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Gradient Descent

• Before we study the stochastic gradient descent

method, we first study the standard gradient 

descent approach for minimizing a differentiable 

convex function f(w).

• Gradient descent is an iterative optimization 

procedure in which at each step we improve the 

solution by taking a step along the negative of the 

gradient of the function to be minimized at the 

current point.
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• The gradient of a differentiable function 𝑓:ℝ𝑑 → ℝ at w, 

denoted as  𝛻𝑓(w), is the vector of partial derivatives of 𝑓, 

namely, 

𝛻𝑓 w = 𝜕𝑓(𝑤)

𝜕𝑤[1]
, … , 𝜕𝑓(𝑤)

𝜕𝑤[𝑑]
.

• Gradient descent is an iterative algorithm. We start with 

an initial value of w (say, w(1) = 0). Then, at each iteration, 

we take a step in the direction of the negative of the 

gradient at the current point. That is, the update step is

w(𝑡+1) = w(𝑡) − 𝜂𝛻𝑓 w(𝑡) ,                (14.1)

where 𝜂 > 0 is a parameter.

• Intuitively, …
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• Intuitively, since the gradient points in the direction of the 

greatest rate of increase of 𝑓 around w(t), the algorithm 

makes a small step in the opposite direction, thus 

decreasing the value of the function. 

• Eventually, after T iterations, the algorithm outputs the 

averaged vector,  𝑤 = 1

𝑇
 𝑡=1
𝑇 w(𝑡) , the last vector, w(𝑇), or 

the best performing vector, argmin𝑡∈ 𝑇 𝑓(w
(𝑡)). But taking 

the average turns out to be rather useful, especially 

when we generalize gradient descent to non-

differentiable functions and to the stochastic case.
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Complexity of GD

Corollary 14.2

Let 𝑓 be a convex, 𝜌-Lipschitz function, and let 

𝑤∗  argmin 𝑤:∥𝑤∥≤𝐵 𝑓(𝑤). If we run the GD algorithm on 𝑓 for 

𝑇 steps with  η = 𝐵2

𝜌2𝑇
, then the output vector  𝑤 satisfies

𝑓  𝑤 − 𝑓 𝑤∗ ≤ 𝐵𝜌

𝑇
.

Furthermore, for every 𝜖 > 0, to achieve 𝑓  𝑤 − 𝑓 𝑤∗ ≤ 𝜖 , 

it suffices to run the GD algorithm for a number of iterations 

that satisfies

𝑇 ≥ 𝐵2𝜌2

𝜖2
.
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Subgradients

• The GD algorithm requires that the function f be 

differentiable. 

• It turns out that the GD algorithm can be applied to non-

differentiable functions by using subgradient of f(w) at 

w(t), instead of the gradient.

• Notice that for a convex function f, the gradient at w defines 

the slope of a tangent that lies below f, that is,

∀u, 𝑓 u ≥ 𝑓 w +< u −w, 𝛻𝑓 w >.
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The existence of a tangent that lies below convex f is an 

important property of convex functions, which is in fact an 

alternative characterization of convexity.

Definition 14.4

A vector v that satisfies Equation (14.8) is called a subgradient

of f at w. The set of subgradients of f at w is called the

differential set and denoted 𝜕f(w).



• Illustration of subgradients of a non-differentiable convex 

function:
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For scalar functions, a subgradient of a convex function f

at w is a slope of a line that touches f at w and is not above 

f elsewhere.



Computing Subgradients

• How do we construct subgradients of a given convex 

function? 

• If a convex function f is differentiable at a point w, then 

the differential set is trivial, because 𝜕f(w) contains a 

single element, namely, the gradient of f at w, 𝛻f(w).

• For many practical uses, we do not need to calculate the 

whole set of subgradients at a given point, as one 

member of this set would suffice.
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Example

• Consider the absolute value function f(x) = |x|. 

• We can easily construct the differential set for the 

differentiable parts of f, and the only point that requires 

special attention is x = 0. 

• At that point, the differential set is the set of all numbers 

between -1 and 1. 

• Hence:

𝜕𝑓 𝑥 =  

{1} if 𝑥 > 0
{−1} if 𝑥 < 0
[−1,1] if 𝑥 = 0
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Subgradients of Lipschitz Functions

• Recall that a function 𝑓: A → ℝ is 𝜌-Lipschitz if for all 𝑢, 𝑣 
A:

𝑓 𝑢 − 𝑓 𝑣 ≤ 𝜌 ∥ 𝑢 − 𝑣 ∥.

• The following lemma gives an equivalent definition using 

norms of subgradients.
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Subgradient Descent

• The gradient descent algorithm can be 

generalized to non-differentiable functions 

by using a subgradient of f(w) at w(t), 

instead of the gradient.
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Stochastic Gradient Descent (SGD)

• In stochastic gradient descent we do not require the 

update direction to be based exactly on the gradient. 

Instead, we allow the direction to be a random vector and 

only require that its expected value at each iteration will 

equal the gradient direction. 

• Or, more generally, we require that the expected value of 

the random vector will be a subgradient of the function at 

the current vector.
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Bound on the expected

output of stochastic gradient descent



Learning with SGD
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