Exercise 7.1:
Given the program P_1, determine the stable models of P_1 by applying the Gelfond-Lifschitz-Reduct.

$$
P_1 = \{ a \leftarrow b, \neg c, d; \}
$$

$$
c \leftarrow \neg b, a;

b \leftarrow \neg c, \neg d;

a \leftarrow
$$

$$
P_2 = \{ a \leftarrow b, \neg c; \}
$$

$$
b \leftarrow c, \neg a;

c \leftarrow a, \neg b;

b \leftarrow
$$

$$
P_3 = \{ a \leftarrow \neg b, c; \}
$$

$$
c \leftarrow \neg a, b\}
$$

Exercise 7.2:
Recall the 3-Colorability problem (c.f. Exercise 1.1 of FCP). Define an ASP encoding for an arbitrary (undirected) graph $G = (V, E)$, such that each answer-set of your encoding corresponds to a 3-coloring of the graph G.

Exercise 7.3:
Model and solve the peer-review procedure with ASP. For scientific conferences, researchers submit their papers which are reviewed by other researchers. The problem of assigning referees for submissions to a conference is typical for the area of computer science.

Part A:
Construct a program `check.lp` which checks, given an assignment of submissions to members of the program committee (PC), where the following conditions hold:

1. each PC-member is assigned with at most five submissions;
2. no PC-member is assigned more than three papers that he or she rated with "I don’t want to review this paper";
3. no PC-member can rate a submission with different bids;
4. no PC-member is assigned a paper that he or she rated with "I cannot review this paper";
5. each submission is assigned to at least one PC-member who rated the paper with "I am willing to review this paper" or higher;

6. If a PC-member does not bid on a certain paper, by default "I don’t want to review this paper" is assumed as the PC-member’s bid on this paper.

The bids on the papers range from 0 to 3 with the following meanings:

0: "I cannot review this paper",

1: "I don’t want to review this paper",

2: "I am willing to review this paper",

3: "I really want to review this paper".

The given assignment of submissions to referees is assumed to be stored in some input files containing:

• pc(M): M is a member of the PC;

• paper(P): P is a submitted paper;

• bid(M,P,B): PC-member M’s bid on paper P, where B is a constant from \{0, 1, 2, 3\};

• assigned(P,M): the submission P is assigned to PC-member M.

The program check.lp should satisfy the following condition:

• check.lp, together with the input data, possesses an answer set precisely when Conditions 1.-6. are met.

Important: Do not use any aggregate functions for constructing the program check.lp!

Part B:
Now construct a program guess.lp which assigns, given a collection of submissions and a given PC, the submissions to the members of the PC in such a way that the following condition is satisfied:

(*) each submission is assigned to exactly three members to the PC.

Use the above defined predicates pc(M), paper(P) and assigned(P,M).