|A) =
P(A|Bi) · P(Bi)∑ℓ

j=1
(
P(A|Bj) · P(Bj)

) =
P(A|Bi) · P(Bi)

P(A)

In the second item of the theorem, the law of total probability is used:

P(A) =
ℓ∑
j=1

P(Bj ∩ A) =
ℓ∑
j=1

(
P(A|Bj) · P(Bj)

)
Note that P(A) = P(E∩ A) = P((

⋃ℓ
j=1 Bj )∩ A) = P(

⋃ℓ
j=1(Bj ∩ A)) =

∑ℓ
j=1 P(Bj ∩ A).
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Solving the Monty Hall Problem (1)
Consider the following events:

A : The Guest wins the car.
B1: The Guest initially chooses a goat door.
B2: The Guest initially chooses the car door.

• If Guest chooses uniformly at random, then P(B1) = 2
3 and P(B2) =

1
3 .

• Since every door has exactly one object, B1 and B2 are complementary,
and the law of total probability yields P(A) = P(A|B1) · P(B1) + P(A|B2) · P(B2).

• If Guest plays Stay, then clearly P(A|B1) = 0 and P(A|B2) = 1, whence

P(A) = P(A|B1) · P(B1) + P(A|B2) · P(B2) = 0 · 23 + 1 · 13 =
1
3

• If Guest plays Switch, then P(A|B1) = 1 and P(A|B2) = 0, thus

P(A) = P(A|B1) · P(B1) + P(A|B2) · P(B2) = 1 · 23 + 0 · 13 =
2
3
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Solving the Monty Hall Problem (2)
Consider the following events:

A : The Guest wins the car.
B : The Guest initially chooses a goat door.

If the Guest plays Switch, then
• P(B) = 2

3 as before,
• P(A|B) = 1 (initially choosing a goat door and switching win the car), and
• P(B|A) = 1 (initially choosing a goat door is the only way a Switch player

can win the car).

According to Bayes’ Theorem, we thus obtain

P(A) = P(A|B) · P(B)
P(B|A) =

2
3
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Preview: Simplified Poker

Games with Missing Information: Modelling (Lecture 6)
Computational Logic Group // Hannes Strass
Algorithmic Game Theory, SS 2024

Slide 26 of 29 Computational
Logic ∴ Group



Example: Simplified Poker

Binmore’s Simplified Poker
• Two players, Ann and Bob, each put $1 into a jackpot.
• They then draw one card from a deck of three cards: {1, 2, 3}.
• Ann can either check (pass on), or raise (put another $1 into the jackpot).
• Next, Bob responds:

– If Ann has checked, then Bobmust call, that is, a showdown happens:
Both players show their cards and the player with the higher (number) card
receives the jackpot.

– If Ann has raised, then Bob can decide between fold (withdraw from the
game and let Ann get the jackpot) or call (put another $1 into the jackpot and
then have a showdown).
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Simplified Poker: Preliminary Analysis
Nature shuffles and deals the cards. There are six possible outcomes:

1
2
3

1
3
2

2
1
3

2
3
1

3
1
2

3
2
1

(1, –1)(1, –1) (–1, 1)

• If Ann draws a 3, she will raise; if Bob draws a 1, he will fold.
• If Bob draws a 3, he will call; if Ann draws a 2, she will check:

Were she to raise, she would lose 2 if Bob has a 3 (as he would call), but
still only win 1 if Bob has a 1 (as he would fold then).

What happens in the two remaining cases?

1. Should Ann raise (i.e. bluff) if she has a 1?
2. Should Bob call (the bluff) if he has a 2?
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Conclusion
Summary

• In complete information games, players know the rules, possible
outcomes and each other’s preferences over outcomes.

• In perfect information games, moves are sequential and all players
know all previous moves.

• In extensive-form games, information is not necessarily complete or
perfect.

• Uncertainty of players (due to missing information) can be modelled by
information sets and chance nodes (moves by Nature).

• Bayes’ Theorem shows how to compute with conditional probabilities.
• The law of total probability relates marginal to conditional probabilities.

Goat and Car graphics: Twemoji, Copyright 2020 Twitter, Inc and other contributors (CC-BY 4.0)
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