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Gradient Descent

- Before we study the
method, we first study the standard gradient
descent approach for minimizing a differentiable
convex function f(w).

« Gradient descent is an iterative optimization
procedure in which at each step we improve the
solution by taking a step along the negative of the
gradient of the function to be minimized at the
current point.
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- The gradient of a differentiable function f: R* — R at w,
denoted as Vf(w), Is the vector of partial derivatives of f,
namely,

ofw)  Afw)
7f(w) = (3 - 5hi)
« Gradient descent is an iterative algorithm. We start with
an initial value of w (say, w) = 0). Then, at each iteration,

we take a step in the direction of the negative of the
gradient at the current point. That is, the update step Is

wtth = w® — 7 f(w®), (14.1)
where n > 0 Is a parameter.
 Intuitively, ...
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 Intuitively, since the gradient points in the direction of the
greatest rate of increase of f around w®, the algorithm
makes a small step in the opposite direction, thus
decreasing the value of the function.

« Eventually, after T iterations, the algorithm outputs the

averaged vector, w = 1 ¥[_; w(®), the last vector, w(™), or

the best performing vector, argmin, ;7 f (w®). But taking
the average turns out to be rather useful, especially
when we generalize gradient descent to non-
differentiable functions and to the stochastic case.
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Complexity of GD

Corollary 14.2

Let f be a convex, p-Lipschitz function, and let
w* e argming, wi<p}f (W). If we run the GD algorithm on f for

T steps with n = /pBTzT , then the output vector w satisfies

fw)— fw) <2£.
Furthermore, for every € > 0, to achieve f(w) — f(w*) < €,

It suffices to run the GD algorithm for a number of iterations
that satisfies

T > B2p?

€2
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Subgradients

 The GD algorithm requires that the function f be
differentiable.

It turns out that the GD algorithm can be applied to non-
differentiable functions by using of f(w) at
w®, instead of the gradient.

* Notice that for a convex function f, the gradient at w defines
the slope of a tangent that lies below f, that is,

vu, f(u) = f(w)+<u—w,Vf(w) >.
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The existence of a tangent that lies below convex f is an
Important property of convex functions, which is in fact an
alternative characterization of convexity.

LEMMA 14.3 Let S be an open conver set. A function f:S — R is convex iff
for every w € S there erists v such that

vues, fu)> f(w)+(u-w,v) (148)

Definition 14.4
A vector v that satisfies Equation (14.8) is called a subgradient

of f at w. The set of subgradients of f at w Is called the
differential set and denoted of(w).

——
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 lllustration of subgradients of a non-differentiable convex
function:

For scalar functions, a subgradient of a convex function f
at w is a slope of a line that touches f at w and is not above
f elsewhere.

——
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Computing Subgradients

« How do we construct subgradients of a given convex
function?

 If a convex function f is differentiable at a point w, then
the differential set is trivial, because odf(w) contains a
single element, namely, the gradient of f at w, Vf(w).

« For many practical uses, we do not need to calculate the
whole set of subgradients at a given point, as one
member of this set would suffice.
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Example

Consider the absolute value function f(x) = [x|.

We can easily construct the differential set for the
differentiable parts of f, and the only point that requires
special attention is x = 0.

At that point, the differential set is the set of all numbers
between -1 and 1.

Hence:

({1} ifx>0
of (x) = < {—1} ifx<O0
U—11] ifx=0
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Subgradients of Lipschitz Functions

* Recall that a function f: A = R is p-Lipschitz if for all u, v
A:
If)—fW)| < pllu—-vl.
« The following lemma gives an equivalent definition using
norms of subgradients.

LEMMA 14.7 Let A be a conver open set and let f : A — R be a convex funection.
Then, f is p-Lipschitz over A iff for oll w € A and v € df(w) we have that

Vil < p
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Proof Assume that for all v € df(w) we have that ||v]| < p. Since v € df(w)
we have

f(w) = f(u) < (v,w —u).

Bounding the right-hand side using Cauchy-Schwartz inequality we obtain

f(w) = f(u) < (v, w—u) <|v][w—ul| <pllw—ul.

An analogous argument can show that f(u) — f(w) < p|w — u/. Hence f is
p-Lipschitz.

Now assume that f is p-Lipschitz. Choose some w € A, v € df(w). Since A
is open, there exists € > 0 such that u = w + ev/||v|| belongs to A. Therefore,
(u—w, v) = €||v|| and |u — w| = e. From the definition of the subgradient,

f(0) = f(w) 2 (v,u—w) =ef[v]|.

On the other hand, from the Lipschitzness of f we have

pe=pllu—w| = flu) - f(w).

Combining the two inequalities we conclude that ||v|| < p.
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Subgradient Descent

* The gradient descent algorithm can be
generalized to non-differentiable functions
by using a subgradient of f(w) at w®,
Instead of the gradient.
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Stochastic Gradient Descent (SGD)

 In stochastic gradient descent we do not require the
update direction to be based exactly on the gradient.
Instead, we allow the direction to be a random vector and
only require that its expected value at each iteration will

equal the gradient direction.

« Or, more generally, we require that the expected value of
the random vector will be a subgradient of the function at

the current vector.
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Stochastic Gradient Descent (SGD) for minimizing
f(w)

parameters: Scalar n > 0, integer 1" >

initialize: w'!) =0

fort=1,2,...,T
choose v; at random from a distribution such that E[v;
update w’-f"'lﬂ = wit) — gv,

T (¢
output w = £ ) L5 wit)
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Figure 14.3 An illustration of the gradient descent algorithm (left) and the stochastic

gradient descent algorithm (right). The function to be minimized is
1.25(x + ﬁ]z + (y — 8]2. For the stochastic case, the black line depicts the averaged

value of w.
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Bound on the expected
output of stochastic gradient descent

THEOREM 14.8 Let B, p > 0. Let f be a convex function and let w* € argming .. <p f(W).

o _ . . . . I n2 .
Assume that SGD is run for T iterations with n = .,v# ;—%T Assume also that for

all t, ||v:¢|| < p with probability 1. Then,

E[f(w)] — f(w*) < =L

—n

vT

Therefore, for any € > 0, to achieve E[f(W)] — f(W*) < ¢, it suffices to run the

=3

SGD algorithm for a number of iterations that satisfies
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Learning with SGD

Stochastic Gradient Descent (SGD) for minimizing
Lp(w)

parameters: Scalar n > 0, integer T > 0
initialize: w'!) = 0

forit=1.2,... N

sample z ~ D

pick v; € 9f(w't), 2)

update “”"‘1‘ = wit) — 1)V

T
output w = + E-¢:1 wlt)
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COROLLARY 14.12 Consider a convez-Lipschitz-bounded learning problem with
parameters p, B. Then, for every e > 0, if we run the SGD method for minimizing

Lp(w) with a number of iterations (i.e., number of examples)

and with n = \’# —=, then the output of SGD satisfies

E[Lp(W)] < min Lp(w) + ¢

weH
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COROLLARY 14.14 Consider a convexr-smooth-bounded learning problem with

parameters 3, B. i1~-:-e:--n-m e in addition that £(0,z) <1 for all z € Z. For every
e>0, set n = "'1‘1_+3'_ Then, running SGD with T > 12B%3/€* yields

ElLp(w)] < mi_ﬂ Lp(w) + e

i
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