A brief introduction into TikZ

Norbert Manthey

International Center for Computational Logic Technische Universität Dresden
Germany

- What is TikZ?
- How to draw figures?
- How to place text inside the figures?

PGF and TikZ

- PGF (portable graphics format)
\triangleright package for creating graphics "inline"
$\triangleright \mathrm{T}_{\mathrm{E}} \mathrm{X}$ and ${ }^{\mathrm{L}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ input
\triangleright PDF, PostScript, and SVG output
\triangleright three layers: System, Basic, and Frontend
- TikZ(TikZ is not a drawing program)
\triangleright is a PGF frontend layer.
\triangleright high-level user interface.
\triangleright Current version 2.00 is quite old (February 2008)
\triangleright For features and bug-fixes: http://www.texample.net/tikz/builds/
- written by Till Tantau (author of Beamer package) and Mark Wibrow.

Setup your environment

- Use a ${ }^{1 A T} T_{E} X$ document
- Use the TikZ package and required TikZ libraries

```
\usepackage{tikz}
\usetikzlibrary{...}
```

- Draw TikZ figure in the document.
\begin\{tikzpicture\} }
\draw (0,0) circle (0.5);
\draw $(-0.5,-0.5)$-- $(0.5,0.5)$;
\end\{tikzpicture\} }
\tikz \draw (0,0) circle (0.5);

Setup your environment

- Use a ${ }^{1 A T} T_{E} X$ document
- Use the TikZ package and required TikZ libraries

```
\usepackage{tikz}
\usetikzlibrary{...}
```

- Draw TikZ figure in the document.
\begin\{tikzpicture\} }
\draw (0,0) circle (0.5);
\draw (-0.5,-0.5) -- ($0.5,0.5$);
\end\{tikzpicture\} }

\tikz \draw (0,0) circle (0.5);

Setup your environment

- Use a ${ }^{1 A T} T_{\mathrm{E}} \mathrm{X}$ document
- Use the TikZ package and required TikZ libraries

```
\usepackage{tikz}
\usetikzlibrary{...}
```

- Draw TikZ figure in the document.
\begin\{tikzpicture\} }
\draw (0,0) circle (0.5);
\draw (-0.5,-0.5) -- ($0.5,0.5$);
\end\{tikzpicture\} }
\tikz \draw $(0,0)$ circle (0.5);

Drawing Basics

- A path is a series of straight and curved line segments.
- Syntax:
\path (path-operation | graphic-option)* ;
- there are two major operations: draw and node
- \backslash draw is an abbreviation for \backslash path [draw]
\triangleright Next, drawing figures by using \backslash draw is presented
\triangleright By using \backslash node text is added afterwards

Drawing with paths

- A step by step example for \backslash draw:


```
\begin{tikzpicture}
\path [draw] (0,0) circle (0.5)
(-0.5,-0.5) -- (0.5,0.5) ;
\end{tikzpicture}
```


Drawing with paths

- A step by step example for \backslash draw:


```
\begin{tikzpicture}
\path [draw] (0,0) circle (0.5)
(-0.5,-0.5) -- (0.5,0.5) ;
\end{tikzpicture}
```

- Move-To Operation: move to coordinate $(0,0)$
- without drawing anything

Drawing with paths

- A step by step example for \backslash draw:


```
\begin{tikzpicture}
\path [draw] (0,0) circle (0.5)
(-0.5,-0.5) -- (0.5,0.5) ;
\end{tikzpicture}
```

- Circle Operation: draw circle with radius (0.5)
- current point remains $(0,0)$

Drawing with paths

- A step by step example for \backslash draw:


```
\begin{tikzpicture}
\path [draw] (0,0) circle (0.5)
(-0.5,-0.5) -- (0.5,0.5) ;
\end{tikzpicture}
```

- Move-To Operation: move to coordinate (-0.5, -0.5)
- without drawing anything

Drawing with paths

- A step by step example for \draw:


```
\begin{tikzpicture}
\path [draw] (0,0) circle (0.5)
(-0.5,-0.5) -- (0.5,0.5) ;
\end{tikzpicture}
```

- Line-To Operation: line to coordinate (0.5,0.5)

Drawing with paths

- A step by step example for \draw:


```
\begin{tikzpicture}
\path [draw] (0,0) circle (0.5)
(-0.5,-0.5) -- (0.5,0.5) ;
\end{tikzpicture}
```

- Path ends.

Graphic Options

- Add color and line styles to the picture:


```
\begin{tikzpicture}
    \draw (0,0) circle (0.5);
    \draw (-0.5,-0.5) -- (0.5,0.5);
\end{tikzpicture}
```


Graphic Options

- Add color and line styles to the picture:


```
\begin{tikzpicture}
    \draw [color=blue] (0,0) circle (0.5);
    \draw (-0.5,-0.5) -- (0.5,0.5);
\end{tikzpicture}
```

- Add color to the line.

Graphic Options

- Add color and line styles to the picture:


```
\begin{tikzpicture}
    \draw [color=blue, fill=blue!20!white] (0,0) circle (0.5);
    \draw (-0.5,-0.5) -- (0.5,0.5);
\end{tikzpicture}
```

- Fill the circle with color.

Graphic Options

- Add color and line styles to the picture:


```
\begin{tikzpicture}
    \draw [color=blue, fill=blue!20!white,fill opacity=0.6]
        (0,0) circle (0.5);
    \draw (-0.5,-0.5) -- (0.5,0.5);
\end{tikzpicture}
```

- Make circle transparent.

Graphic Options

- Add color and line styles to the picture:


```
\begin{tikzpicture}
    \draw [color=blue, fill=blue!20!white,fill opacity=0.6]
        (0,0) circle (0.5);
    \draw [thick] (-0.5,-0.5) -- (0.5,0.5);
\end{tikzpicture}
```

- Draw a thick line.

Graphic Options

- Add color and line styles to the picture:


```
\begin{tikzpicture}
    \draw [color=blue, fill=blue!20!white,fill opacity=0.6]
        (0,0) circle (0.5);
    \draw [thick, dashed] (-0.5,-0.5) -- (0.5,0.5);
\end{tikzpicture}
```

- Draw a dashed line.

Graphic Options

- Add color and line styles to the picture:


```
\begin{tikzpicture}
    \draw [color=blue, fill=blue!20!white,fill opacity=0.6]
        (0,0) circle (0.5);
    \draw [thick, dashed, ->] (-0.5,-0.5) -- (0.5,0.5);
\end{tikzpicture}
```

- Draw an arrow.

Graphic Options

- Add color and line styles to the picture:


```
\begin{tikzpicture}
    \draw [color=blue, fill=blue!20!white,fill opacity=0.6]
        (0,0) circle (0.5);
    \draw [thick, dashed, ->, rotate=30]
        (-0.5,-0.5) -- (0.5,0.5);
\end{tikzpicture}
```

- Rotate the arrow.

Scoping and Grouping Graphic Options

- Grouping multiple graphic options:


```
\begin\{tikzpicture\} }
    \draw [orange, very thick] ( 0,0 ) circle ( 0.5 );
    \draw [orange, very thick] (-0.5,-0.5) -- (0.5,0.5);
    \draw [orange, very thick] (0.5,-0.5) -- (-0.5,0.5);
\end\{tikzpicture\} }
```


Scoping and Grouping Graphic Options

- Grouping multiple graphic options:


```
\begin{tikzpicture} [orange, very thick]
    \draw (0,0) circle (0.5);
    \draw(-0.5,-0.5) -- (0.5,0.5);
    \draw(0.5,-0.5) -- (-0.5,0.5);
\end{tikzpicture}
```

- Define a set of options for the whole figure.

Scoping and Grouping Graphic Options

- Grouping multiple graphic options:

```
\begin\{tikzpicture\} }
    \draw (0,0) circle (0.5);
    \begin\{scope\} [orange, very thick] }
        \draw (-0.5,-0.5) -- (0.5,0.5);
        \draw \((0.5,-0.5)\)-- ( \(-0.5,0.5\) );
        \end\{scope\} }
\end\{tikzpicture\} }
```

- Set a scope.

Scoping and Grouping Graphic Options

- Grouping multiple graphic options:

```
\begin\{tikzpicture\} }
    [marked/.style = \{orange, very thick\}]
    \draw (0,0) circle (0.5);
    \draw [marked] (-0.5,-0.5) -- (0.5,0.5);
    \draw [marked] (0.5,-0.5) -- (-0.5,0.5);
\end\{tikzpicture\} }
```

- Define a style.

Scoping and Grouping Graphic Options

- Grouping multiple graphic options:


```
\tikzset\{marked/.style = \{orange, very thick\}\}
\begin\{tikzpicture\} }
    \draw (0,0) circle (0.5);
    \draw [marked] (-0.5,-0.5) -- (0.5,0.5);
    \draw [marked] (0.5,-0.5) -- (-0.5,0.5);
\end\{tikzpicture\} }
```

- Draw a global style.

Scoping and Grouping Graphic Options

- Grouping multiple graphic options:


```
\tikzset\{marked/.style = \{orange, very thick\}\}
\begin\{tikzpicture\} }
    \draw \((0,0)\) circle (0.5);
    \draw [marked,blue] (-0.5,-0.5) -- (0.5,0.5);
    \draw [marked,dashed] (0.5,-0.5) -- (-0.5,0.5);
\end\{tikzpicture\} }
```

Properties of styles can be overwritten.

Coordinates

- There exists multiple coordinate systems
\triangleright Polar coordinates are not introduced here
- Absolute coordinates
\tikz \draw [thick,red] (0,0) -- (2mm, 0) -- (2mm, 5pt);
-
- Relative coordinates
\tikz \draw [thick, red] $(0,0)--+(2 \mathrm{~mm}, 0)--+(0,5 \mathrm{pt})$;
>
- Named points
\tikz \draw [thick, red] $(0,0)--++(2 \mathrm{~mm}, 0)--+(0,5 \mathrm{pt})$;
-
- Named points
\tikz \draw [thick,red] (10mm,1mm) coordinate (c1) circle (5pt) $(0,0)--(c 1)$;

Nodes

- A node is a simple shape with some text on it.

$$
\text { \tikz \path node [shape=circle, draw, color=red] \{hello\}; }
$$

- Constructed using the path-operation node.
- \backslash path node can be abbreviated as \backslash node.
- shape= and color= can be omitted if there is no confusion.

Nodes

- A node is a simple shape with some text on it.

$$
\text { \tikz \node [circle, draw, red] \{hello\}; }
$$

- Constructed using the path-operation node.
- \backslash path node can be abbreviated as \backslash node.
- shape= and color= can be omitted if there is no confusion.

TECHNISCHE
UNIVERSITAT

Node Syntax

```
\path ... node [options] (name) at (coordinate) {contents} ...;
```


Node Syntax

```
\path ... node [options] (name) at (coordinate) {contents} ...;
```

- options may contain node shape, color, sizes, labels, ...
- A node may get a name for later reference.
- A node may be placed using at (coordinate). (Otherwise it is placed at the current path coordinate.)
- Nodes contents can be arbitrary LATEX $_{\mathbf{E}} \mathbf{X}$.

Node Syntax

```
\path ... node [options] (name) at (coordinate) {contents} ...;
```

- options may contain node shape, color, sizes, labels, ...
- A node may get a name for later reference.
- A node may be placed using at (coordinate). (Otherwise it is placed at the current path coordinate.)
- Nodes contents can be arbitrary LATEX $_{\mathbf{E}} \mathbf{X}$.

TikZ is quite liberal with respect to the order of the arguments.

```
hello
```

```
\tikz \node [circle] at (0,0) [draw] (hello) [red] {hello};
```

```
\tikz \node [circle] at (0,0) [draw] (hello) [red] {hello};
```


Placing Nodes

p_{1}

$p_{1}$$\quad$| p_{n} |
| :--- |

```
\begin{tikzpicture}
    \node [packet] (p1) at (0,0.5) {$p_1$};
    \node [packet] (p1) at (1,0.5) {$p_1$};
    \node [packet] (p1) at (4,0.5) {$p_1$};
\end{tikzpicture}
```

- Can be placed at absolute positions.

Placing Nodes

p_{n}

```
\begin{tikzpicture}
    \node [packet] (p1) at (0,0.5) {$p_1$};
    \node [packet,right=0.25of p1] (p2) {$p_2$}
    \node [packet,right=2of p2] (pn) {$p_n$}
\end{tikzpicture}
```

- Relative placement allows to say things like:
\triangleright "Node (p2) should be right of (p1)" (wherever (p1) happens to be).
\triangleright Requires the positioning TikZ library:
\usetikzlibrary\{positioning\}
\triangleright available: right=of, below=of, above left=of,...

Connecting Nodes

- We can simply draw paths between node anchors.


```
\usetikzlibrary{arrows}
\begin{tikzpicture}[>=latex']
    \node [circle, draw] (a) {a};
    \node [circle, draw] (b) [above right=of a] {b}
    \draw [->] (a.east) -- (b.west);
\end{tikzpicture}
```

- Each node has anchors, e.g. east, west, center, ...

Connecting Nodes

- We can simply draw paths between node anchors.

$$
\text { \usetikzlibrary\{arrows\} }
$$

$$
\text { \begin\{tikzpicture\}[>=latex’] }}
$$

$$
\text { \node [circle, draw] (a) \{a\}; }
$$

$$
\text { \node [circle, draw] (b) [above right=of a] \{b\} }
$$

\draw [->] (a) -- (b);

$$
\text { \end\{tikzpicture\} }}
$$

- Each node has anchors, e.g. east, west, center, ...
- If anchor specifications are left out TikZ tries to be smart about the anchor it should choose.

Connecting Nodes

- We can simply draw paths between node anchors.

- Each node has anchors, e.g. east, west, center, ...
- If anchor specifications are left out TikZ tries to be smart about the anchor it should choose.
- Another path operation - |
- Again, TikZ is clever about the correct anchors

Connecting Nodes

- A very powerful path operation is to.


```
\begin{tikzpicture}[>=latex']
    \node [circle, draw] (a) {a};
    \node [circle, draw] (b) [above right=of a] {b}
    \draw [->] (a) to (b);
\end{tikzpicture}
```


Connecting Nodes

- A very powerful path operation is to.


```
\begin{tikzpicture}[>=latex']
    \node [circle, draw] (a) {a};
    \node [circle, draw] (b) [above right=of a] {b}
    \draw [->] (a) to [bend left=45] (b);
\end{tikzpicture}
```


Connecting Nodes

- A very powerful path operation is to.


```
\begin{tikzpicture}[>=latex']
    \node [circle, draw] (a) {a};
    \node [circle, draw] (b) [above right=of a] {b}
    \draw [->] (a) to [out=0, in=180] (b);
\end{tikzpicture}
```

TECHNISCHE
UNIVERSITAT

Labeling Connections

- Connections can be labeled by inserting text nodes in the path.


```
\begin{tikzpicture}
    \node [circle, draw] (a) {a};
    \node [circle, draw] (b) [above right=of a] {b};
    \draw [->] (a) to [bend left=45] (b);
\end{tikzpicture}
```

TECHNISCHE
UNIVERSITAT

Labeling Connections

- Connections can be labeled by inserting text nodes in the path.


```
\begin{tikzpicture}
    \node [circle, draw] (a) {a};
    \node [circle, draw] (b) [above right=of a] {b};
    \draw [->] (a) to [bend left=45] node [auto] {$f$} (b);
\end{tikzpicture}
```


Labeling Connections

- Connections can be labeled by inserting text nodes in the path.


```
\begin{tikzpicture}
    \node [circle, draw] (a) {a};
    \node [circle, draw] (b) [above right=of a] {b};
    \draw [->] (a) to [bend left=45] node [auto] {$f$} (b);
\end{tikzpicture}
```

- The auto option places the label such that it is next to the path and doesn't overlap anything.

Labeling Connections

- Connections can be labeled by inserting text nodes in the path.


```
\begin{tikzpicture}
    \node [circle, draw] (a) {a};
    \node [circle, draw] (b) [above right=of a] {b};
    \draw [->] (a) to [bend left=45] node [auto,swap] {$f$}(b);
\end{tikzpicture}
```

- The auto option places the label such that it is next to the path and doesn't overlap anything.
- swap places the label on the other side of the path.

Labeling Connections

- Connections can be labeled by inserting text nodes in the path.


```
\begin{tikzpicture}
    \node [circle, draw] (a) {a};
    \node [circle, draw] (b) [above right=of a] {b};
    \draw [->] (a) to [bend left=45] node [left] {$f$}(b);
\end{tikzpicture}
```

- The auto option places the label such that it is next to the path and doesn't overlap anything.
- swap places the label on the other side of the path.
- Instead of auto, also left, above, right and below can be used

For Loop

- For drawing multiple objects a for loop can be used
- Loops can be nested

```
\begin{tikzpicture}
    \foreach \y in {1,2,3} {
        \draw [blue, ultra thick] (0,\y ) circle [radius=0.3];
    }
\end{tikzpicture}
```


Good Practice

- Place nodes relative to each other
- Do not use to many colors and styles
- Do not overload figures.
- Further information:
\triangleright Gnuplot has a TikZ terminal
\triangleright Inkscape can export to TikZ
\triangleright Dia is another GUI that can export TikZ
\triangleright see http://www.texample.net/tikz/resources/

