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Abstract. Knowledge graphs have recently become the state-of-the-art
tool for representing the diverse and complex knowledge of the world.
Examples include the proprietary knowledge graphs of companies such as
Google, Facebook, IBM, or Microsoft, but also freely available ones such
as YAGO, DBpedia, and Wikidata. A distinguishing feature of Wikidata
is that the knowledge is collaboratively edited and curated. While this
greatly enhances the scope of Wikidata, it also makes it impossible for
a single individual to grasp complex connections between properties or
understand the global impact of edits in the graph. We apply Formal
Concept Analysis to efficiently identify comprehensible implications that
are implicitly present in the data. Although the complex structure of
data modelling in Wikidata is not amenable to a direct approach, we
overcome this limitation by extracting contextual representations of
parts of Wikidata in a systematic fashion. We demonstrate the practical
feasibility of our approach through several experiments and show that the
results may lead to the discovery of interesting implicational knowledge.
Besides providing a method for obtaining large real-world data sets for
FCA, we sketch potential applications in offering semantic assistance for
editing and curating Wikidata.

Keywords: Wikidata, Formal Concept Analysis, Property Dependencies, Impli-
cations

1 Introduction

The quest for the best digital structure to collect and curate knowledge has
been going on since the first appearances of knowledge stores in the form of
semantic networks and databases. The most recent, and arguably so far most
powerful, incarnation is the knowledge graph, as used by corporations like Face-
book, Google, Microsoft, IBM, and eBay. Among the freely available knowledge
graphs, Wikidata [28, 29] stands out due to its free and collaborative character:
like Wikipedia, it is maintained by a community of volunteers, adding items,
relating them using properties and values, and backing up claims with references.
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As of 2019-02-01, Wikidata has 52,373,284 items and 676,854,559 statements
using a total 5,592 properties. Altogether this constitutes a gargantuan collection
of factual data accessible to and freely usable by everyone.

However, maintaining this large knowledge graph is not an easy task, and
retaining active editors poses an important challenge for the community [23]:
throughout the six years of Wikidata’s existence, Wikidata has amassed over
three million registered users, but only 20 thousand editors are still active. An
important step towards improving editor retention is to streamline the editing
process as much as possible. The largest fraction of edits is made up of bot edits
(automated editing tools operated by individual users) and batch edits (i.e., mass
edits done through some tool specifically designed for certain types of edits).
These are primarily authored by seasoned editors not usually susceptible to editor
attrition [22]. In contrast, casual editors typically do not use tools besides the
Wikidata web interface. Towards improving this editing experience, we propose to
extract implicational knowledge (“rules”) from Wikidata to explicate to the editor
the (potentially non-local) consequences of editing a particular item’s statements,
similarly to the way property constraints4 are already used to highlight potentially
conflicting or missing data. Such rules must necessarily be easy to understand
for editors that are not already deeply familiar with Wikidata’s data model and
ontological structure. Previous approaches have studied extracting rules in the
form of implications of first-order logic (FOL) is a feasible approach to obtain
interesting and relevant rules from Wikidata. [9, 15] The expressive power of
FOL comes with a steep price, however: to understand such rules, one needs to
understand not only the syntax, but also advanced concepts such as quantification
over variables, and it seems far-fetched to assume that the average Wikidata
editor possesses such understanding. We thus propose to use rules that are
conceptually and structurally simpler, and focus on extracting Horn implications
of propositional logic (PL) from Wikidata, trading expressive power for ease of
understanding and simplicity of presentation.

While Formal Concept Analysis (FCA) [12] provides techniques to extract a
sound and complete basis of PL implications (from which all other implications
can be inferred), applying these techniques to Wikidata is not straightforward: A
first hurdle is the sheer size of Wikidata, necessitating the selection of subsets
from which to extract rules. Secondly, the intricate data model of Wikidata, while
providing much flexibility for expressing wildly different kinds of statements, is not
particularly amenable to a uniform approach to extracting relevant information.

In this work, we tackle both issues by describing procedures i) for extracting, in
a structured fashion, implicational knowledge for arbitrary subsets of properties,
and ii) for deriving suitable sets of attributes fromWikidata statements, depending
on the type of property. We provide an implementation of these procedures5, and
while incorporating the extracted rules into the editing process is out of scope for
this paper, we nevertheless demonstrate that we are able to obtain meaningful
and interesting rules using our approach.

4 https://www.wikidata.org/wiki/Help:Property_constraints_portal
5 https://github.com/mmarx/wikidata-fca
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2 Related Work

In the realm of Wikidata, there have been two prominent applications of FCA
so far: The authors in [13] model and predict the dynamic behaviour of knowl-
edge graphs using lattice structures, and [17] attempts to determine obligatory
attributes for classes in Wikidata. A more general approach to applying FCA
to knowledge graphs was proposed in [8]. A current topic in knowledge bases
(and in particular Wikidata) is Rule mining. Several successful approaches to
generating lists of FOL rules, e.g., in [15, 9] have been proposed. This task is often
connected to ranked lists of rules, sometimes falsely denoted as recommendations,
like in [31], or completeness investigations for knowledge graphs, like in [10, 26].

3 Wikidata

Data Model. Wikidata [29] is the free and open Knowledge Graph of the Wiki-
media foundation. In Wikidata, statements representing knowledge are made
using properties that connect entities (either items or other properties) to values,
which, depending on the property, can be either items, properties, data values of
one of a few data types, e.g., URIs, time points, globe coordinates, or textual
data, or either of the two special values unknown value (i.e., some value exists,
but it is not known) and no value (i.e., it is known that there is no such value).

Example 1. Liz Taylor was married to Richard Burton. This fact is represented by
a connection from item Q34851 (“Elizabeth Taylor”) to item Q151973 (“Richard
Burton”) using property P26 (“spouse”). But Taylor and Burton were married
twice: once from 1964 to 1974, and then from 1983 to 1984.

To represent these facts, Wikidata enriches statements by adding qualifiers,
pairs of properties and values, opting for two “spouse” statements from Taylor to
Burton with different P580 (“start time”) and P582 (“end time”) qualifiers.

Metadata and Implicit Structure. Each statement carries metadata: references
track provenance of statements, and the statement rank can be used to deal
with conflicting or changing information. Besides normal rank, there are also
preferred and deprecated statements. When information changes, the most relevant
statement is marked preferred, e.g., there are numerous statements for P1082
(“population”) of Q1794 (“Frankfurt”), giving the population count at different
times using the P585 (“point in time”) qualifier, with the most recent estimate
being preferred. Deprecated statements are used for information that is no longer
valid (as opposed to simply being outdated), e.g., when the formal definition of a
planet was changed by the International Astronomical Union on 2006-09-13, the
statement that Q339 (“Pluto”) is a Q634 (“Planet”) was marked deprecated, and
an P582 (“end time”) qualifier with that date was added.

Example 2. We may write down these two statements in fact notation as follows,
where qualifiers and metadata such as the statement rank are written as an
annotation on the statement:



populationP1082(FrankfurtQ1794, 736414)@[determination methodP459:

estimationQ965330, point in timeP585: 2016-12-31, rank: preferred]
(1)

instance ofP31(PlutoQ339, PlanetQ634)@[end timeP582: 2006-09-13,
rank: deprecated]

(2)

Further structure is given to the knowledge in Wikidata using statements
themselves: Wikidata contains a class hierarchy comprising over 100,000 classes,
realised by the properties P31 (“instance of”) (stating that an item is an instance
of a certain class) and P279 (“subclass of”), which states some item q is a subclass
of some other class q′, i.e., that all instances of q are also instances of q′.

Formalisation. Most models of graph-like structures do not fully capture the
peculiarities of Wikidata’s data model. The generalised Property Graphs [20],
however, have been proposed specifically to capture Wikidata, and we thus phrase
our formalisation in terms of a multi-attributed relational structure.

Definition 1. Let Q be the set of Wikidata items, P be the set of Wikidata
properties, and let V be the set of all possible data values. We denote by E := Q∪P
the set of all entities, and define ∆ := E ∪ V. Now, the Wikidata knowledge graph
is a map W : P → P(E ×∆×P(P ×∆)) assigning to each property p a ternary
relation W(p), where a tuple 〈s, v, a〉 ∈ W(p) corresponds to a p-statement on s
with value v and annotation a.

Thus, 〈∆, (W(p))p∈P〉 is amulti-attributed relational structure, i.e., a relational
structure in which every tuple is annotated with a set of pairs of attributes and
annotation values. While technically stored separately on Wikidata, we will simply
treat references and statement ranks as annotations on the statements. In the
following, we refer to the Wikidata knowledge graph simply by W . Furthermore,
we assume that deprecated statements and the special values unknown value and
no value do not occur in W . This is done merely to avoid cluttering formulas by
excluding these cases, and comes without loss of generality.

Example 3. Property P26 (“spouse”) is used to model marriages in Wikidata.
Among others, W(spouseP26) contains the two statements corresponding to the
two marriages between Liz Taylor and Richard Burton from Example 1:〈

Elizabeth TaylorQ34851, Richard BurtonQ151973,

{〈start timeP580, 1964〉, 〈end timeP582, 1974〉}
〉 (3)〈

Elizabeth TaylorQ34851, Richard BurtonQ151973,

{〈start timeP580, 1983〉, 〈end timeP582, 1984〉}
〉 (4)

Next, we introduce some abbreviations for when we are not interested in the
whole structure of the knowledge graph.



Definition 2. Let R ⊆ S3 be a ternary relation over S. For t = 〈s, o, a〉 ∈ S3, we
denote by subj t := s the subject of t, by obj t := o the object of t, and by ann t :=
a the annotation of t, respectively. These extend to R in the natural fashion:
subjR := {subj t | t ∈ R}, objR := {obj t | t ∈ R}, and annR := {ann t | t ∈ R},
respectively. We indicate with ^ that a property is incident with an item as object:
W (̂ spouseP26) contains 〈Richard BurtonQ151973, Elizabeth TaylorQ34851,
{〈start timeP580, 1964〉, 〈end timeP582, 1974〉}〉.

4 Formal Contexts in Wikidata

Building upon Definition 1, we now recall basic notions from Formal Concept
Analysis and how they relate to the structure of Wikidata. For a thorough
introduction, we refer the reader to [12]. A formal context is a triple K = 〈G,M, I〉
where G is a set of so-called objects, M is a set of so-called attributes, and
I ⊆ G × M is called the incidence relation. This relation gives rise to the
definition of two derivation operations traditionally sharing the same symbol:
·′ : P(G) → P(M), A 7→ A′ := {m ∈ M | ∀g ∈ A : 〈g,m〉 ∈ I} and ·′ : P(M) →
P(G), B 7→ B′ := {g ∈ G | ∀m ∈ B : 〈g,m〉 ∈ I}. Two sets A ⊆ G and B ⊆ M ′

are called closed in K if A = A′′ and B = B′′, respectively. A pair 〈A,B〉
satisfying A′ = B and B′ = A, where A ⊆ G and B ⊆M , is a formal concept, the
defining entity for FCA. The set of all concepts is denoted by B(K). An attribute
implication is denoted by X → Y , where X,Y ⊆M . We say X → Y is valid in
K iff X ′ ⊆ Y ′. The set of all valid implications for K on M is called the attribute
implicational theory, denoted by ThM (K). In general, the theory of a formal
context can be exponentially large compared to the size of the context. Thus,
one employs an implication base, i.e., a sound, complete, and non-redundant set
of implications from which the theory can be inferred. Among the various bases
used in FCA, the canonical base L stands out due to its minimal size [14].

Reasoning using a canonical base is quite simple: for every attribute set
X ⊆ M , compute the closure XL, i.e., apply L to X until the result is stable.
This can be done in time linear in the size of the canonical base [3]. Thus,
entailment of an implication X → Y with respect to a base can be decided
in linear time: X → Y is entailed by L iff Y ⊆ XL [11, Proposition 16]. In
contrast, deciding entailment directly is P-complete with respect to the size of
the implicational theory [5]. Computing the canonical base is thus a more efficient
way to decide entailment for multiple implications, as the computational effort
of computing a base gets amortised over the entailment checks. An implication
X → Y in a formal context 〈G,M, I〉 has support6 supp(X → Y ) = |X′|

|G| , i.e.,
the relative number of objects exhibiting the necessary attributes for the rule to
be applicable among all objects. A higher support implies that the implication is
more relevant to the whole domain of the context. Nevertheless, a valid implication
X → Y may have a support of zero.

6 We use the definition for the support from FCA, which coincides with the definition
of the support on valid rules in association rules.



5 Property Theory

In the following, we employ these tools and techniques to obtain a more accessible
view on the Wikidata knowledge graph and how properties therein depend on
each other. Krötzsch [16] argues that knowledge graphs are primarily charac-
terised by three properties: i) normalised storage of information in small units,
ii) representation of knowledge through the connections between these units, and
iii) enrichment of the data with contextual knowledge. In Wikidata, properties
serve both as a mechanism to relate entities to one another, as well as to provide
contextual information on statements through their use as qualifiers. Taking the
structure and usage of properties into account is thus crucial to any attempt
of extracting structured information from Wikidata. We introduce four natural
problem scenarios for selecting sets of properties from Wikidata, each exploiting
different aspects of the rich data model to enhance the understanding of the data.

5.1 Plain Incidence

We start by constructing the formal context that has a chosen set P̂ ⊆ P as its
attribute set and the entity set E as the object set.

Problem 1. Given the Wikidata knowledge graph W and some subset P̂ ⊆ P,
compute the canonical base for the implicational theory ThP̂ (E , P̂, Iplain), where

〈e, p̂〉 ∈ Iplain :⇐⇒ e ∈ subjW(p̂), i.e., (5)

an entity e coincides with property p̂ iff it occurs as a subject in some p̂-statement.

Although this is the most basic problem we present, with growing P̂ it may
quickly become computationally infeasible, cf. Section 6.2. More importantly,
however, entities occurring as objects are not taken into account: almost half of
the data in the knowledge graph is ignored, motivating the next definition.

5.2 Directed Incidence

We endue the set of properties P with two colours {subj, obj} signifying whether
an entity coincides with the property as subject or as object in some statement.

Problem 2. Given W and some set P̂ ⊆ P × {subj, obj} of directed properties,
compute the canonical base for ThP̂(E , P̂, Idir), where an entity e coincides with
p̂ iff it occurs as subject or object (depending on the colour) of some p-statement:

〈e, p̂〉 ∈ Idir :⇐⇒
(
p̂ = 〈p, subj〉 ∧ e ∈ subjW(p)

)
∨
(
p̂ = 〈p, obj〉 ∧ e ∈ objW(p)

)
.

(6)

Example 4. Let P̂ = {^motherˆP25, godparentP1290, motherP25} be the set of
attributes and let E = {Miley CyrusQ4235, VictoriaQ9439, Naomi WattsQ132616,
Angelina JolieQ13909} be the set of objects. The corresponding formal context
〈E , P̂, Idir〉 (as extracted from Wikidata) is given by the following cross table:
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Q13909 (“Angelina Jolie”) × × ×
Q4235 (“Miley Cyrus”) × ×
Q132616 (“Naomi Watts”) × ×
Q9439 (“Victoria”) × × ×

Observe that the only valid (non-trivial) implication (and hence sole con-
stituent of the canonical base) is {} → {motherP25}: every entity has a mother.

5.3 Qualified Incidence

While Problem 2 captures Example 4, it is still insufficient to grasp the subtleties
of Example 3, since two statements differing only in their annotations are indis-
tinguishable. We thus include annotations into the colours of the properties. For
a property p, we define Annotations(p) :=

⋃
t∈W(p) ann t, the set of all individual

annotations occurring in statements for p.

Problem 3. ForW and P̂ ⊆
⋃

p∈P({p}×{subj, obj}×Annotations(p)), compute
the canonical base for ThP̂(E , P̂, Iqual), where

〈q, p̂〉 ∈ Iqual :⇐⇒
(
p̂ = 〈p, obj, a〉 ∧ ∃t ∈ W(p). (obj t = q) ∧ (a ∈ ann t)

)
∨
(
p̂ = 〈p, subj, a〉 ∧ ∃t ∈ W(p). (subj t = q) ∧ (a ∈ ann t)

)
, i.e.,

(7)

an entity e coincides with p̂ = 〈p, d, a〉 iff it occurs as subject or object (depending
on d) of some p-statement t, and the annotation ann t of t includes a.

5.4 Classified Incidence

Another natural approach to distinguishing properties is to consider the classes
that objects of the property are instances of: having a P25 (“mother”) that is a
Q22989102 (“Greek deity”) is significantly different from one that is merely a Q5
(“human”). We thus define for a property p ∈ P the set of all classes that objects of
p-statements are instances of: Classes(p) := {obj t | t ∈ W(instance ofP31), s ∈
W(p), obj s = subj t}.



Table 1. Property selection in data sets

data set properties in class (“Wikidata property for . . . ”)

awards Q56150830 (“. . . awards, prizes and honours”)
family Q22964231 (“. . . human relationships”)
math Q22988631 (“. . . mathematics”)
space Q28104992 (“. . . spacecraft”)
time Q51077473 (“. . . time and duration”)

Problem 4. Given W and some set P̂ ⊆
⋃

p∈P ({p} × {subj, obj} × Classes(p)),
compute the canonical base for the implicational theory ThP̂(E , P̂, Iclass), where

〈q, p̂〉 ∈ Iclass : ⇐⇒
(
p̂ = 〈p, subj, c〉 ∧ ∃s ∈ W(p).

∃t ∈ W(instance ofP31). (subj s = q) ∧ (obj s = subj t) ∧ (obj t = c)
)

∨
(
p̂ = 〈p, obj, c〉 ∧ ∃t ∈ W(instance ofP31).(q ∈ objW(p))

∧ (subj t = q) ∧ (obj t = c)
)
, i.e.,

(8)

an entity e coincides with p̂ = 〈p, d, c〉 if there is a p-statement t with subject (or
object, respectively) e, and the object of t is an instance of class c.

Generalised Incidence. Any of the incidences so far may be combined into one
generalised incidence, since the point-wise union of two formal contexts is again
a formal context. In the same spirit, one could investigate further incidences
emphasising other aspects of the Wikidata data model.

6 Computations

Solving Problems 1 to 4 should, in theory, be straightforward: merely apply one
of the two known algorithms for computing the canonical base, or first compute
some other base like a direct base from which one can deduce the canonical base.
However, for |P̂| ≥ 200, computing the canonical base in reasonable time on
affordable hardware might already be impossible. Nonetheless, to demonstrate
that it is indeed possible to derive meaningful formal contexts from Wikidata
with the approaches of Problems 1 and 2, we conducted experiments with classical
and more recent methods for computing canonical bases. We discuss a range of
different selections of properties to illustrate these techniques.

6.1 Data Sets

Our data sets were generated from the full Wikidata dump (in JSON format) from
2018-10-227. From this dump, we have extracted different subsets by selecting
fixed sets of properties related to certain domains of interest (arbitrarily chosen
7 https://dumps.wikimedia.org/wikidatawiki/entities/20181022/
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by the authors due to personal preference), which are represented as classes
of properties in Wikidata. Since Wikidata comprises knowledge from a vast
number of distinct and unconnected domains, this is a natural simplification, as
the properties used for, e.g., spacecraft are disjoint from those properties used
for mathematics. Table 1 describes which properties were selected for which
data set; Table 2 shows the sizes of the various data sets. For each data set, we
have extracted formal contexts corresponding to the incidences of Problems 1
to 4, respectively. In generating these contexts, we ignore statements that are
i) deprecated, since these are no longer considered valid, ii) have an unknown
value, or iii) have no value. All other statements contribute to populating the
context according to the corresponding incidence relation. Finally, we remove
empty rows and columns, since these do not influence implications.

For comparison, we have also included the data set wiki44k as provided by [15],
a small subset of simple statements extracted from a Wikidata dump from De-
cember 2014. Meanwhile, though, the usage of some properties on Wikidata has
changed, and, in particular, eight properties used in this data set have since been
deleted on Wikidata. Hence, we have also generated wiki44k-tr, where these
properties have been replaced by their modern equivalents: P7 (“brother”), P9
(“sister”): replaced by P3373 (“sibling”), P45 (“grandparent”): replaced by
P1038 (“relative”), with a P1039 (“type of kinship”) qualifier with value Q167918
(“grandparent”), P70 (“order”): replaced by P171 (“parent taxon”), where the
object gets an additional P105 (“taxon rank”) statement with value Q36602 (“or-
der”), P71 (“family”): replaced by P171 (“parent taxon”); where the object gets
an additional P105 (“taxon rank”) statement with value Q35409 (“family”), P107
(“main type GND”), P132 (“administrative entity”): replaced by P31 (“in-
stance of”), and P133 (“language family”): replaced by P279 (“subclass of”).
Both data sets were converted to JSON format and then processed analogously to
the other data sets. Data sets wiki44k-2018 and wiki44k-2018-tr are subsets
of the 2018 dump obtained by dropping all items and properties (and statements
connecting those) not appearing in wiki44k and wiki44k-tr, respectively.

Table 2. Size of data sets

data set items properties statements

awards 429,207 27 892,723
family 307,330 10 728,669
math 36,913 45 84,255
space 7,693 20 30,212
time 216,865 9 219,803
wiki44k 45,021 101 295,352
wiki44k-2018 44,915 92 382,725
wiki44k-tr 45,021 95 300,687
wiki44k-2018-tr 44,919 94 384,700



Table 3. Canonical bases for contexts in Problem 1

data set density |CanBase(·)| # supported

awards 0.039 280 17
family 0.163 46 46
math 0.040 752 71
space 0.195 157 125
time 0.112 27 0
wiki44k 0.045 7,040 3,556
wiki44k-2018 0.053 8,179 5,550
wiki44k-tr 0.043 6,408 3,261
wiki44k-2018-tr 0.053 9,422 6,641

6.2 Empirical Evaluation

Table 3 depicts the results of our computations for Problem 1. The computation
time for those results varied from seconds in the case of family to approximately
five hours for the wiki44-* data sets. The program code for our experiments was
written in Clojure and builds on the existing conexp-clj.8. A GitHub repository9

holds data sets and computed results. We used a state-of-the-art server system
with two Intel R© Xeon R© Gold 5122 CPUs and 768 GB RAM.

A first observation is that the canonical bases remain small in relation to the
data sets, even though the data is inherently noisy and a considerable number of
special items provokes peculiar rules. This enhances the applicability of these
bases. Secondly, we observe that the number of supported rules varies strongly
with different data sets, e.g., all rules are supported in the family data set,
whereas no rule in time is. Thus, time does not admit a non-trivial propositional
Horn logic theory, but still, the canonical base comprises a plenitude of valid
rules. This could be due to incorrectly or insufficiently contributed data, an
unusually high number of exceptions in the domain, or even due to a conscious
design decision in the data modelling with respect to the properties in time.
Nonetheless, this canonical base may still be used to validate that particular
implications hold in the domain.

We now list some interesting, exemplary implications that we discovered for
Problems 1 and 2. In the data set names, <data set>-0 corresponds to a context
for Problem 1, whereas <data set>-1 denotes a context for Problem 2.
awards-0: {Nobel prize IDP3188} → {award receivedP166} is an implication

supported by 0.2% of the data set. While this is a reasonable implication, it
is hardly surprising. Altogether, we obtained a set of 280 valid implications
from which 17 are supported in the data set.

awards-1: We found the following implication, stating that everything that some-
one has been nominated for and that has an associated category for the award
is also an award received by some entity, supported by 0.03% of the data set:

8 https://github.com/exot/conexp-clj
9 https://github.com/wikiexploration/wikiexploration
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{^nominated forˆP1411, category for recipients of this awardP2517}
→ {^award receivedˆP166}. Beyond this, implications from awards-1 do
not seem to shed more light on the set of investigated properties.

family-0: Here we computed a canonical base in which all implications are
supported. For example, the implication {godparentP1290, partnerP451} →
{siblingP3373} is supported by 7 out of 306,908 entities. It states that an
entity that has a godparent and has a partner also has a sibling. However,
this implication is not necessarily true for family relations.

family-1: With 0.03% support, the implication {^fatherˆP22, ^relativeˆP1038,
spouseP26} → {childP40} is unsurprising, but witnesses that the more gen-
eral {^fatherˆP22} → {childP40} has counterexamples in the data set: in
fact, there are 1,634 non-fictional humans serving as counterexamples.

math-0: Among 752 implications, we discovered, with 0.01% support, the implica-
tion {has vertex figureP1678, baseP3263} → {has facet polytopeP1678}.
It is clearly helpful to obtain such rules when unfamiliar with polytope theory.

math-1: We observe a large number of rules relating mathematical identifiers, or
at least using them. One such example, with support 0.02%, is the implication
{has vertex figureP1678, MathWorld identifierP2812, ^dual toˆP1322}
→ {has facet polytopeP1678}. Polytope theory is well represented in Wiki-
data. Other fields of mathematics are lacking data, however, and our hopes
for numerous implications from diverse fields remained unfulfilled.

space-0: 4% of the data set supports the implication {type of orbitP522,
periapsisP2244} → {apoapsisP2243}. From our point of view, there are
several more elements of the computed canonical base contributing to a
better understanding of the properties in this domain.

space-1: The rule (support 0.01%) {apoapsisP2243, ^type of orbitˆP522}
→ {orbital periodP2146, type of orbitP522, periapsisP2244} states that
all other relevant orbital facts are present for types of orbit with an apoapsis.

wiki44k-0: We find the rule {producerP162, countryP17} → {genreP136} with
support 0.04%, stating that knowing the producer and the country of an
item we can infer the genre associated to this item. Since this data collection
was constructed with the explicit goal of having a very dense data set [9], the
probability for sparse counterexamples is low.

We claim that the implications discovered by us are readable and comprehen-
sible by humans, at least in cases where a user is familiar with the domain of
knowledge. Our experiments shed light on two particular kinds of errors entailed
in Wikidata. First, we found that implications that should be valid, yet cannot
be inferred from the data set due to the presence of counterexamples. By incor-
porating a background ontology, one may apply our method to identify missing
implications and therefore possible errors in Wikidata. These can be fixed by
editing statements or, in more serious cases, by introducing new properties and
deprecating (particular uses of) others. Secondly, we observed valid implications
that can easily be refuted by inquiring a domain expert for a counterexample.
Attribute exploration on parts of Wikidata could be harnessed to systematically
obtain such counterexamples, although the sheer size of Wikidata requires a



collaborative exploration method. At this point, we refrain from a thorough
statistical evaluation, as, e.g., done in [15], since, from a logical standpoint, the
computed bases are not only sound and complete, but also unique, methods such
as cross-validation via, e.g., embedding models, are inappropriate to obtain mean-
ingful measurements. Rather, we focus on obtaining bases suitable for verifying
implicational assumptions on the data, as well as enhancing the comprehension
of properties by users of Wikidata.

6.3 Limitations

These experiments are subject to two limitations of our method: i) Already for a
formalism as simple as horn PL rules, computing canonical bases is only feasible
for small subdomains of Wikidata. This is hardly surprising, as recognising
elements of the canonical base is coNP-complete [2] (but becomes even harder
for more expressive formalisms, if bases even exist). We investigate two known
approaches for coping with this limitation in the next section. ii) The collaborative
editing process is prone to introducing noise into the data, but the canonical
base is sensitive to small changes and thus not well-suited for noisy data. This
naturally leads to a weaker notion of base. While technically also a limitation
of the approach, we consciously limit ourselves to implications in propositional
Horn logic which cannot express some of the rules obtained by more expressive
frameworks such as [15, 9]: computing bases of implications for more expressive
logics is computationally infeasible at best, and impossible at worst. Moreover,
propositional Horn rules are arguably easier to grasp for untrained editors of
Wikidata than, e.g., first-order rules.

7 Association Rules and PAC Bases

Various approaches to overcome the limitations stated in the last section are
known. A well-investigated and mature procedure is the computation of associ-
ation rules [1]. While closely related to implications in the FCA sense [21, 24,
30], they were developed independently. For X,Y ⊆ M , the confidence of an
association rule X → Y is conf(X → Y ) := supp(X ∪Y )/ supp(X). The classical
problem then is to compute all association rules with minimum support minsup
and confidence at least minconf in a domain. This usually leads to exponentially
many rules. A plenitude of extensions of association rules have been proposed,
e.g., different kinds of support, head-confidence, etc. For our goal of obtaining a
base of implications, the most interesting extension was done in [25], relaying on
the Luxenburger base of association rules [18]. From this base one can infer all
valid association rules in the domain with respect to minsup and minconf.

As a short empirical evaluation, we computed the Luxenburger base for the
data sets awards, family, math, space, and time for the setting of Problem 2
with minsupp = 0.0001 and minconf = 0.6. We list some interesting elements of
these bases: awards (429,126 items, 38 properties): The base has 28 rules,
the rule {National Medal of Arts winner IDP5719, nominated for1411} →



{award receivedP166} has confidence 99.8% and support 0.017%, with the sole
counterexample Q15782045 (“Albert Maysles”).10 family (306,908 items, 19
properties): The rule {motherP25, fatherP22} → {^childˆP40} has a support
11.7% and confidence 99.8%. The size of the base is 11,359.math (36,904 items,
63 properties): Among the 482 rules is {input setP1851, domainP1568} →
{codomainP1571} which has support 0.024% and confidence 88.8%, with the only
counter example being Q3075242 (“inverse function”), due to a missing statement
on this item. space (7,693 items, 30 properties): The base has 666 elements.
The rule {orbital periodP2146, apoapsisP2243} → {periapsisP2244} is sup-
ported by 18% of the data set and has a confidence of 99.9% (note that this rule
is not an element of the canonical basis). time (216,856 items, 15 proper-
ties): The base has 4 elements. An interesting rule with support 0.03% and con-
fidence 97.4% is {temporal range endP524} → {temporal range startP523}.
Except for space, the Luxenburger bases are of reasonable size, i.e., the size of
the base is about 1% of the number of entities. We also computed the Luxen-
burger base for wiki44k and wiki44k-2018, resulting in bases of 359,745 and
293,038 rules, respectively. While this is in sharp contrast to the positive results
above, there is a simple explanation for this effect: the properties in our data
sets were chosen from a common domain, leading to a data set that includes
items predominantly from this domain. The wiki44k data set, however, was
constructed by searching for frequently-used (but not necessarily related) proper-
ties [9]. This more arbitrary set of properties results in a large number of rules
crossing semantically independent subsets of the property set.

A more recent approach is to employ the idea of PAC learning, as introduced
with the seminal paper by Valiant [27]. The authors in [4] present a procedure for
retrieving probably approximately correct implication bases from a formal context.
For fixed probability δ and accuracy ε, a PAC basis can be computed in time
polynomial in the size of the input context and the size of the resulting basis. In
contrast to association rules, this approach still yields a canonical base (of some
approximation of the theory) consisting of (possibly) unsupported, yet correct,
implications. A thorough investigation of the applicability of PAC learning for
Wikidata based formal contexts requires its own research work and is out of scope
for this paper. Nevertheless, we provide first computational results in the data
repository. Both of the methods discussed in this section are more suitable for
coping with the scale of Wikidata and the noise inherently present in the data.

8 Conclusion and Outlook

We have demonstrated in this work how to extract, in a structured fashion, subsets
of Wikidata and represent them as formal contexts, thus opening a practically
limitless source of real-world data to the FCA community. This allows us (and
indeed the whole community) to apply the full range of tools and techniques from
10 This error in the data has already been automatically flagged as a property constraint

violation: “item requires statement constraint : An entity with National Medal of Arts
Winner ID should also have a statement award received National Medal of Arts.”



FCA to (arbitrary) parts of Wikidata. Most importantly, we are now able to
obtain relevant and meaningful implications in a form that is readily understood
by untrained editors of Wikidata. Such rules are useful in many different ways:
i) they can further the understanding of knowledge implicit in Wikidata, ii) they
can make explicit how editing a statement interacts with the implicational theory
on properties, iii) they may highlight the need to edit further items to avoid
introducing new counterexamples to valid rules, and iv) absence of expected rules
serves as an indicator for errors present in the knowledge graph. These qualities
are highly desirable for streamlining the editing experience on Wikidata, not only
for casual editors, but also for curators of Wikidata.

While we have shown that the direct computation of a canonical base is
feasible for small subsets of the data, this becomes infeasible as the number of
properties under consideration increases. We discussed two different approaches to
overcome this limitation: computing Luxenburger bases of association rules, and
computing a PAC basis, both of which remain feasible on the scale of Wikidata.

A complementary approach would be to employ the well-known attribute
exploration algorithm to compute canonical bases for generalised incidences over
Wikidata. The key ingredient required for this is a method to query Wikidata
for possible counterexamples to proposed implications, e.g., via the SPARQL
endpoint. This enables Wikidata to be used as an expert for the exploration.
Further expanding on this, a collaborative exploration algorithm may employ
both Wikidata and human experts to stretch the boundaries of human knowledge.

Possible further directions for future work include i) a practical study on
the usefulness of integrating implicational knowledge into the editing process,
ii) integrating with completeness [6] tools such as COOL-WD [7] to ensure that
only counterexamples above a certain completeness threshold are considered,
iii) extending the structured approach to include further incidence relations
adapted to other aspects of the Wikidata data model, such as grouping prop-
erties for quantities by intervals of their values, and iv) extend the approach
to incorporate background knowledge given, e.g., in the form of the MARPL
rules [20] that have been proposed for ontological reasoning on Wikidata [19].
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