
Extracting Reduced Logic Programs from Artificial Neural Networks

Jens Lehmann1, Sebastian Bader2∗, Pascal Hitzler3†

1Department of Computer Science, Technische Universität Dresden, Germany
2International Center for Computational Logic, Technische Universität Dresden, Germany

3AIFB, Universität Karlsruhe, Germany

Abstract
Artificial neural networks can be trained to per-
form excellently in many application areas. While
they can learn from raw data to solve sophisti-
cated recognition and analysis problems, the ac-
quired knowledge remains hidden within the net-
work architecture and is not readily accessible for
analysis or further use: Trained networks are black
boxes. Recent research efforts therefore investigate
the possibility to extract symbolic knowledge from
trained networks, in order to analyze, validate, and
reuse the structural insights gained implicitly dur-
ing the training process. In this paper, we will study
how knowledge in form of propositional logic pro-
grams can be obtained in such a way that the pro-
grams are as simple as possible — where simple
is being understood in some clearly defined and
meaningful way.

1 Introduction and Motivation
The success of the neural networks machine learning tech-
nology for academic and industrial use is undeniable. There
are countless real uses spanning over many application ar-
eas such as image analysis, speech and pattern recognition,
investment analysis, engine monitoring, fault diagnosis, etc.
During a training process from raw data, artificial neural net-
works acquire expert knowledge about the problem domain,
and the ability to generalize this knowledge to similar but pre-
viously unencountered situations in a way which often sur-
passes the abilities of human experts.

The knowledge obtained during the training process, how-
ever, is hidden within the acquired network architecture and
connection weights, and not directly accessible for analysis,
reuse, or improvement, thus limiting the range of applicabil-
ity of the neural networks technology. For these purposes, the
knowledge would be required to be available in structured
symbolic form, most preferably expressed using some logical
framework.

∗Sebastian Bader is supported by the GK334 of the German Re-
search Foundation (DFG).

†Pascal Hitzler is supported by the German Federal Ministry of
Education and Research under the SmartWeb project, and by the
European Commission under contract IST-2003-506826 SEKT.

Suitable methods for the extraction of knowledge from
neural networks are therefore being sought within many on-
going research projects worldwide, see [1; 2; 8; 14; 18;
19] to mention a few recent publications. One of the promi-
nent approaches seeks to extract knowledge in the form of
logic programs, i.e. by describing the input-output behaviour
of a network in terms of material implication or rules. More
precisely, activation ranges of input and output nodes are
identified with truth values for propositional variables, lead-
ing directly to the description of the input-output behaviour
of the network in terms of a set of logic program rules.

This naive approach is fundamental to the rule extraction
task. However, the set of rules thus obtained is usually highly
redundant and turns out to be as hard to understand as the
trained network itself. One of the main issues in propositional
rule extraction is therefore to alter the naive approach in order
to obtain a simpler set of rules, i.e. one which appears to be
more meaningful and intelligible.

Within the context of our own broader research efforts de-
scribed e.g. in [3; 4; 5; 6; 11; 12], we seek to understand rule
extraction within a learning cycle of (1) initializing an un-
trained network with background knowledge, (2) training of
the network taking background knowledge into account, (3)
extraction of knowledge from the trained network, see Fig-
ure 1, as described for example in [10]. While our broader
research efforts mainly concern first-order neural-symbolic
integration, we consider the propositional case to be funda-
mental for our studies.

We were surprised, however, that the following basic ques-
tion apparently had not been answered yet within the avail-

initialisation

trained
neural

network

untrained
neural

network

initial
(background)

knowledge

learned
knowledge

extraction

training
influence

Figure 1: Neural-symbolic learning cycle

able literature: Using the data obtained from the naive rule
extraction approach described above — when is it possible to
obtain a unique irredundant representation of the extracted
data? While we believe that applicable extraction methods
will have to deviate from the exact approach implicitly as-
sumed in the question, we consider an answer important for
providing a fundamental understanding of the issue. This pa-
per is meant to settle the question to a satisfactory extent.

More precisely, we will show that a unique irredundant rep-
resentation can be obtained if the use of negation within the
knowledge base is forbidden, i.e. when considering definite
logic programs — and we will also clarify formally what we
mean by redundancy in this case. In the presence of negation,
i.e. for normal logic programs, unique representations cannot
be obtained in general, but we will investigate methods and
present algorithms for removing redundancies.

The structure of the paper is as follows. After some pre-
liminaries reviewed in Sections 2 and 3, we will present our
main result on the extraction of a unique irredundant definite
logic program in Section 4. How to remove redundancies in
normal logic programs is discussed in Section 5, while a cor-
responding algorithm is presented in Section 6.

2 Logic Programs

We first introduce some standard notation for logic programs,
roughly following [16]. A predicate in propositional logic is
also called an atom. A literal is an atom or a negated atom.
A (Horn) clause in propositional logic is of the form q ←
l1, . . . , ln with n ≥ 0, where q is an atom and all li with
1 ≤ i ≤ n are literals, and q is called the head and l1, . . . , ln
the body of the clause. Clause bodies are understood to be
conjunctions. If all li are atoms a clause is called definite. The
number of literals in the body of a clause is called the length
of the clause. A (normal propositional) logic program is a
finite set of clauses, a definite (propositional) logic program
is a finite set of definite clauses.

An interpretation maps predicates to true or false. We
will usually identify an interpretation with the set of predi-
cates which it maps to true. An interpretation is extended to
literals, clauses and programs in the usual way. A model of a
clause C is an interpretation I which maps C to true (in sym-
bols: I |= C). A model of a program P is an interpretation
which maps every clause in P to true.

Given a logic program P , we denote the (finite) set of all
atoms occurring in it by BP , and the set of all interpretations
of P by IP ; note that IP is the powerset of the (finite) set BP

of all atoms occurring in P .
As a neural network can be understood as a function be-

tween its input and output layer, we require a similar per-
spective on logic programs. This is provided by the standard
notion of a semantic operator, which is used to describe the
meaning of a program in terms of operator properties [16].
We will elaborate on the relation to neural networks in Sec-
tion 3. The immediate consequence operator TP associated
with a given logic program P is defined as follows:

Definition 2.1. TP is a mapping from interpretations to inter-
pretations defined in the following way for an interpretation

I and a program P:

TP(I) := {q | q ← B ∈ P and I |= B}.

If the underlying program is definite we will call TP defi-
nite. An important property of definite TP -operators is mono-
tonicity, i.e. I ⊆ J implies TP(I) ⊆ TP(J). The operators
TP for a program P and TQ for a program Q are equal if
they are pointwise equal, i.e. if we have TP(I) = TQ(I) for
all interpretations I . In this case, we call the programs P and
Q equivalent.

As mentioned in the introduction, we are interested in ex-
tracting small programs from networks. We will use the ob-
vious measure of size of a program P , which is defined as the
sum of the number of all (not necessarily distinct) literals in
all clauses in P . A program P is called (strictly) smaller than
a program Q, if its size is (strictly) less than the size of Q.

As already noted, the immediate consequence operator will
serve as a link between programs and networks, i.e. we will be
interested in logic programs up to equivalence. Consequently,
a program will be called minimal, if there is no strictly smaller
equivalent program.

The notion of minimality just introduced is difficult to op-
erationalize. We thus introduce the notion of reduced pro-
gram; the relationship between reduction and minimality will
become clear later on in Corollary 4.4. Reduction is described
in terms of subsumption, which conveys the idea of redun-
dancy of a certain clause C2 in presence of another clause
C1. If in a given program P , we have that C1 subsumes C2,
we find that the TP -operator of the program does not change
after removing C2.

Definition 2.2. A clause C1 : h ← p1, . . . , pa,¬q1, . . . ,¬qb

is said to subsume C2 : h ← r1, . . . , rc,¬s1, . . . ,¬sd, iff
we have {p1, . . . , pa} ⊆ {r1, . . . , rc} and {q1, . . . , qb} ⊆
{s1, . . . , sd}.

A program P is called reduced if the following properties
hold:

1. There are no clauses C1 and C2 with C1 6= C2 in P ,
such that C1 subsumes C2.

2. A predicate symbol does not appear more than once in
any clause body.

3. No clause body contains a predicate and its negation.

Condition 3 is actually redundant, as it is covered by con-
dition 2. Nevertheless, we have chosen to state it seperately
as this form of presentation appears to be more intuitive. Hu-
mans usually write reduced logic programs.

Using Definition 2.2, we can define a naive algorithm for
reducing logic programs: Simply check every condition sep-
arately on every clause, and remove the subsumed, respec-
tively irrelevant, symbols or clauses. Performing steps of this
algorithm is called reducing a program. The following result
is obvious.

Proposition 2.3. If Q is a reduced version of the proposi-
tional logic program P , then TP = TQ.

3 Neural-Symbolic Integration
An artificial neural network, also called connectionist sys-
tem, consists of (a finite set of) nodes or units and weighted

directed connections between them. The weights are under-
stood to be real numbers. The network updates itself in dis-
crete time steps. At every point in time, each unit carries a
real-numbered activation. The activation is computed based
on the current input of the unit from the incoming weighted
connections from the previous time step, as follows. Let
v1, . . . , vn be the activation of the predecessor units for a unit
k at time step t, and let w1, . . . , wn be the weights of the con-
nections between those units and unit k, then the input of unit
k is computed as ik =

∑

i wi·vi. The activation of the unit at
time step t + 1 is obtained by applying a simple function to
its input, e.g. a threshold or a sigmoidal function. We refer to
[7] for background on artificial neural networks.

For our purposes, we consider so-called 3-layer feed for-
ward networks with threshold activation functions, as de-
picted in Figure 2. The nodes in the leftmost layer are called
the input nodes and the nodes in the rightmost layer are called
the output nodes of the network. A network can be under-
stood as computing the function determined by propagating
some input activation to the output layer.

In order to connect the input-output behaviour of a neu-
ral network with the immediate consequence operator of
a logic program, we interpret the input and output nodes
to be propositional variables. Activations above a certain
threshold are interpreted as true, others as false. In [12;
13], an algorithm was presented for constructing a neural net-
work for a given TP -operator, thus providing the initializa-
tion step depicted in Figure 1. Without going into the details,
we will give the basic principles here. For each atom in the
program there is one unit in the input and output layer of
the network, and for each clause there is a unit in the hid-
den layer. The connections between the layers are set up such
that the input-output behaviour of the network matches the
TP -operator. The basic idea is depicted in Figure 3, and an
example-run of the network is shown in Figure 4. The al-
gorithm was generalized to sigmoidal activation functions in
[10], thus enabling the use of powerful learning algorithms
based on backpropagation [7].

In this paper, however, we are concerned with the ex-
traction of logic programs from neural networks. The naive,
sometimes called global or pedagogical approach is to acti-
vate the input layer of the given network with all possible in-
terpretations, and to read off the corresponding interpretations
in the output layer. We thus obtain a mapping f : IP → IP
as target function for the knowledge extraction by interpret-

Figure 2: A simple 3-layer feed forward neural network with
threshold activation function.

P = {p← ¬p,¬q;

p← p, q;

q ← p,¬q;

q ← p, q }

p

q

p

q

-0.5

1.5

0.5

0.5

0.5

0.5

Figure 3: The 3-layer network constructed to implement
the TP -operator of the given program P . Connections with
weight 1 are depicted solid, those with weight−1 are dashed.
The numbers denote the thresholds of the units.

t=0: t=1: t=2:

Figure 4: A run of the network depicted in Figure 3 for the
interpretation I = {p, q}. A unit is depicted in black, if its
activation is 1. At time t = 0 the corresponding units in the
input layer are activated to 1. This activation is propagated to
the hidden layer and results in two active units there. Finally,
it reaches the output layer, i.e. TP(I) = {p, q}.

ing it as an immediate consequence operator. The task which
remains is to find a logic program P such that TP = f , and
furthermore, to do this in a way such that P is as simple as
possible, i.e. minimal respectively reduced.

We start with naive extraction by “Full Exploration”, de-
tailed in Algorithms 1 and 2, for definite respectively normal
logic program extraction. We will see later that the extraction
of definite programs is easier and theoretically more satisfac-
tory. However, negation is perceived as a highly desirable fea-
ture because in general it allows to express knowledge more
naturally. The target function itself does not limit the choice,
so which approach will be chosen for a problem at hand will
depend on the application domain. We give an example for
full exploration in the normal case.

Example 1. Let IP = {p, q} and the mapping f be obtained
by full exploration of the network shown in Figure 3. Using
Algorithm 2, we obtain program P again, and TP = f holds.

f = { ∅ 7→ {p} P = {p← ¬p,¬q;

{p} 7→ {q} p← p, q;

{q} 7→ ∅ q ← p,¬q;

{p, q} 7→ {p, q}} q ← p, q }

Using Algorithm 2, the following result is easily obtained.

Proposition 3.1. For every mapping f : IP → IP , we can
construct a propositional logic program P with TP = f .

Note that programs obtained using Algorithms 1 or 2 are
in general neither reduced nor minimal. In order to obtain
simpler programs, there are basically two possibilities. On
the one hand we can extract a large program using e.g. Al-
gorithms 1 or 2 and refine it. This general idea was first de-
scribed in [13], but not spelled out using an algorithm. On

Algorithm 1 Full Exploration — Definite

Let f be a mapping from IP to IP . Initialize P = ∅. For
every interpretation I = {r1, . . . , ra} ∈ IP and each element
h ∈ f(I) add a clause h ← r1, . . . , ra to P . Return P as
result.

Algorithm 2 Full Exploration — Normal

Let f be a mapping from IP to IP . Initialize P = ∅. For
every interpretation I = {r1, . . . , ra} ∈ IP , we have BP \
I = {s1, . . . , sb}. For each element h ∈ f(I) add a clause
h← r1, . . . , ra,¬s1, . . . ,¬sb to P . Return P as result.

the other hand, we can build a program from scratch. Both
possibilities will be pursued in the sequel.

4 Extracting Reduced Definite Programs
First, we will discuss the simpler case of definite logic pro-
grams. We will derive an algorithm which returns only mini-
mal programs, and we will also show that the notion of min-
imal program coincides with that of reduced program, thus
serving both intuitions at the same time. Algorithm 3 satisfies
our requirements, as we will see shortly.

Proposition 4.1. Let TP be a definite consequence operator
and Q be the result of Algorithm 3, obtained for f = TP .
Then TP = TQ.

Proof. We have to show TP(I) = TQ(I) for an arbitrary in-
terpretation I = {p1, . . . , pn}.

For TP(I) ⊆ TQ(I) we have to show that q ∈ TQ(I) holds
if q ∈ TP(I). Assume we have a predicate q in TP(I). We
know that the algorithm will treat I and q (because for every
interpretation I every element in TP(I) is investigated). Then
we have to distinguish two cases.

1. There already exists a clause q ← q1, . . . , qm with
{q1, . . . , qm} ⊆ I in Q. Then by definition q ∈ TQ(I).

2. If there is no such clause q ← p1, . . . , pn yet, it is added
to Q, hence we have q ∈ TQ(I).

Conversely, we show TQ(I) ⊆ TP(I). As in the other direc-
tion, we now have a predicate q in TQ(I) and have to show
that it is also in TP(I). If q ∈ TQ(I) we have by definition
of TQ a clause q ← q1, . . . , qm with {q1, . . . , qm} ⊆ I . This
means that the extraction algorithm must have treated the case
q ∈ TP(J) with J = {q1, . . . , qm}. Since TP is monotonic
(it is the operator of a definite program) and J ⊆ I we have
TP(J) ⊆ TP(I), hence q is also an element of TP(I).

Proposition 4.2. The output of Algorithm 3 is a reduced def-
inite propositional logic program.

Proof. Obviously the output of the algorithm is a definite pro-
gram Q, because it generates only definite clauses. We have
to show that the resulting program is reduced. For a proof by
contradiction we assume that Q is not reduced. According to
Definition 2.2 there are two possible reasons for this:

Case 1: A predicate symbol appears more than once in the
body of a clause. This is impossible, because the algorithm

Algorithm 3 Extracting a Reduced Definite Program
Let f : IP → IP be a given mapping, as obtained e.g. from a
neural network, and consider IP to be totally ordered in some
way such that I is before K in the ordering if |I| < |K|. Let
Q be an initially empty program.
For all interpretations I ∈ IP , in sequence of the assumed
ordering, do the following:

• Let I = {p1, . . . , pn}. For every q ∈ f(I), check
whether a clause q ← q1, . . . , qm with {q1, . . . , qm} ⊆
I is already in Q. If not, then add the clause q ←
p1, . . . , pn to Q.

Return Q as the result.

does not generate such clauses (sets do not contain elements
twice).

Case 2: There are two different clauses C1 and C2 in Q,
such that C1 subsumes C2. Let C1 be h← p1, . . . , pa and C2

be h ← q1, . . . , qb with {p1, . . . , pa} ⊆ {q1, . . . , qb}. As ab-
breviations we use I = {p1, . . . , pa} and J = {q1, . . . , qb}.
Because of case 1 we know |I| = a and |J | = b (all elements
in the body of a clause are different). Thus we have |I| < |J |,
because C1 and C2 are not equal. This means the algorithm
has treated I (and h ∈ f(I)) before J (and h ∈ f(J)). C1

was generated by treating I and h, because C1 exists and can
only be generated through I and h (otherwise the body re-
spectively head of the clause would be different). Later the
case J and h was treated. The algorithm checks for clauses
h← r1, . . . , rm with {r1, . . . , rm} ⊆ J . C1 is such a clause,
because I ⊆ J , so C2 is not added to Q. Because (by the
same argument as above) C2 can only be generated through
J and h, C2 cannot be a clause inQ, which is a contradiction
and completes the proof.

Propositions 4.1 and 4.2 have shown that the output of the
extraction algorithm is in fact a reduced definite program,
which has the desired operator. We proceed to show that the
obtained reduced program is unique. The following, together
with Corollary 4.4, is the main theoretical result in this paper.

Theorem 4.3. For any operator TP of a definite proposi-
tional logic program P there is exactly one reduced definite
propositional logic program Q with TP = TQ.

Proof. Assume we have an operator TP of a definite program
P . With Algorithm 3 applied to f = TP and Propositions 4.1
and 4.2 it follows that there is a reduced definite program Q
with TP = TQ. We have to show that there cannot be more
than one program with this property.

To prove this we assume (by contradiction) that we have
two different reduced definite programs P1 and P2 with
TP = TP1

= TP2
. Two programs being different means

that there is at least one clause existing in one of the pro-
grams which does not exist in the other program, say a
clause C1 in P1 which is not in P2. C1 is some definite
clause of the form h ← p1, . . . , pm. By definition of TP

we have h ∈ TP1
({p1, . . . , pm}). Because TP1

and TP2
are

equal we also have h ∈ TP2
({p1, . . . , pm}). This means

that there is a clause C2 of the form h ← q1, . . . , qn with

{q1, . . . , qn} ⊆ {p1, . . . , pn} in P2. Applying the defini-
tion of TP again this means that h ∈ TP2

({q1, . . . , qn}) and
h ∈ TP1

({q1, . . . , qn}). Thus we know that there must be a
clause C3 of the form h ← r1, . . . , ro with {r1, . . . , ro} ⊆
{q1, . . . , qn} in P1.

C3 subsumes C1, because it has the same head and
{r1, . . . , ro} ⊆ {q1, . . . , qn} ⊆ {p1, . . . , pm}. We know
that by our assumption C1 is not equal to C2, because C1

is not equal to any clause in P2. Additionally, we know that
|{p1, . . . , qm}| = m and |{q1, . . . , qn}| = n, because P1 and
P2 are reduced, i.e. no predicate appears more than once in
any clause body. So we have {q1, . . . , qn} ⊂ {p1, . . . , pm}.
Because C3 has at most as many elements in its body as C2,
we know that C1 is not equal to C3. That means that P1 con-
tains two different clauses C1 and C3, where C3 subsumes
C1. This is a contradiction to P1 being reduced.

This shows that each algorithm extracting reduced defi-
nite programs from a neural network must return the same
result as Algorithm 3. We can now also obtain that the notion
of reduced program coincides with that of minimal program,
which shows that Algorithm 3 also extracts the least program
in terms of size.

Corollary 4.4. If P is a reduced definite propositional logic
program, then it is least in terms of size.

Proof. Let Q be a program with TQ = TP . If Q is reduced,
then it must be equal toP by Theorem 4.3, so assume it is not,
i.eQ can be reduced. The resulting program Qred is definite,
by Definition 2.2 obviously smaller than before the reduction,
and has operator TP = TQ. From Theorem 4.3 we know that
there is only one reduced definite program with operator TP ,
so we have P = Qred. Because Qred is smaller than Q, P is
also smaller than Q.

5 Reducing Normal Logic Programs
As discussed in Section 3, it is possible to extract a normal
logic program P from a neural network, such that the be-
haviour of the associated TP -operator and the input-output-
mapping of the network are identical. But the program ob-
tained from the naive Algorithm 2 in general yields an un-
wieldy program. In this section, we will show how to refine
this logic program.

The first question to be asked is: Will we be able to obtain
a result as strong as Theorem 4.3? The following example
indicates a negative answer.

Example 2. Let P1 and P2 be defined as follows:

P1 = {p← q; P2 = {p←}

p← ¬q}

Obviously, in program P1, p does not depend on q. Hence,
the two programs are equivalent but P2 is smaller than P1.
We note, however, that P2 cannot be obtained from P1 by
reduction in the sense of Definition 2.2.

Example 2 shows that the notion of reduction in terms of
Definition 2.2 is insufficient for normal logic programs. Size
obviously is a meaningful notion. A naive algorithm for ob-
taining minimal normal programs is easily constructed: As

BP is finite, so is the set of all possible normal programs over
BP (assuming we avoid multiple occurrences of atoms in the
same clause body). We can now search this set and extract
from it all programs whose immediate consequence opera-
tor coincides with the target function, and subsequently we
can extract all minimal programs by doing a complete search.
This algorithm is obviously too naive to be practical. But it
raises the question: Is there always a unique minimal (i.e.
least) program for any given target function? The answer is
negative, as the following example shows.

Example 3. The following programs are equivalent.

P1 = {p← ¬p,¬r; P2 = {p← ¬p,¬r;

p← p, r; p← p, r;

p← ¬p, q } p← q, r }

A full search easily reveals that the given two programs are
minimal. We skip the details, which can be found in [15].

Example 3 shows that an analogy to Corollary 4.4 does not
hold for normal programs. This means that we can at best
hope to extract minimal normal programs from neural net-
works, but in general not a least program. The complexity of
this task is as yet unknown, as is an optimal extraction algo-
rithm, but we will later be able to discuss a refinement of the
naive algorithm given earlier.

For the moment, we will shortly discuss possibilities for
refining the set obtained by Algorithm 2. We start with two
examples.

Example 4. Let P1 be defined as introduced in Example 1:

P1 = {p← ¬p,¬q; P2 = {p← ¬p,¬q;

p← p, q; p← p, q;

q ← p,¬q; q ← p }

q ← p, q }

A closer look at the clauses 3 and 4 of P1 yields that q does
not depend on q, hence we could replace both by q ← p. The
resulting program is shown as P2.

Another case is given by the setting in Example 2, where
a similar situation occurs. By generalizing from these exam-
ples, we arrive at the following notion.

Definition 5.1. An α-reduced program P is a program with
the following properties.

1. P is reduced.

2. There are no clauses C1 and C2 with C1 6= C2 in P ,
where C1 is of the form p← q, r1, . . . , ra,¬s1, . . . ,¬sb

and C2 is of the form p← ¬q, t1, . . . , tc,¬u1, . . . ,¬ud,
where {r1, . . . , ra} ⊆ {t1, . . . , tc} and {s1, . . . , sb} ⊆
{u1, . . . , ud}.

3. There are no clauses C1 and C2 with
C1 6= C2 in P , where C1 is of the form
p ← ¬q, r1, . . . , ra,¬s1, . . . ,¬sb and C2 is of the form
p ← q, t1, . . . , tc,¬u1, . . . ,¬ud, where {r1, . . . , ra} ⊆
{t1, . . . , tc} and {s1, . . . , sb} ⊆ {u1, . . . , ud}.

Both Example 2 and 4 show logic programs and their α-
reduced versions. The following result and corresponding Al-
gorithm 4 can be obtained, for details we refer to [15].

Algorithm 4 Constructing an α-reduced program
For an arbitrary propositional logic program P perform the
following reduction steps as long as possible:

1. If there are two clauses C1 and C2 such that point 2 of
Definition 5.1 is fulfilled, then remove ¬q in the body of
C2.

2. If there are two clauses C1 and C2 such that point 3 of
Definition 5.1 is fulfilled, then remove q in the body of
C2.

3. If there are clauses C1 and C2 with C1 6= C2 in P and
C1 subsumes C2, then remove C2.

4. If a literal appears twice in the body of a clause, then
remove one occurrence.

5. If a predicate and its negation appear in the body of a
clause, then remove this clause.

Proposition 5.2. Let P be a logic program. If Q is the re-
sult of Algorithm 4 on input P , then Q is an α-reduced logic
program and TP = TQ.

Unfortunately, α-reduced programs are not necessarily
minimal, as the next example shows.

Example 5. The following two programs are equivalent. P2

is as in Example 3.

P2 = {p← ¬p,¬r; P3 = {p← ¬p,¬r;

p← p, r; p← p, r;

p← q, r } p← q, r;

p← ¬p, q }

Even though both programs are α-reduced, P3 is larger than
P2. Note also that P3 can be transformed to P2 by remov-
ing a redundant clause. However, this cannot be done by α-
reduction.

In a similar manner, we can refine α-reduction by introduc-
ing further refinement conditions. Refinement conditions can
for example be obtained by recurring to insights from inverse
resolution operators as used in Inductive Logic Programming
[17]. Such a line of action was spelled out in [15]. The result-
ing algorithms did yield further refined programs at the cost
of lower efficiency, but no satisfactory algorithms for obtain-
ing minimal programs.

6 A Greedy Extraction Algorithm

We present another extraction algorithm for normal pro-
grams, which is closer in spirit to Algorithm 3 in that it in-
crementally builds a program. For this purpose we introduce
the notion of allowed clause bodies, where the idea is that we
do not want to allow clauses which clearly lead to an incorrect
TP operator, and we do not want to allow clauses, for which
a shorter allowed clause exists.

The following example illustrates the intuition.

Example 6. We will use the operator of the programs given

in Example 3:

TP = { ∅ 7→ {p} {p, q} 7→ ∅

{p} 7→ ∅ {p, r} 7→ {p}

{q} 7→ {p} {q, r} 7→ {p}

{r} 7→ ∅ {p, q, r} 7→ {p}}

The 3 atoms p, q, r are being used, so there would be 27
different possible clauses bodies, as shown in Table 1. The
clause p ← p, for example, is not correct, since we have
p 6∈ TP({p}). Hence the body p is not allowed.

We will give a formal definition of allowed clauses, before
continuing with the example. Please note that in the following
definition B is not necessarily a clause in P .

Definition 6.1. Let TP be an immediate conse-
quence operator, and h be a predicate. We call
B = p1, . . . , pa,¬q1, . . . ,¬qb allowed with respect to
h and TP if the following two properties hold:

• For every interpretation I ⊆ BP with I |= B we have
h ∈ TP(I).

• There is no allowed body B′ = r1, . . . , rc,¬t1, . . . ,¬td
for h and TP with B′ 6= B such that {r1, . . . , rc} ⊆
{p1, . . . , pa} and {t1, . . . , td} ⊆ {q1, . . . , qb}.

As given in Definition 6.1, there are two reason for a clause
body B not to be allowed. First, the resulting clause could
be wrong, as discussed in Example 6. Secondly, there could
be a smaller allowed body B′, such that h ← B′ subsumes
h← B.

Example 6 (continued). Table 1 shows all possible clause
bodies for BP = {p, q, r} on the left side. The right side
shows either “OK”, if the body is allowed, or gives the reason
why it is not allowed.

We use the notion of allowed clause bodies to present a
greedy algorithm that constructs a logic program for a given
target function. The algorithm will incrementally add clauses
to an initially empty program. The clause to add is cho-
sen from the set of allowed clauses with respect to some
score-function, which is a heuristics for the importance of a
clause. This function computes the number of interpretations
for which the program does not yet behave correctly, but for
which it would after adding the clause.

Definition 6.2. Let BP be a set of predicates. The score of a
clause C : h← B with respect to a program P is defined as

score(C,P) :=
∣

∣{I | I ⊆ BP and h 6∈ TP(I) and I |= B}
∣

∣.

To keep things simple, we will consider one predicate at
a time only, since after treating every predicate symbol, we
can put the resulting sub-programs together. Let q ∈ BP be
an atom, then we call T

q
P

the restricted consequence operator
for q and set T

q
P

(I) = {q} if q ∈ TP(I), and T
q
P

(I) = ∅
otherwise. Algorithm 5 gives the details of the resulting pro-
cedure and is illustrated in Example 7.

clause body evaluation
empty False, p 6∈ TP({p}).
p False, because p 6∈ TP({p}).
q False, because p 6∈ TP({p, q}).
r False, because p 6∈ TP({r}).
¬p False, because p 6∈ TP({r}).
¬q False, because p 6∈ TP({p}).
¬r False, because p 6∈ TP({p}).
p, q False, because p 6∈ TP({p, q}).
p, r OK.
q, r OK.
p,¬q False, because p 6∈ TP({p}).
p,¬r False, because p 6∈ TP({p}).
q,¬p OK.
q,¬r False, because p 6∈ TP({p, q}).
r,¬p False, because p 6∈ TP({r}).
r,¬q False, because p 6∈ TP({r}).
¬p,¬q False, because p 6∈ TP{r}).
¬p,¬r OK.
¬q,¬r False, because p 6∈ TP({p}).
p, q, r Not considered, because p, r is smaller.
p, q,¬r False, because p 6∈ TP({p, q}).
p,¬q, r Not considered, because p, r is smaller.
¬p, q, r Not considered, because q, r is smaller.
p,¬q,¬r False, because p 6∈ TP({p}).
¬p, q,¬r Not considered, because ¬p, q is smaller.
¬p,¬q, r False, because p 6∈ TP({r}).
¬p,¬q,¬r Not considered, because ¬p,¬r is smaller.

Table 1: Allowed clause bodies for TP from Example 6.

Example 7. Let TP be given as follows:

TP = { ∅ 7→ {p} {q, r} 7→ ∅

{p} 7→ ∅ {q, s} 7→ {p}

{q} 7→ {p} {r, s} 7→ ∅

{r} 7→ ∅ {p, q, r} 7→ {p}

{r} 7→ ∅ {p, q, s} 7→ ∅

{p, q} 7→ {p} {p, r, s} 7→ {p}

{p, r} 7→ {p} {q, r, s} 7→ {p}

{p, s} 7→ {p} {p, q, r, s} 7→ {p}}

Obviously, we can concentrate on the predicate p, since there
are no other predicates occurring as a consequence. The re-
sulting set of allowed clause bodies is

S = {p, r;¬p,¬r,¬s; q,¬p,¬r; q,¬r,¬s;

p, q,¬s; p, s,¬q; q, s,¬p; q, r, s}

Tables 2 and 3 show two example runs of the algorithm. In
each step the score for the allowed clauses which are not yet
in the program, is indicated. (The score of the clause which is
added to the constructed programQ is given in boldface.) As
an example the score for p, q,¬s in the first step of the first
run is 2, because p ∈ TP(p, q) and p ∈ TP(p, q, r). It goes
down to 1 in the second step, because we have Q = {p, r}
and therefore p ∈ TQ(p, q, r) at this point. Intuitively this
means that we would only gain one additional interpretation
by adding p← p, q,¬s.

Algorithm 5 Greedy Extraction Algorithm

Let TP and BP = {q1, . . . , qm} be the input of the algorithm.
Initialize Q = ∅.
For each predicate qi ∈ BP :

1. construct the set Si of allowed clause bodies for qi

2. initialize: Qi = ∅

3. repeat until TQi
= T

qi

P
:

(a) Determine a clause C of the form h ← B with
B ∈ Si with the highest score with respect to Qi.

(b) If several clauses have the highest score, then
choose one with the smallest number of literals.

(c) Qi = Qi ∪ {C}

4. Q = Q∪Qi

Return Q as the result.

clause body 1. 2. 3. 4. 5. 6.
p, r 4
¬p,¬r,¬s 2 2 1
q,¬p,¬r 2 2
q,¬r,¬s 2 2 1 1
p, q,¬s 2 1 1 1 0 0
p, s,¬q 2 1 1 1 1
q, s,¬p 2 2 1 1 1 1
q, r, s 2 1 1 1 1 1

P1 = {p← p, r;

p← q,¬p,¬r;

p← ¬p,¬r,¬s;

p← q,¬r,¬s;

p← p, s,¬q;

p← q, s,¬p }

Table 2: Example run 1 and the resulting program.

Example 7 is constructed in such a way that there are two
different possible runs of the algorithm, which return pro-
grams of different size for the same operator. The first run
produces a program with six clauses and 17 literals. The sec-
ond run produces a program with five clauses and 14 literals.
This shows that the algorithm does not always return a mini-
mal program, which was expected as the algorithm is greedy,
i.e. it chooses the clause with respect to some heuristics and
without forecasting the effects of this decision. We also see
that the algorithm is not deterministic, because there may be
several clauses with the highest score and the lowest number
of literals (e.g. in step 3 of run 1). As for performance, the
use of allowed clause bodies in this case made it possible to
reduce checking from 27 to 4 clauses.

Let us finally mention how to modify Algorithm 5 in order

clause body 1. 2. 3. 4. 5.
p, r 4
¬p,¬r,¬s 2 2
q,¬p,¬r 2 2 1 0 0
q,¬r,¬s 2 2 1 1
p, q,¬s 2 1 1 1 0
p, s,¬q 2 1 1 1 1
q, s,¬p 2 2 2
q, r, s 2 1 1 0 0

P2 = {p← p, r;

p← ¬p,¬r,¬s;

p← q, s,¬p;

p← q,¬r,¬s;

p← p, s,¬q }

Table 3: Example run 2 and the resulting program.

Algorithm 6 Intelligent Program Search

Let TP and BP = {q1, . . . , qm} be the input of the algorithm.
Initialize: Q = ∅.
For each predicate qi ∈ BP :

1. construct the set Si of allowed clause bodies for qi

2. initialize: ni = 0

3. Search all programs with size equal to ni until a program
Qi with T

qi

P
= TQi

is found. if no such program is found
then increment ni and repeat step 3.

4. Q = Q∪Qi

to obtain minimal programs. We do this by performing a full
program search instead of using a heuristics, i.e. the score
function, to add clauses to subprograms. See Algorithm 6.

7 Conclusions
We presented algorithms to extract definite and normal propo-
sitional logic programs from neural networks. For the case of
definite programs, we have shown that our algorithm is op-
timal in the sense that it yields the minimal program with
the desired operator; and it was formally shown that such a
minimal program always exists. For normal logic programs
we presented algorithms for obtaining minimal programs, and
more efficient algorithms which do produce small but not nec-
essarily minimal programs.

The main contribution of this paper is the automatic refine-
ment of logic programs, obtained by global extraction meth-
ods as in [9; 13]. We have thus addressed and answered fun-
damental (and obvious) open questions. We consider the re-
sults as a base for investigating the extraction of first-order
logic programs, and thus for the development of the neural-
symbolic learning cycle as laid out in Figure 1, which has
high potential for impact in application areas.

References
[1] R. Alexandre, J. Diederich, and A. Tickle. A survey and

critique of techniques for extracting rules from trained
artificial neural networks. Knowledge Based Systems,
pages 373–389, 1995.

[2] R. Andrews and S. Geva. Rule extraction from lo-
cal cluster neural nets. Neurocomputing, 47(1–4):1–20,
2002.

[3] S. Bader and P. Hitzler. Logic programs, iterated func-
tion systems, and recurrent radial basis function net-
works. Journal of Applied Logic, 2(3):273–300, 2004.

[4] S. Bader, P. Hitzler, and A. S. d’Avila Garcez. Comput-
ing first-order logic programs by fibring artificial neu-
ral network. In Proceedings of the 18th International
FLAIRS Conference, Clearwater Beach, Florida, May
2005, 2005. To appear.

[5] S. Bader, P. Hitzler, and S. Hölldobler. The integration
of connectionism and first-order knowledge represen-
tation and reasoning as a challenge for artificial intel-
ligence. In L. Li and K.K. Yen, editors, Proceedings

of the Third International Conference on Information,
pages 22–33, Tokyo, Japan, November/December 2004.
International Information Institute.

[6] S. Bader, P. Hitzler, and A. Witzel. Integrating first-
order logic programs and connectionist systems — a
constructive approach. In Proceedings of the IJCAI-05
Workshop on Neural-Symbolic Learning and Reason-
ing, NeSy’05, Edinburgh, UK, 2005. To appear.

[7] Ch. M. Bishop. Neural Networks for Pattern Recogni-
tion. Oxford University Press, 1995.

[8] A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay.
Symbolic knowledge extraction from trained neural
networks: A sound approach. Artificial Intelligence,
126(1–2):155–207, 2001.

[9] A. S. d’Avila Garcez, K. B. Broda, and D. M. Gab-
bay. Neural-Symbolic Learning Systems — Foundations
and Applications. Perspectives in Neural Computing.
Springer, Berlin, 2002.

[10] A. S. d’Avila Garcez and G. Zaverucha. The connec-
tionist inductive learning and logic programming sys-
tem. Applied Intelligence, Special Issue on Neural net-
works and Structured Knowledge, 11(1):59–77, 1999.

[11] P. Hitzler, S. Bader, and A. Garcez. Ontology learning
as a use-case for neural-symbolic intergration. In Pro-
ceedings of the IJCAI-05 Workshop on Neural-Symbolic
Learning and Reasoning, NeSy’05, Edinburgh, UK,
2005. To appear.

[12] P. Hitzler, S. Hölldobler, and A. K. Seda. Logic pro-
grams and connectionist networks. Journal of Applied
Logic, 2(3):245–272, 2004.

[13] S. Hölldobler and Y. Kalinke. Towards a new massively
parallel computational model for logic programming.
In Proceedings of the ECAI94 Workshop on Combining
Symbolic and Connectionist Processing, pages 68–77.
ECCAI, 1994.

[14] F. J. Kurfess. Neural networks and structured knowl-
edge: Rule extraction and applications. Applied Intelli-
gence, 12(1–2):7–13, 2000.

[15] J. Lehmann. Extracting logic programs from artifi-
cial neural networks. Belegarbeit, Fakultät Informatik,
Technische Universität Dresden, February 2005.

[16] J. W. Lloyd. Foundations of Logic Programming.
Springer, Berlin, 1988.

[17] S.H. Muggleton and L. De Raedt. Inductive logic pro-
gramming: Theory and methods. Journal of Logic Pro-
gramming, 19,20:629–679, 1994.

[18] J.-F. Remm and F. Alexandre. Knowledge extraction us-
ing artificial neural networks: application to radar target
identification. Signal Processing, 82(1):117–120, 2002.

[19] A. B. Tickle, F. Maire, G. Bologna, R. Andrews, and
J. Diederich. Lessons from past, current issues, and
future research directions in extracting the knowledge
embedded in artificial neural networks. Hybrid Neural
Systems, pages 226–239, 1998.

