Hannes Strass
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Games with Missing Information: Modelling

Lecture 6, 27th May 2024 // Algorithmic Game Theory, SS 2024

Previously ...

- Monte Carlo Tree Search uses random playouts to evaluate moves and keeps statistics on which moves led to which payoffs how many times.
- A selection policy balances exploitation and exploration.
- UCT is an effective selection policy that applies UCB1 to trees.
- A playout policy steers playout simulations towards realistic play.
- MCTS and deep reinforcement learning led to expert-level Go programs.
wide, but shallow

Type A
Alpha-Beta Tree Search
narrow, but deep

Type B
Monte Carlo Tree Search

Overview

Example: The Monty Hall Problem

Extensive-Form Games

Bayes' Theorem

Preview: Simplified Poker

Motivation: Missing Information

- So far, we have considered games with perfect information:
- In every state, all players know the full history of play so far, i.e. they know their (joint) position in the game tree.
- However, e.g. in card games, players typically do not know the cards of opponents.
- This form of incomplete knowledge can be formalised by sets of indistinguishable nodes in the game tree, typically called information sets.
- In this context, we also add another element to games: chance.
- This is modelled via moves by nature and can be used to formalise dealing cards or throwing dice.
- We will see that this also allows us to model games with incomplete information, where e.g. some of the payoffs may be uncertain.
- In principle, however, chance and imperfect information are unrelated and we could model either without the other.

Course Evaluation: Lecture

15min to fill out this form:

https://befragung.zqa.tu-dresden.de/uz/de/sl/uGo82Q2GBW5i

Example: The Monty Hall Problem

Example: The Monty Hall Problem

The Monty Hall Problem

A game show participant (Guest) is shown three doors behind which there are prizes. Behind one door, there is an expensive car, behind each of the other doors there is a goat. (The participant prefers the car over a goat.) The Guest is asked to Choose one of the doors. The game show Host (the other player) now opens one of the remaining doors that has a goat behind it. The Guest then gets their final move: Stay with the door they initially picked, or Switch to the other door. What should the participant do?

The Monty Hall Problem: Game Tree Sketch

The Monty Hall Problem: Analysis

- Each of the possible states s_{1}, s_{2}, s_{3} after Nature's move has probability $\frac{1}{3}$.
- For each of these states, the ensuing game is symmetric.
- If Guest chooses their door uniformly at random, then:
- With probability $\frac{1}{3}$, their initial guess is correct; thus Switch has a payoff of 0 .
- With probability $\frac{2}{3}$, their initial guess is wrong; thus Switch has a payoff of 100 .
- Thus in each s_{i}, Switch has an expected payoff of $\frac{1}{3} \cdot 0+\frac{2}{3} \cdot 100$.
- The overall payoff of Switch is thus

$$
u_{\text {Guest }}(\text { Switch })=3 \cdot \frac{1}{3} \cdot\left(\frac{1}{3} \cdot 0+\frac{2}{3} \cdot 100\right)=66 \frac{2}{3}
$$

- Likewise, the overall payoff of Stay is obtained as
$u_{\text {Guest }}$ (Stay) $=\frac{1}{3} \cdot 100=33 \frac{1}{3}$.
- Therefore, a rational player should always choose Switch over Stay.

Extensive-Form Games

Missing Information: Formalisation

Definition

An extensive-form game consists of the following:

1. A set $P=\{1, \ldots, n\}$ of at least two players, and possibly Nature.
2. An $n+1$-tuple $\mathbf{M}=\left(M_{1}, \ldots, M_{n}, M_{\text {Nature }}\right)$ of sets M_{i} of moves for all players.
3. A set H of histories, sequences of moves $m_{j} \in M_{1} \cup \ldots \cup M_{n} \cup M_{\text {Nature }}$.
4. A subset $Z \subseteq H$ of terminal histories.
5. A partition $\mathcal{J}_{1} \dot{U} \ldots \dot{\cup} \mathcal{J}_{k}=H \backslash Z$ of non-terminal histories into information sets such that for all $1 \leq j \leq k$, all $h_{1}, h_{2} \in \mathcal{J}_{j}$ have the same legal moves.
6. A player function $p:\{1, \ldots, k\} \rightarrow P \cup\{$ Nature $\}$ (stating whose turn it is).
7. An n-tuple $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ of utility functions $u_{i}: Z \rightarrow \mathbb{R}$.

Starting with the empty history [], in each history $h=\left[m_{1}, \ldots, m_{k}\right] \in H \backslash Z$, player $i=p(h)$ chooses a move $m \in M_{i}$, leading to the history $\left[m_{1}, \ldots, m_{k}, m\right]$. Each \mathcal{J}_{j} with $p\left(\mathcal{J}_{j}\right)=$ Nature has a probability distribution on possible moves. UNIVERSITAT
DRESDEN

Information Sets: Remarks

Intuition of information sets: The player (whose turn it is) does not have the information to distinguish between states in the set (but from other sets).

- $\mathcal{J}=\left\{\mathcal{J}_{1}, \ldots, \mathcal{J}_{k}\right\}$ being a partition means that:
- for all $1 \leq j \leq k$, we have $J_{j} \neq \emptyset$,
- $\mathcal{J}_{1} \cup \ldots \cup \mathcal{J}_{k}=H \backslash Z$, and
- for all $1 \leq j, \ell \leq k$, we have $J_{j} \cap \mathcal{J}_{\ell}=\emptyset$.
- Thus every $h \in H \backslash Z$ belongs to exactly one information set $\mathcal{J}_{j} \in \mathcal{J}$.
- For all $1 \leq j \leq k$ and $h \in \mathcal{J}_{j}$, we denote $p(h):=p\left(\mathcal{J}_{j}\right)$.
- J can also be represented by an equivalence relation $\sim G$, where for any $h_{1}, h_{2} \in H$, we have $h_{1} \sim^{G} h_{2}$ iff there is a $\mathcal{J}_{j} \in \mathcal{J}$ such that $h_{1}, h_{2} \in \mathcal{J}_{j}$.
- We graphically represent \sim^{G} in game trees via dashed edges -----

Battleship

The initial placement of ships is private to the players and can be modelled via information sets. Some information may later be disclosed through hits.

Information Sets: Example

The Monty Hall Problem

- The (true) initial state is represented by the information set $J_{0}=\{[]\}$.
- The (seemingly) initial state for Guest is given by the information set

$$
\mathcal{J}_{1}=\{[\text { Car1 }],[\text { Car2 }],[\text { Car3 }]\} .
$$

- For each possible (initial) choice of door for Guest, there is one set:

$$
\begin{aligned}
& \mathcal{J}_{\text {Choose1 }}=\{[\text { Car1, Choose1 }],[\text { Car2, Choose1 }],[\text { Car3, Choose1 }]\} \\
& \mathcal{J}_{\text {Choose2 }}=\{[\text { Car1, Choose2 }],[\text { Car2, Choose2 }],[\text { Car3, Choose2 }]\} \\
& \mathcal{J}_{\text {Choose3 }}=\{[\text { Car1, Choose3 }],[\text { Car2, Choose3 }],[\text { Car3, Choose }]\}
\end{aligned}
$$

- Some information is disclosed by the host opening a door:

$$
\mathcal{J}_{[\text {Choose1,0pen2] }}=\{[\text { Car1, Choose1] },[\text { Car3, Choose1 }]\}
$$

Perfect Recall

Definition

Let $G=(P, \mathbf{M}, H, \mathcal{J}, p, \mathbf{u})$ be an extensive-form game.

- For every player $i \in P$ and history $h \in H$, define the sequence h_{i} of pairs $\left(\mathcal{J}_{j}, m\right)$ for $\mathcal{J}_{j} \in \mathcal{J}$ and $m \in M_{i}$ by induction:

$$
[]_{i}:=[] \quad \text { and } \quad[h ; m]_{i}:= \begin{cases}{\left[h_{i} ;\left(\mathcal{J}_{h}, m\right)\right]} & \text { if } p(h)=i \\ h_{i} & \text { otherwise }\end{cases}
$$

where for $h=\left[m_{1}, \ldots, m_{k}\right]$ we denote $[h ; m]:=\left[m_{1}, \ldots, m_{k}, m\right]$.

- Player $i \in P$ has perfect recall in G iff for all $\mathcal{J}_{j} \in \mathcal{J}$, for every $h, h^{\prime} \in \mathcal{J}_{j}$, it holds that $h_{i}=h_{i}^{\prime}$.
- G has perfect recall iff every player $i \in P$ has perfect recall in G.
- h_{i} extracts all decision points and decisions (of player i) from history h.
- $h_{i}=h_{i}^{\prime}$ means that i made the same moves in the same information sets.
- With perfect recall, players remember their trajectory through the game.

Perfect Recall: Examples (1)

This game does not have perfect recall:

- Denote $\mathcal{J}_{0}=\{[]\}$ and $\mathcal{J}_{1}=\{[\mathrm{L}],[\mathrm{R}]\}$.
- We have $[L] \in \mathcal{J}_{1}$ and $[R] \in \mathcal{I}_{1}$, but:

$$
[\mathrm{L}]_{1}=\left[\left(\mathrm{J}_{0}, \mathrm{~L}\right)\right] \neq\left[\left(\mathrm{J}_{0}, \mathrm{R}\right)\right]=[\mathrm{R}]_{1}
$$

Perfect Recall: Examples (2)

This game does not have perfect recall:

- Denote $J_{0}=\{[]\}, J_{1}=\{[L]\}, J_{2}=\{[R]\}, J_{3}=\{[L, A],[R, A]\}, J_{4}=\{[L, B],[R, B]\}$.
- Then $[\mathrm{L}, \mathrm{A}]_{2}=\left[\left(\mathrm{J}_{1}, \mathrm{~A}\right)\right] \neq\left[\left(\mathrm{J}_{2}, \mathrm{~A}\right)\right]=[\mathrm{R}, \mathrm{A}]_{2}$.

Perfect Recall: Examples (3)

Candidate1

Employer

Candidate2

This game has perfect recall: e.g. $h \in\left\{h_{2}, h_{3}\right\}$ implies $h_{\text {Candidate2 }}=[]$.

Strategic Games and Imperfect Information

- Uncertainty induced by simultaneous moves can be modelled in extensive-form games (that seem to be sequential by definition).
- Main idea: Sequentialise moves, model uncertainty in information sets.

Example: Recall the game penalties. One extensive-form variant is:

Chance Nodes (Moves by Nature)

Intuition of chance nodes: Something happens that is controlled by an entity with no strategic interest in the game's outcome.

Examples

- In card games, Nature controls the dealer's shuffling the cards.
- In games involving dice, Nature controls the dice throws.
- Probability distributions model uncertainty about effects of such actions.
- We typically use uniform distributions over possible atomic results.
\rightsquigarrow We need some (more) probability theory to analyse games with chance ...

Bayes' Theorem

Probabilities

Recall

- A probability space is a finite set $\varepsilon=\left\{e_{1}, \ldots, e_{k}\right\}$ of atomic events.
- A probability distribution is a mapping $P: \varepsilon \rightarrow[0,1]$, where atomic event e_{i} occurs with probability $P\left(e_{i}\right)$ and we have $\sum_{i=1}^{k} P\left(e_{i}\right)=1$.
- An event $E \subseteq \mathcal{E}$ has (total) probability $P(E)=\sum_{e \in E} P(e)$.
- For all events $A, B \subseteq \mathcal{E}$ we have the following:

1. $0 \leq P(A) \leq 1$ with $P(\varnothing)=0$ and $P(\varepsilon)=1$.
2. $P(\bar{A})=1-P(A)$ where $\bar{A}:=\varepsilon \backslash A$ is the event complementary to A.
3. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.

Example

If all events $e_{i} \in \mathcal{E}$ have the same probability $\frac{1}{|\varepsilon|}$, we have a uniform distribution.

Conditional Probabilities

Definition

Let A and B be events with $P(B)>0$.

1. The conditional probability for A to occur under the condition of B occurring is

$$
P(A \mid B):=\frac{P(A \cap B)}{P(B)}
$$

2. Events A and B are independent iff

$$
P(A \cap B)=P(A) \cdot P(B)
$$

That events A and B are independent is equivalently characterised by each of:

- $P(A \mid B)=P(A)$
- $P(A \mid B)=P(A \mid \bar{B})$
- $P(B \mid A)=P(B)$
- $P(B \mid A)=P(B \mid \bar{A})$

Bayes' Theorem

Theorem (Bayes)

1. If A and B are two events with $P(A)>0$ and $P(B)>0$, then

$$
P(A) \cdot P(B \mid A)=P(B) \cdot P(A \mid B)
$$

2. If A and $B_{1}, B_{2}, \ldots, B_{\ell}$ are events with $P(A)>0$ and $P\left(B_{i}\right)>0$ for all $1 \leq i \leq \ell$, where $\bigcup_{i=1}^{\ell} B_{i}=\mathcal{E}$ is a partition of \mathcal{E}, then for every $1 \leq i \leq \ell$:

$$
P\left(B_{i} \mid A\right)=\frac{P\left(A \mid B_{i}\right) \cdot P\left(B_{i}\right)}{\sum_{j=1}^{\ell}\left(P\left(A \mid B_{j}\right) \cdot P\left(B_{j}\right)\right)}=\frac{P\left(A \mid B_{i}\right) \cdot P\left(B_{i}\right)}{P(A)}
$$

In the second item of the theorem, the law of total probability is used:

$$
P(A)=\sum_{j=1}^{\ell} P\left(B_{j} \cap A\right)=\sum_{j=1}^{\ell}\left(P\left(A \mid B_{j}\right) \cdot P\left(B_{j}\right)\right)
$$

$$
\text { Note that } P(A)=P(\varepsilon \cap A)=P\left(\left(\cup_{j=1}^{e} B_{j}\right) \cap A\right)=P\left(U_{j=1}^{j}\left(B_{j} \cap A\right)\right)=\sum_{j=1}^{e} P\left(B_{j} \cap A\right) \text {. }
$$

Solving the Monty Hall Problem (1)

Consider the following events:
A : The Guest wins the car.
B_{1} : The Guest initially chooses a goat door.
B_{2} : The Guest initially chooses the car door.

- If Guest chooses uniformly at random, then $P\left(B_{1}\right)=\frac{2}{3}$ and $P\left(B_{2}\right)=\frac{1}{3}$.
- Since every door has exactly one object, B_{1} and B_{2} are complementary, and the law of total probability yields $P(A)=P\left(A \mid B_{1}\right) \cdot P\left(B_{1}\right)+P\left(A \mid B_{2}\right) \cdot P\left(B_{2}\right)$.
- If Guest plays Stay, then clearly $P\left(A \mid B_{1}\right)=0$ and $P\left(A \mid B_{2}\right)=1$, whence

$$
P(A)=P\left(A \mid B_{1}\right) \cdot P\left(B_{1}\right)+P\left(A \mid B_{2}\right) \cdot P\left(B_{2}\right)=0 \cdot \frac{2}{3}+1 \cdot \frac{1}{3}=\frac{1}{3}
$$

- If Guest plays Switch, then $P\left(A \mid B_{1}\right)=1$ and $P\left(A \mid B_{2}\right)=0$, thus

$$
P(A)=P\left(A \mid B_{1}\right) \cdot P\left(B_{1}\right)+P\left(A \mid B_{2}\right) \cdot P\left(B_{2}\right)=1 \cdot \frac{2}{3}+0 \cdot \frac{1}{3}=\frac{2}{3}
$$

Solving the Monty Hall Problem (2)

Consider the following events:
A : The Guest wins the car.
B : The Guest initially chooses a goat door.
If the Guest plays Switch, then

- $P(B)=\frac{2}{3}$ as before,
- $P(A \mid B)=1$ (initially choosing a goat door and switching win the car), and
- $P(B \mid A)=1$ (initially choosing a goat door is the only way a Switch player can win the car).

According to Bayes' Theorem, we thus obtain

$$
P(A)=\frac{P(A \mid B) \cdot P(B)}{P(B \mid A)}=\frac{2}{3}
$$

Preview: Simplified Poker

Example: Simplified Poker

Binmore's Simplified Poker

- Two players, Ann and Bob, each put \$1 into a jackpot.
- They then draw one card from a deck of three cards: $\{1,2,3\}$.
- Ann can either check (pass on), or raise (put another \$1 into the jackpot).
- Next, Bob responds:
- If Ann has checked, then Bob must call, that is, a showdown happens:

Both players show their cards and the player with the higher (number) card receives the jackpot.

- If Ann has raised, then Bob can decide between fold (withdraw from the game and let Ann get the jackpot) or call (put another \$1 into the jackpot and then have a showdown).

Simplified Poker: Preliminary Analysis

Nature shuffles and deals the cards. There are six possible outcomes:

1
2
3
:---
3
2

- If Ann draws a 3, she will raise; if Bob draws a 1 , he will fold.
- If Bob draws a 3, he will call; if Ann draws a 2, she will check: Were she to raise, she would lose 2 if Bob has a 3 (as he would call), but still only win 1 if Bob has a 1 (as he would fold then).

What happens in the two remaining cases?

1. Should Ann raise (i.e. bluff) if she has a 1 ?
2. Should Bob call (the bluff) if he has a 2?

Conclusion

Summary

- In complete information games, players know the rules, possible outcomes and each other's preferences over outcomes.
- In perfect information games, moves are sequential and all players know all previous moves.
- In extensive-form games, information is not necessarily complete or perfect.
- Uncertainty of players (due to missing information) can be modelled by information sets and chance nodes (moves by Nature).
- Bayes' Theorem shows how to compute with conditional probabilities.
- The law of total probability relates marginal to conditional probabilities.

Goat and Car graphics: Twemoji, Copyright 2020 Twitter, Inc and other contributors (CC-BY 4.0)

