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Previously...

* Monte Carlo Tree Search uses random playouts to evaluate moves and
keeps statistics on which moves led to which payoffs how many times.

+ Aselection policy balances exploitation and exploration.

+ UCT is an effective selection policy that applies UCB1 to trees.

+ A playout policy steers playout simulations towards realistic play.

+ MCTS and deep reinforcement learning led to expert-level Go programs.

wide, but shallow narrow, but deep
Type A Type B
Alpha-Beta Tree Search Monte Carlo Tree Search
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Overview

Example: The Monty Hall Problem
Extensive-Form Games
Bayes’' Theorem

Preview: Simplified Poker
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Motivation: Missing Information

+ So far, we have considered games with perfect information:

* In every state, all players know the full history of play so far, i.e. they
know their (joint) position in the game tree.

* However, e.g. in card games, players typically do not know the cards of
opponents.

* This form of incomplete knowledge can be formalised by sets of
indistinguishable nodes in the game tree, typically called information sets.

* In this context, we also add another element to games: chance.

« This is modelled via moves by nature and can be used to formalise
dealing cards or throwing dice.

* We will see that this also allows us to model games with incomplete
information, where e.g. some of the payoffs may be uncertain.

*+ In principle, however, chance and imperfect information are unrelated
and we could model either without the other.
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Course Evaluation: Lecture

15min to fill out this form:

https://befragung.zqa.tu-dresden.de/uz/de/sl/uGo82Q2GBW5i
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Example: The Monty Hall Problem
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Example: The Monty Hall Problem

o0

The Monty Hall Problem

A game show participant (Guest) is shown three doors behind which there
are prizes. Behind one door, there is an expensive car, behind each of the
other doors there is a goat. (The participant prefers the car over a goat.) The
Guest is asked to Choose one of the doors. The game show Host (the other
player) now opens one of the remaining doors that has a goat behind it. The
Guest then gets their final move: Stay with the door they initially picked, or
Switch to the other door. What should the participant do?
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The Monty Hall Problem: Game Tree Sketch

Nature

(Nature)

%“Eﬂ@ EE

Stay Switch Stay Switch  Sta
100 100 0
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The Monty Hall Problem: Analysis

+ Each of the possible states s1, 55, 53 after Nature’s move has probability %
+ For each of these states, the ensuing game is symmetric.
+ If Guest chooses their door uniformly at random, then:
- With probability % their initial guess is correct; thus Switch has a payoff of 0.
- With probability % their initial guess is wrong; thus Switch has a payoff of 100.
+ Thusin eachs;, Switch has an expected payoff of % -0+ % -100.
* The overall payoff of Switch is thus

_ 1 (1 2 2
UGueSt(SWltCh) =3. § : (3 -0+ § . 100) = 66§
+ Likewise, the overall payoff of Stay is obtained as
Ugyest(Stay) = 3 - 100 = 331.

+ Therefore, a rational player should always choose Switch over Stay.
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Extensive-Form Games

Slide 10 of 29

TECHNISCHE S witl ng Information: Modelling (Lecture 6)
St

UNIVERSITAT onal p // Han
DRESDEN Algorithmic Game T| /, SS

[

'z-?Compuk:ﬁonal

'b Logic ~ Group




Missing Information: Formalisation

Definition

An extensive-form game consists of the following:

1

u M W N

6.
7.

. AsetP = {1,...,n} of at least two players, and possibly Nature.

. Ann+1-tuple M = (My, ..., My, Myaryre) Of sets M; of moves for all players.
. A set H of histories, sequences of moves m; € My U...UMj U Myatyre.

. Asubset Z C H of terminal histories.

. A partition J; U... U Jy = H\Z of non-terminal histories into information

sets such that for all 1 <j <k, all hy, h; € J; have the same legal moves.
A player function p: {1,...,k} —» PU{Nature} (stating whose turn it is).
An n-tuple u = (uy, .. ., up) of utility functions u;: Z - RR.

Starting with the empty history [], in each history h = [my,...,my] € H\Z,
player i = p(h) chooses a move m € M;, leading to the history [my, ..., my, m].
Each J; with p(J;) = Nature has a probability distribution on possible moves.
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Information Sets: Remarks

Intuition of information sets: The player (whose turn it is) does not have the
information to distinguish between states in the set (but from other sets).

J={J1,...,J¢} being a partition means that:
- forall 1 <j <k, we have J; # §,

- J1U...UJ,=H\Z and

- forall1<j,¢ <k wehavelnJ, =0.

Thus every h € H\ Z belongs to exactly one information set J; € J.

Forall 1 <j < kand h € J;, we denote p(h) := p(J)).

J can also be represented by an equivalence relation ~¢, where for any
h1,h, € H, we have hy ~C h; iff there is a J; € J such that hy, h, € J;.

We graphically represent ~© in game trees via dashed edges ----- .

The initial placement of ships is private to the players and can be modelled
via information sets. Some information may later be disclosed through hits.
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Information Sets: Example

The Monty Hall Problem

+ The (true) initial state is represented by the information set Jo = {[]}.
+ The (seemingly) initial state for Guest is given by the information set
J1 = {[Car1],[Car2],[Car3]}.
+ For each possible (initial) choice of door for Guest, there is one set:
Jehooser = {[Car1,Choosel],[Car2, Choosel], [Car3, Choosel]}

Jehoose2 = {[Car1, Choose2], [Car2, Choose2], [Car3, Choose2|}
Jehooses = {[Car1, Choose3], [Car2, Choose3], [Car3, Choose3|}

+ Some information is disclosed by the host opening a door:
J(choose1,0pen2] = {[Car1, Choose1], [Car3, Choose1]}
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Perfect Recall
Definition
Let G = (P, M, H,J,p, u) be an extensive-form game.

+ For every playeri € P and history h € H, define the sequence h;
of pairs (J;, m) for J; € Jand m € M; by induction:

hi; (I, m)]  if p(h) =i,
hi=0 and  [mm)= | PEORmTPB) =

h; otherwise.
where for h = [my, ..., mg] we denote [h; m| := [mq, ..., my, m].

* Player i € P has perfect recall in G iff for all J; € J, for every h,h" € Jj, it
holds that h; = h;.

* G has perfect recall iff every player i € P has perfect recall in G.

+ h; extracts all decision points and decisions (of player i) from history h.
* h; = hj means that / made the same moves in the same information sets.
«  With perfect recall, players remember their trajectory through the game.
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Perfect Recall: Examples (1)
L I

This game does not have perfect recall:

+ DenoteJy = {[]} and J1 = {]L], [R]}.
* We have [L| € J; and [R] € T4, but:

[L]; = [(Jo, L)] # [(Jo, R)] = [RI
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Perfect Recall: Examples (2)

1 L [ R
\ [RA/

~
..-—

This game does not have perfect recall:

+ Denote Jo = {[J}, 91 = {[L1}, 92 = {[R]}, %5 = {[L A], [R A]}, % = {[L. B],[RB]}.
* Then [L, A]l, = [(J1,A)] # [(T2,A)] = [R, A],.
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Perfect Recall: Examples (3)

Accept Accept
P T P T Reject
Candidatel hy==mmmmmmmeeaea g —
A
Reject Invitel Invitel
Y
Employer hs ] he
A
Invite2 Invite2 Reject
Reject Y
Candidate2 ———fg = h-
lAccept lAccept

This game has perfect recall: e.g. h € {hy, h3} implies hcandidatez = []-
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Strategic Games and Imperfect Information

+ Uncertainty induced by simultaneous moves can be modelled in
extensive-form games (that seem to be sequential by definition).
+ Main idea: Sequentialise moves, model uncertainty in information sets.

Example: Recall the game penalties. One extensive-form variant is:

Keeper (]

Kicker [JumpL]-=-=-==cmmmmm e m o - [JumpR]

[JumpL, KickL]  [JumpL,KickR] [JumpR,KickL]  [JumpR, KickR]

(STA1) (1,-1) (1,-1) (G
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Chance Nodes (Moves by Nature)

Intuition of chance nodes: Something happens that is controlled by an entity
with no strategic interest in the game’s outcome.

*+ In card games, Nature controls the dealer’s shuffling the cards.
* In games involving dice, Nature controls the dice throws.

+ Probability distributions model uncertainty about effects of such actions.
« We typically use uniform distributions over possible atomic results.

~~ We need some (more) probability theory to analyse games with chance....
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Bayes’' Theorem
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Probabilities

Recall

+ A probability space is a finite set £ = {ey, ..., e} of atomic events.
+ A probability distribution is a mapping P: & — [0, 1], where atomic
event e; occurs with probability P(e;) and we have ZL P(e)) = 1.
* Anevent £ C € has (total) probability P(E) = ) .. P(e).
+ For all events A, B C & we have the following:
1. 0 < PA) < 1 with P(@) = 0and P(E) = 1.
2. P(A) = 1-P(A) where A := £\ A is the event complementary to A.
3. PAUB) = P(A)+ P(B)- P(AN B).

Example

If all events e; € € have the same probability ﬁ we have a uniform
distribution.
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Conditional Probabilities

Definition

Let A and B be events with P(B) > 0.

1. The conditional probability for A to occur under the condition of B

occurring is
P(A N B)

PAIB) = g

2. Events A and B are independent iff
P(ANn B) = P(A) - P(B)

That events A and B are independent is equivalently characterised by each of:

* P(A|B) = P(A)

* P(A|B)=P(A|B)

* P(B|A) = P(B)

* P(B|A) = P(B|A)
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Bayes’' Theorem

1. If Aand B are two events with P(A) > 0 and P(B) > 0, then
P(A) - P(B|A) = P(B) - P(A| B)

2. IfAand By, By, ..., By are events with P(A) > 0 and P(B;) >0 forall 1 <i< ¢,
where Uf=1 B; = & is a partition of &, then for every 1 </ < ¢:

P(A|B)) - P(B;) P(A|B)) - P(B;)
P(BilA) = 0 | : ; = |P,(A) ,
Y_j—1 (P(A]B) - P(B)))
In the second item of the theorem, the law of total probability is used:
¢ ¢
P(A) = Z P(BjNA) = Z (P(A|B)) - P(B)))
j=1 j=1
Note that P(4) = P(E NA) = U/ 1 B)nA) = U/ 1(BjnA) = Z] 1 P(BjNA).



Solving the Monty Hall Problem (1)

Consider the following events:
A:The Guest wins the car.
B;: The Guest initially chooses a goat door.
B: The Guest initially chooses the car door.

+ If Guest chooses uniformly at random, then P(B;) = % and P(B;) = %

+ Since every door has exactly one object, By and B, are complementary,
and the law of total probability yields P(A) = P(A| B1) - P(B1) + P(A| By) - P(B>).

+ If Guest plays Stay, then clearly P(A|B1) = 0 and P(A|B) = 1, whence

2 1 1
PUA) = PIA|B1) - P(B1) + PA|Bo) - PB2) = 0- S+ 5 = 2

« If Guest plays Switch, then P(A|By) = 1 and P(A|B,) = 0, thus

2 1T 2
P(A) = P(A|B1)-P(B1)+ P(A|B2)-P(B)) =1-5+0- 2 = =
3 3 3
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Solving the Monty Hall Problem (2)

Consider the following events:
A:The Guest wins the car.
B:The Guest initially chooses a goat door.

If the Guest plays Switch, then

* P(B) = 5 as before,

* P(A|B) = 1 (initially choosing a goat door and switching win the car), and

* P(B|A) =1 (initially choosing a goat door is the only way a Switch player
can win the car).

According to Bayes' Theorem, we thus obtain

PA|B)-P(B) 2
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Preview: Simplified Poker
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Example: Simplified Poker

Binmore’s Simplified Poker

+ Two players, Ann and Bob, each put $1 into a jackpot.

* They then draw one card from a deck of three cards: {1, 2, 3}.

* Ann can either check (pass on), or raise (put another $1 into the jackpot).

* Next, Bob responds:
- If Ann has checked, then Bob must call, that is, a showdown happens:
Both players show their cards and the player with the higher (number) card
receives the jackpot.
- If Ann has raised, then Bob can decide between fold (withdraw from the
game and let Ann get the jackpot) or call (put another $1 into the jackpot and
then have a showdown).
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Simplified Poker: Preliminary Analysis

Nature shuffles and deals the cards. There are six possible outcomes:

1 1 2 2 3 3

- --- - -- 3 | S— 3 - ------ 2

3 2 3 1 2 1
(1,-1) -1,1) (1,-1)

« If Ann draws a 3, she will raise; if Bob draws a 1, he will fold.

« |f Bob draws a 3, he will call; if Ann draws a 2, she will check:
Were she to raise, she would lose 2 if Bob has a 3 (as he would call), but
still only win 1 if Bob has a 1 (as he would fold then).

What happens in the two remaining cases?

1. Should Ann raise (i.e. bluff) if she has a 1?
2. Should Bob call (the bluff) if he has a 2?
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Conclusion

Summary

In complete information games, players know the rules, possible
outcomes and each other’s preferences over outcomes.

In perfect information games, moves are sequential and all players
know all previous moves.

In extensive-form games, information is not necessarily complete or
perfect.

Uncertainty of players (due to missing information) can be modelled by
information sets and chance nodes (moves by Nature).

Bayes’ Theorem shows how to compute with conditional probabilities.
The law of total probability relates marginal to conditional probabilities.

Goat and Car graphics: Twemoji, Copyright 2020 Twitter, Inc and other contributors (CC-BY 4.0)
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