
Chase Termination Beyond Polynomial Time

43rd Symposium on Principles of Database Systems (PODS’24)

Philipp Hanisch, Markus Krötzsch
TU Dresden, Knowledge-Based Systems Group
12th June 2024

https://iccl.inf.tu-dresden.de/web/Inproceedings3376


Introduction

Tuple-generating dependencies (tgds): rules with existential quantifiers

Example
D = {set(∅), elem(a), elem(b), elem(c)}

elem(e) ∧ set(S) → ∃V . add(e, S, V ) (1)
add(e, S, T ) → add(e, T , T ) (2)

add(e, S, S) ∧ add(f , S, T ) → add(e, T , T ) (3)
add(e, S, T ) → set(T ) (4)

Chase: ‘apply rules until nothing new follows’
→ but might run forever
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Motivation
Termination criteria are sufficient conditions for termination.

All known criteria lead to decidable classes of tgds with chase termination in PTime,
usually corresponding to Datalog queries [Zhang et al., AAAI’15; K. et al., ICDT’19].
Yet the set of all standard-chase terminating tgds captures all homomorphism-closed
decidable queries, but is not semi-decidable [Bourgaux et al., KR’21].
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Analysing termination

Chase: relational structure of nulls,
starting from a database

□ □

◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦

◦

. . .

Abstraction of the chase structure
→ dependency graph

p(x1, x2) → ∃v . q(x2, v)
q(y1, y2) → ∃w . p(y2, w)

. . .

v w

y2

x2
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(A)cyclicity
Acyclic dependency graph → chase terminates
(joint acyclicity [K. and Rudolph, IJCAI’11])

elem(e) ∧ set(S) → ∃V . add(e, S, V ) (1)
add(e, S, T ) → add(e, T , T ) (2)

add(e, S, S) ∧ add(f , S, T ) → add(e, T , T ) (3)
add(e, S, T ) → set(T ) (4)

V
S

∅ {a}a

a

{a, b}b

a, b

{a, b, c}c

a, b, c

Tgd (2) ‘blocks’ application along a path for latest element
Tgd (3) ‘blocks’ application along a path for previously added elements
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Generalising this idea

elem(e) ∧ set(S) → ∃V . add(e, S, V )

We identify three kinds of variables for the tgds we ‘block’:
• the existential variable that creates a new null
• the variable that may be matched with a previous null: the ‘predecessor’
• the remaining variables: the ‘context’

Goal: nulls should satisfy the tgd for all contexts that led to its creation

Saturation conditions:
1 A null satisfies the context that was used to create it.
2 A null satisfies all contexts satisfied by its predecessor null.

→ Datalog-entailment checks, based on tgds and dependency graph
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2 A null satisfies all contexts satisfied by its predecessor null.

→ Datalog-entailment checks, based on tgds and dependency graph
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Breaking the cycles
Not all tgds need to be blocked:

• select ‘blocking’ tgds to break cycles
• identify predecessor and context variables
• verify saturation criteria

→ tight complexity bounds based on how we break cycles

. . . .

..

. .

..

. .

1 2

3 4 6

The saturation criteria define decidable classes of tgds with
k-ExpTime-complete data complexity for every k.
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Teaser
{a, b, c} {a, c, b} {b, a, c} {b, c, a} {c, a, b} {c, b, a}

{a, b} {a, c} {b, a} {b, c} {c, a} {c, b}

{a} {b} {c}

∅

There are exponentially many nulls, but they form a tree:
→ query answering might be possible in PSpace.

We define a syntactic condition and a chase that realises this complexity
and obtain decidable classes of tgds with PSpace- and k-ExpSpace-complete
data complexity for all k.
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Summary

Main results:
• decidable classes of tgds with PSpace, k-ExpSpace, k-ExpTime data

complexity for all k
• new methods for analysing the structure of the standard chase
• new chase procedures that are optimal for space-bound complexity classes

Open questions:
• refinement of criteria for further complexity classes
• capturing of queries in the covered complexity classes
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